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Introduction

• The problems treated in this seminar:
• Is there an optimal way of reducing λ-terms? If so, how?
• What is the complexity of optimal β-reduction?

• The main topics presented:
• Theoretical concepts

• Orders of reduction
• Optimal reduction and Lévy-optimality
• Wadsworth’s technique
• Sharing graphs

• Complexity and results for optimal reduction
• Asperti and Mairson (1998)
• Asperti, Coppola, Martini (2004)

• Practical aspects
• Examples of Higher-Order reduction
• The Bologna Optimal Higher-order Machine (BOHM)
• BOHM: Benchmarks and results

• Conclusion and related work
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Theoretical concepts
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Preliminary Definitions

• Identity: I ≜ λx.x
• Duplication: ∆ ≜ λx.x x

Definition (Redex = Reducible expression)
An application where the left side is a λ-abstraction.

Definition (Innermost reduction)
A reduction strategy where we first apply redexes which contain no other
redex inside of them (i.e.: fully reduce the arguments, then substitute).

Definition (Outermost reduction)
A reduction strategy where we first apply redexes which are contained by
no other redex (i.e.: substitute the arguments in the body as they are).
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Reduction Orders in λ-terms

(λx.λy.x) z ((λx.x x) k)

• Innermost reduction: fully evaluate the arguments, then apply
(λx.λy.x) z ((λx.x x) k)

=⇒β (λx.λy.x) z (k k)
=⇒β (λy.z) (k k)
=⇒β z

• Outermost reduction: substitute arguments immediately as they are
(λx.λy.x) z ((λx.x x) k)

=⇒β (λy.z) ((λx.x x) k)
=⇒β z

• The issue: doing useless work by applying unneeded reductions
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Reduction Orders in λ-terms

(λf.(f a) (f b)) ((λy.λx.x) k)

• Innermost reduction: fully evaluate the arguments, then apply
(λf.(f a) (f b)) ((λy.λx.x) k)

=⇒β (λf.(f a) (f b)) (λx.x)
=⇒β ((λx.x) a) ((λx.x) b)
=⇒β a ((λx.x) b)
=⇒β a b

• Outermost reduction: substitute arguments immediately as they are
(λf.(f a) (f b)) ((λy.λx.x) k)

=⇒β (((λy.λx.x) k) a) (((λy.λx.x) k) b)
=⇒β ((λx.x) a) (((λy.λx.x) k) b)
=⇒β a (((λy.λx.x) k) b)
=⇒β a ((λx.x) b)
=⇒β a b

• The issue: duplicating work by copying redexes
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Reduction Orders in λ-terms – Results

• As we have seen, none of the two reduction orders presented can reach
the normal form in the minimum number of β-reductions

Property (Outermost applies only required redexes)
If a redex is not applied by the outermost reduction, it is not necessary to
obtain the normal form of the term.

Theorem (Standardization theorem) [Curry & Feys, 1958]
If a normal form exists, there exists a (standard) outermost reduction to it.

Theorem (Uncomputability of optimal reduction strategies)
[Barendregt et al. 1976]
Any reduction strategy that always selects the minimal length β-reduction
(one redex at a time) for all λ-terms is necessarily uncomputable.
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Virtual Redexes, Redex Families
• Inefficiency is hard to avoid! Using innermost reduction:

(λx.x I) (λy.∆ (y z))
=⇒β (λx.x I) (λy.(y z) (y z))
=⇒β (λy.(y z) (y z)) I
=⇒β (I z) (I z)
=⇒β z (I z)
=⇒β z z

• Duplication can also occur in more subtle ways: (y z) is not yet a redex!

Definition (Virtual redex)
An application where the left side could be a λ-abstraction in the future.

• Issue: we individually reduce terms deriving from a same (virtual) redex

Definition (Redex family) [Lévy 1978]
A set of redexes with a common origin (i.e.: residuals of the same redex)
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Lévy-Optimality

• No optimal strategy; but a optimal parallel β-reduction strategy exists!
• The problem of duplication: separately reducing redex of a family

Theorem (Lévy-optimality – parallel β-reduction) [Lévy 1978]
Any relation contracting a whole family of redexes in one step is optimal.

Corollary (Lévy-optimality – no-duplication property) [Lévy 1978]
No redex, explicit or virtual, is ever duplicated during such reduction.

