
The Complexity of Optimal Reduction and Sharing Graphs

Andrea Laretto

Università di Pisa
Dipartimento di Informatica

23 luglio 2021

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 1 / 49

Introduction

• The problems treated in this seminar:
• Is there an optimal way of reducing λ-terms? If so, how?
• What is the complexity of optimal β-reduction?

• The main topics presented:
• Theoretical concepts

• Orders of reduction
• Optimal reduction and Lévy-optimality
• Wadsworth’s technique
• Sharing graphs

• Complexity and results for optimal reduction
• Asperti and Mairson (1998)
• Asperti, Coppola, Martini (2004)

• Practical aspects
• Examples of Higher-Order reduction
• The Bologna Optimal Higher-order Machine (BOHM)
• BOHM: Benchmarks and results

• Conclusion and related work

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 2 / 49

Theoretical concepts

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 2 / 49

Preliminary Definitions

• Identity: I ≜ λx.x
• Duplication: ∆ ≜ λx.x x

Definition (Redex = Reducible expression)
An application where the left side is a λ-abstraction.

Definition (Innermost reduction)
A reduction strategy where we first apply redexes which contain no other
redex inside of them (i.e.: fully reduce the arguments, then substitute).

Definition (Outermost reduction)
A reduction strategy where we first apply redexes which are contained by
no other redex (i.e.: substitute the arguments in the body as they are).

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 3 / 49

Reduction Orders in λ-terms

(λx.λy.x) z ((λx.x x) k)

• Innermost reduction: fully evaluate the arguments, then apply
(λx.λy.x) z ((λx.x x) k)

=⇒β (λx.λy.x) z (k k)
=⇒β (λy.z) (k k)
=⇒β z

• Outermost reduction: substitute arguments immediately as they are
(λx.λy.x) z ((λx.x x) k)

=⇒β (λy.z) ((λx.x x) k)
=⇒β z

• The issue: doing useless work by applying unneeded reductions

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 4 / 49

Reduction Orders in λ-terms

(λf.(f a) (f b)) ((λy.λx.x) k)

• Innermost reduction: fully evaluate the arguments, then apply
(λf.(f a) (f b)) ((λy.λx.x) k)

=⇒β (λf.(f a) (f b)) (λx.x)
=⇒β ((λx.x) a) ((λx.x) b)
=⇒β a ((λx.x) b)
=⇒β a b

• Outermost reduction: substitute arguments immediately as they are
(λf.(f a) (f b)) ((λy.λx.x) k)

=⇒β (((λy.λx.x) k) a) (((λy.λx.x) k) b)
=⇒β ((λx.x) a) (((λy.λx.x) k) b)
=⇒β a (((λy.λx.x) k) b)
=⇒β a ((λx.x) b)
=⇒β a b

• The issue: duplicating work by copying redexes
Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 5 / 49

Reduction Orders in λ-terms – Results

• As we have seen, none of the two reduction orders presented can reach
the normal form in the minimum number of β-reductions

Property (Outermost applies only required redexes)
If a redex is not applied by the outermost reduction, it is not necessary to
obtain the normal form of the term.

Theorem (Standardization theorem) [Curry & Feys, 1958]
If a normal form exists, there exists a (standard) outermost reduction to it.

Theorem (Uncomputability of optimal reduction strategies)
[Barendregt et al. 1976]
Any reduction strategy that always selects the minimal length β-reduction
(one redex at a time) for all λ-terms is necessarily uncomputable.

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 6 / 49

Virtual Redexes, Redex Families
• Inefficiency is hard to avoid! Using innermost reduction:

(λx.x I) (λy.∆ (y z))
=⇒β (λx.x I) (λy.(y z) (y z))
=⇒β (λy.(y z) (y z)) I
=⇒β (I z) (I z)
=⇒β z (I z)
=⇒β z z

• Duplication can also occur in more subtle ways: (y z) is not yet a redex!

Definition (Virtual redex)
An application where the left side could be a λ-abstraction in the future.

• Issue: we individually reduce terms deriving from a same (virtual) redex

Definition (Redex family) [Lévy 1978]
A set of redexes with a common origin (i.e.: residuals of the same redex)
Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 7 / 49

Lévy-Optimality

• No optimal strategy; but a optimal parallel β-reduction strategy exists!
• The problem of duplication: separately reducing redex of a family

Theorem (Lévy-optimality – parallel β-reduction) [Lévy 1978]
Any relation contracting a whole family of redexes in one step is optimal.

Corollary (Lévy-optimality – no-duplication property) [Lévy 1978]
No redex, explicit or virtual, is ever duplicated during such reduction.

• How can we achieve this? By uniquely representing all the redexes in a
same redex family in a collective and shared way

• A first efficient idea for the sharing of redexes: Wadsworth’s technique

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 8 / 49

Wadsworth’s Technique

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 8 / 49

Wadsworth’s Technique

• Introduced in Wadsworth’s Ph.D. thesis (1971) as a practical technique
for efficiently reducing λ-terms:

Avoid duplicating work by sharing function arguments

• Implemented in modern lazy functional programming languages with
call-by-need (Haskell GHC)

• λ-terms → abstract syntax trees + pointers ≈ directed acyclic graphs
• Variables in a term are simply pointers to the abstract syntax tree of the

argument given to the function
• Each reduction in a subtree represents one or more reductions in the

corresponding term
• (An outermost reduction order is still required to avoid useless work)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 9 / 49

Wadsworth’s Technique – Example

• M ≜ (λx.x x) ((λx.x y) I)

(λx.x x) ((λx.x y) I)
=⇒β ((λx.x y) I) ((λx.x y) I)
=⇒∗

β (I y) (I y)
=⇒∗

β y y

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 10 / 49

Wadsworth’s Technique – Non-optimality

• Unfortunately, Wadsworth’s technique is non-optimal
• Why: virtual redexes inside functions still need to be duplicated
• For example:

(λf.(f a) (f b)) (λy. . . .)

=⇒β ((λy. . . .) a) ((λy. . . .) b)

• Now the function body will inevitably have to be unshared!
• This duplicates any internal virtual redexes inside the function
• Observation: the copy of the function will only differ by the argument,

the rest of the body remains the same
• A more complex sharing and unsharing mechanism is required to

maintain optimality, using full (cyclic) graphs: Sharing graphs

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 11 / 49

Sharing graphs

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 11 / 49

Sharing Graphs
• First proposed by Lamping in 1989: an implementation based on graph

reduction of Lévy’s optimal parallel β-reduction
• One explicit node for sharing (fan-in) and unsharing (fan-out)
• (Note: no operational distinction between fan-in and fan-out)
• The core idea: progressively and lazily unshare parts of the term
• Additionally, variables are connected to their binders on the left:

Sharing graph for ∆ ≜ λx.x x Sharing graph for I ≜ λx.x

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 12 / 49

Sharing Graphs – Example

Sharing graph for M ≜ ∆ (λf.∆(f I))

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 13 / 49

Sharing Graphs – Reduction Rules

• We have a representation for λ-terms with explicit sharing, but:
• How is β-reduction implemented?
• How do the nodes interact with each other and ”reduce the graph”?
• Each node has one principal port and zero or many secondary ports:

Principal ports of the three nodes

• Reductions occur when the principal ports of two nodes are connected
with each other (interaction between nodes)

• A graph rewriting system introduced by Lafont in 1990: Interaction Nets

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 14 / 49

Sharing Graphs – Reduction Rules (β)

β-reduction in sharing graphs (λ-@ interaction)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 15 / 49

Sharing Graphs – Reduction Rules (β)

β-reduction in sharing graphs, locally (λ-@ interaction)

• Reductions are local: only two nodes interact, the graph is unaltered
• This allows for highly-parallel implementations of graph reduction
• The reduction can be performed in O(1) time by a simple rewiring

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 16 / 49

Sharing Graphs – Reduction Rules (λ-fan)

Unsharing of λ-abstractions
(note the matching fan-out at the end)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 17 / 49

Sharing Graphs – Reduction Rules (λ-fan)

Unsharing of λ-abstractions, locally (λ-fan interaction)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 18 / 49

Sharing Graphs – Reduction Rules (@-fan)

Unsharing of applications (@-fan interaction)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 19 / 49

Sharing Graphs – Reduction Example (1-4)

Sharing graph reduction for M ≜ ∆ (λf.∆(f I)) (eventually, M =⇒∗
β I)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 20 / 49

Sharing Graphs – Reduction Example (4-7)

How should the fan pairs a and b interact?
Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 21 / 49

Sharing Graphs – Reduction Rules (fan-fan)

Annihilation and duplication rules for fans (fan-fan interaction)

• It is non-trivial to determine which rule should be applied
• Intuition: if the two fans were originated from the same ”duplication

process”, they annihilate and cancel each other out (sharing → unsharing)
• Otherwise, exchange them by duplicating the two fans

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 22 / 49

Sharing Graphs – Reduction Example (7-10)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 23 / 49

Sharing Graphs – Reduction Example (10-14)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 24 / 49

Sharing Graphs – Reduction Example (14-20)