• How can we achieve this? By uniquely representing all the redexes in a
same redex family in a collective and shared way

• A first efficient idea for the sharing of redexes: Wadsworth’s technique
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Wadsworth’s Technique
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Wadsworth’s Technique

• Introduced in Wadsworth’s Ph.D. thesis (1971) as a practical technique
for efficiently reducing λ-terms:

Avoid duplicating work by sharing function arguments

• Implemented in modern lazy functional programming languages with
call-by-need (Haskell GHC)

• λ-terms → abstract syntax trees + pointers ≈ directed acyclic graphs
• Variables in a term are simply pointers to the abstract syntax tree of the

argument given to the function
• Each reduction in a subtree represents one or more reductions in the

corresponding term
• (An outermost reduction order is still required to avoid useless work)
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Wadsworth’s Technique – Example

• M ≜ (λx.x x) ((λx.x y) I)

(λx.x x) ((λx.x y) I)
=⇒β ((λx.x y) I) ((λx.x y) I)
=⇒∗

β (I y) (I y)
=⇒∗

β y y
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Wadsworth’s Technique – Non-optimality

• Unfortunately, Wadsworth’s technique is non-optimal
• Why: virtual redexes inside functions still need to be duplicated
• For example:

(λf.(f a) (f b)) (λy. . . . )

=⇒β ((λy. . . . ) a) ((λy. . . . ) b)

• Now the function body will inevitably have to be unshared!
• This duplicates any internal virtual redexes inside the function
• Observation: the copy of the function will only differ by the argument,

the rest of the body remains the same
• A more complex sharing and unsharing mechanism is required to

maintain optimality, using full (cyclic) graphs: Sharing graphs
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Sharing graphs
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Sharing Graphs
• First proposed by Lamping in 1989: an implementation based on graph

reduction of Lévy’s optimal parallel β-reduction
• One explicit node for sharing (fan-in) and unsharing (fan-out)
• (Note: no operational distinction between fan-in and fan-out)
• The core idea: progressively and lazily unshare parts of the term
• Additionally, variables are connected to their binders on the left:

Sharing graph for ∆ ≜ λx.x x Sharing graph for I ≜ λx.x
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Sharing Graphs – Example

Sharing graph for M ≜ ∆ (λf.∆(f I))
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Sharing Graphs – Reduction Rules

• We have a representation for λ-terms with explicit sharing, but:
• How is β-reduction implemented?
• How do the nodes interact with each other and ”reduce the graph”?
• Each node has one principal port and zero or many secondary ports:

Principal ports of the three nodes

• Reductions occur when the principal ports of two nodes are connected
with each other (interaction between nodes)

• A graph rewriting system introduced by Lafont in 1990: Interaction Nets
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Sharing Graphs – Reduction Rules (β)

β-reduction in sharing graphs (λ-@ interaction)
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Sharing Graphs – Reduction Rules (β)

β-reduction in sharing graphs, locally (λ-@ interaction)

• Reductions are local: only two nodes interact, the graph is unaltered
• This allows for highly-parallel implementations of graph reduction
• The reduction can be performed in O(1) time by a simple rewiring
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Sharing Graphs – Reduction Rules (λ-fan)

Unsharing of λ-abstractions
(note the matching fan-out at the end)
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Sharing Graphs – Reduction Rules (λ-fan)

Unsharing of λ-abstractions, locally (λ-fan interaction)
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Sharing Graphs – Reduction Rules (@-fan)

Unsharing of applications (@-fan interaction)
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Sharing Graphs – Reduction Example (1-4)

Sharing graph reduction for M ≜ ∆ (λf.∆(f I)) (eventually, M =⇒∗
β I)
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Sharing Graphs – Reduction Example (4-7)

How should the fan pairs a and b interact?
Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 21 / 49



Sharing Graphs – Reduction Rules (fan-fan)

Annihilation and duplication rules for fans (fan-fan interaction)

• It is non-trivial to determine which rule should be applied
• Intuition: if the two fans were originated from the same ”duplication

process”, they annihilate and cancel each other out (sharing → unsharing)
• Otherwise, exchange them by duplicating the two fans
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Sharing Graphs – Reduction Example (7-10)
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Sharing Graphs – Reduction Example (10-14)
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Sharing Graphs – Reduction Example (14-20)

No more rules can be applied, we reached the normal form I ≜ λx.x
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Sharing Graphs – Bookkeeping

• In practice, how is the pairing of fans determined?
• Presented so far: abstract algorithm = β-reduction + duplication
• The additional structure required to determine the correct pairing of

duplication fans is called bookkeeping [Lamping 1990]
• The structure captured by fans is actually quite complex:

Would a simple unique labeling work? No
Would giving a level number to fans work? Almost, but no

• The main presentations in the literature:
• Lamping (1990): ”An Algorithm for Optimal Lambda-Calculus Reduction”
• Gonthier, Abadi, Lévy (1992): ”The Geometry of Optimal Lambda-Reduction”
• Asperti (1994): ”Linear Logic, Comonads and Optimal Reductions”
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Sharing Graphs – Bookkeeping

• Each node is given a level, which can change during the computation
• If two fans pairs are at the same level, they annihilate, otherwise they

exchange as before
• Interaction between two nodes now occurs when both: the principal

ports are connected and their level is the same
• Non-trivial idea: a notion of enclosure to delimit the interaction of fans
• The level of a node can be dynamically incremented or decremented by

two new nodes: open brackets (croissants) and close brackets (square
brackets), respectively

Bookkeeping nodes: open bracket and close bracket

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 27 / 49



Sharing Graphs – Bookkeeping Rules

Bookkeeping interactions and annihilations
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Sharing Graphs – Reduction Rules with Levels

β-rule, fan annihilation, fan duplication
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Sharing Graphs – Initial Encoding
• Final issue: how do we assign levels to λ-term nodes?
• Encoding defined by structural induction, with n = 0 at the start

• The graph has m free edges at the bottom, one for each free variable
• The sharing level of a term is increased when it is an argument of an

application, and decreased when accessed by a variable in a function
• Note: in the application, fans are required for each shared free variable
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Sharing Graphs – Initial Encoding with Garbage nodes

Additional encoding rule with garbage nodes when x ̸∈ FV(M)

In the β-reduction, the argument N ends up ”discarded”
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Sharing Graphs – Garbage Collection Rules

Garbage collection reduction rules
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Sharing Graphs – Example with Levels

Sharing graph for two ≜ λf.λx.f (f x)
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Sharing Graphs – Reduction with Levels

Reduction for two I, isomorphic to the identity

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 33 / 49



Complexity results of Optimal Reduction
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Complexity Results – Asperti and Mairson (1998)

• How costly is it to reduce a redex family inside a λ-term?
• Is there a bound on the amount of graph reductions done in terms of

the parallel β-reduction steps (i.e.: redex families) of a λ-term?

Theorem (Parallel β-reduction is not Kalmár-elementary recursive)
[Asperti and Mairson 1998]
The time complexity of n steps of parallel β-reduction steps (reducing n
redex families) is not bounded by O(2n), nor O(22

n
), nor O(22

2n
), etc.

• This lower bound applies to any technology that can implement
Lévy-optimal reduction.

• The number of redex families is not a good cost indicator of a λ-term
• Previous results by [Lawall, Mairson, 1996] and [Asperti, 1996] gave O(2n)
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Complexity Results – The Proof Ideas

Statman’s Theorem [Statman 1979]
The time required to normalize simply-typed λ-terms is not bounded by
any elementary recursive function in the size of the term.

Simply-typed λ-terms are linear in redex families [Asperti, Mairson 1998]
Any simply-typed λ-term can be normalized in a number of parallel
β-reduction steps linear in the size of the term.

• The number of parallel β-reduction steps required is surprisingly low
• Hence, most part of the work (which has to be done by Statman’s

theorem) must be devolved to duplication and bookkeeping
• The complexity of a term is hardly related to the number of required

parallel β-steps, but to the sharing machinery needed to implement them
• (Statman’s theorem is re-derived using the techniques of [Mairson 1992],

which uses λ-calculus terms to implement quantifier elimination for
higher-order logic over a finite base type)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 35 / 49



Complexity Results – Asperti, Coppola, Martini (2004)
• Which is to blame? The abstract algorithm or the bookkeeping?
• Surprisingly, the issue is not the bookkeeping, but the intrinsic

duplication and sharing of λ-terms:

Theorem (Duplications are not Kalmár-elementary recursive)
[Asperti, Coppola, Martini 2004]
There exist λ-terms normalizable in n steps of parallel β-reduction with
number of duplication interactions not bounded by O(2n), nor O(22

n
), etc.

• Main technical tool: revisiting the proof terms used in
[Asperti, Mairson 1998] by typing them in Elementary Affine Logic (EAL)

• If a term can be given a type in EAL (for which they give a
type-inference algorithm), bookkeeping is not necessary and a simple
labelling of fan nodes suffices.

• λ-terms have an inherent sharing, which can explode in size even with
an implementation of optimal duplication.
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An Example of Higher-Order Sharing
• Sharing graphs take sharing to the extreme, sharing not only the basic

structures of λ-calculus, but sharing nodes themselves
• This allows for exponential terms to be coded in linear space graphs

with implicit sharing nets:

An isomorphic sharing graph representation for two ≜ λf.λx.f (f x))
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An Example of Higher-Order Sharing

Sharing graph representation for two two
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An Example of Higher-Order Sharing

Sharing graph representation for n two ∼= 2n
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An Example of Higher-Order Sharing

Sharing graph representation for 2n 2n (in n family reductions)
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Practical aspects of Optimal Reduction
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The Bologna Higher-Order Machine (BOHM)

• An efficient implementation of a (lazy) functional programming language
using sharing graphs, written in C [Asperti, Giovannetti, Naletto 1996]

• The source language is a sugared λ-calculus with integer, lists, booleans
• For pure λ-calculus terms, BOHM greatly outperforms the

competition (SML, Caml Light, Yale Haskell), giving polynomial
reductions for many exponential cases

• For real world functional programs, BOHM is one order of magnitude
slower than call-by-value languages (SML, Caml Light), and sometimes
only slightly worse than Yale Haskell

• The fundamental issue: real world programming rarely uses higher-order
functionals and functions-as-data (usually just for parametricity)

• However, higher-order programming is precisely what optimal reduction
exploits, by taking advantage of the inherent sharing of λ-terms
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The Bologna Higher-Order Machine (BOHM)
• On total absence of sharing: BOHM 1.0 is 10x slower on λ-terms,

50x slower on numerical computations compared with Caml Light
• Experimentally, the slowdown compared to Caml Light is constant, but

on many cases the speedup is exponential
• Essential optimization: garbage collection must be performed frequently

because garbage can be reduced and duplicated along the graph
• In many cases, exponential reduction times can be reduced to linear
• BOHM 1.1: fans that can never pair with other fans (safe) are allowed

to be collected earlier (e.g.: in the initial graph all operators are safe)

Critical pair fan-garbage
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BOHM – Benchmarks (Factorial and Fibonacci)

def I = \x.x;;
def zero = \x.\y.y;;
def one = \x.\y.(x y);;
def two = \x.\y.(x (x y));;
def three = \x.\y.(x (x (x y)));;
...
def Pair = \x.\y.\z.(z x y);;
def Fst = \x.\y.x;;
def Snd = \x.\y.y;;
def Succ = \n.\x.\y.(x (n x y));;
def Add = \n.\m.\x.\y.(n x (m x y));;
def Mult = \n.\m.\x.(n (m x));;

def nextfact =
\p.let n1 = (p Fst) in

let n2 = (Succ (p Snd)) in
(Pair (Mult n1 n2) n2);;

def nextfibo =
\p.let n1 = (p Fst) in

let n2 = (p Snd) in
(Pair (Add n1 n2) n1);;

def fact = \n.
(n nextfact (Pair one zero) Fst);;

def fibo = \n.
(n nextfibo (Pair zero one) Fst);;

Factorial and Fibonacci implemented with Church numerals.

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 43 / 49



BOHM – Benchmarks (fact)
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BOHM – Benchmarks (fibo)
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BOHM – Benchmarks (Garbage Collection)
n Term GC off GC on
1 fact one I I 1188 1178
2 fact two I I 1242 1219
3 fact three I I 1303 1276
5 fact five I I 1515 1383
10 fact ten I I 4544 1797
15 fact fifteen I I 20029 2452
20 fact twenty I I 73661 3226
1 fibo one I I 1220 1209
2 fibo two I I 1247 1234
3 fibo three I I 1296 1283
5 fibo five I I 1418 1381
10 fibo ten I I 2439 1763
15 fibo fifteen I I 26984 6228
20 fibo twenty I I 288003 57269

Maximum number of nodes allocated with and without GC.
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BOHM – Benchmarks (g ≜ λn.n two I 0)
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BOHM – Benchmarks (f ≜ λn.(n two) two I 0)
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Conclusion and Related Work

Sharing graphs provide a theoretically-relevant and elegant model for the
optimal and asymptotically more efficient (parallel) evaluation of λ-terms.

• Many other interesting connections:
• the relation with linear logic [Gonthier, Abadi, Lévy 1997],
• Lamping’s paths, semantic equivalence [Asperti, Laneve 1997],
• read-back, safe nodes, garbage collection [Asperti and Guerrini 1998],
• interaction nets, algorithm optimizations [Mackie 2004],
• parallel GPU-based implementations [Pedicini, Pellitta 2010]

• Other techiques for optimal reduction: Lambdascope [van Oostrom 2010]
• The cost of bookkeeping is still not yet exactly known [Asperti 2017]
• More recently: the literature is concentrating on abstract machines and

their complexity [Accattoli, Dal Lago 2016], [Accattoli et al. 2019]
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Thank you for your attention!
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Appendix: Sharing Graphs – An Intuition for Levels

• The brackets enclose ”shareable data”, i.e.: application arguments
• The level of a term represents the number of ways it can be shared:

A (B C)

• (B C) can be shared inside A: to avoid conflicts between the fans of the
two terms, one must be put at a (conventionally) higher level

• Similarly, C can be shared both in A and B, thus its level = 2

• The level is increased when we pass in the argument of an application
• When does a term ”lose” a level of sharing? When it is accessed by a

variable inside a function (which will be at a lower level)
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Appendix: BOHM Rules for Lists, Booleans, Conditionals
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