No more rules can be applied, we reached the normal form I ≜ λx.x

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 25 / 49

Sharing Graphs – Bookkeeping

• In practice, how is the pairing of fans determined?
• Presented so far: abstract algorithm = β-reduction + duplication
• The additional structure required to determine the correct pairing of

duplication fans is called bookkeeping [Lamping 1990]
• The structure captured by fans is actually quite complex:

Would a simple unique labeling work? No
Would giving a level number to fans work? Almost, but no

• The main presentations in the literature:
• Lamping (1990): ”An Algorithm for Optimal Lambda-Calculus Reduction”
• Gonthier, Abadi, Lévy (1992): ”The Geometry of Optimal Lambda-Reduction”
• Asperti (1994): ”Linear Logic, Comonads and Optimal Reductions”

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 26 / 49

Sharing Graphs – Bookkeeping

• Each node is given a level, which can change during the computation
• If two fans pairs are at the same level, they annihilate, otherwise they

exchange as before
• Interaction between two nodes now occurs when both: the principal

ports are connected and their level is the same
• Non-trivial idea: a notion of enclosure to delimit the interaction of fans
• The level of a node can be dynamically incremented or decremented by

two new nodes: open brackets (croissants) and close brackets (square
brackets), respectively

Bookkeeping nodes: open bracket and close bracket

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 27 / 49

Sharing Graphs – Bookkeeping Rules

Bookkeeping interactions and annihilations

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 28 / 49

Sharing Graphs – Reduction Rules with Levels

β-rule, fan annihilation, fan duplication

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 29 / 49

Sharing Graphs – Initial Encoding
• Final issue: how do we assign levels to λ-term nodes?
• Encoding defined by structural induction, with n = 0 at the start

• The graph has m free edges at the bottom, one for each free variable
• The sharing level of a term is increased when it is an argument of an

application, and decreased when accessed by a variable in a function
• Note: in the application, fans are required for each shared free variable
Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 30 / 49

Sharing Graphs – Initial Encoding with Garbage nodes

Additional encoding rule with garbage nodes when x ̸∈ FV(M)

In the β-reduction, the argument N ends up ”discarded”

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 31 / 49

Sharing Graphs – Garbage Collection Rules

Garbage collection reduction rules

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 31 / 49

Sharing Graphs – Example with Levels

Sharing graph for two ≜ λf.λx.f (f x)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 32 / 49

Sharing Graphs – Reduction with Levels

Reduction for two I, isomorphic to the identity

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 33 / 49

Complexity results of Optimal Reduction

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 33 / 49

Complexity Results – Asperti and Mairson (1998)

• How costly is it to reduce a redex family inside a λ-term?
• Is there a bound on the amount of graph reductions done in terms of

the parallel β-reduction steps (i.e.: redex families) of a λ-term?

Theorem (Parallel β-reduction is not Kalmár-elementary recursive)
[Asperti and Mairson 1998]
The time complexity of n steps of parallel β-reduction steps (reducing n
redex families) is not bounded by O(2n), nor O(22

n
), nor O(22

2n
), etc.

• This lower bound applies to any technology that can implement
Lévy-optimal reduction.

• The number of redex families is not a good cost indicator of a λ-term
• Previous results by [Lawall, Mairson, 1996] and [Asperti, 1996] gave O(2n)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 34 / 49

Complexity Results – The Proof Ideas

Statman’s Theorem [Statman 1979]
The time required to normalize simply-typed λ-terms is not bounded by
any elementary recursive function in the size of the term.

Simply-typed λ-terms are linear in redex families [Asperti, Mairson 1998]
Any simply-typed λ-term can be normalized in a number of parallel
β-reduction steps linear in the size of the term.

• The number of parallel β-reduction steps required is surprisingly low
• Hence, most part of the work (which has to be done by Statman’s

theorem) must be devolved to duplication and bookkeeping
• The complexity of a term is hardly related to the number of required

parallel β-steps, but to the sharing machinery needed to implement them
• (Statman’s theorem is re-derived using the techniques of [Mairson 1992],

which uses λ-calculus terms to implement quantifier elimination for
higher-order logic over a finite base type)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 35 / 49

Complexity Results – Asperti, Coppola, Martini (2004)
• Which is to blame? The abstract algorithm or the bookkeeping?
• Surprisingly, the issue is not the bookkeeping, but the intrinsic

duplication and sharing of λ-terms:

Theorem (Duplications are not Kalmár-elementary recursive)
[Asperti, Coppola, Martini 2004]
There exist λ-terms normalizable in n steps of parallel β-reduction with
number of duplication interactions not bounded by O(2n), nor O(22

n
), etc.

• Main technical tool: revisiting the proof terms used in
[Asperti, Mairson 1998] by typing them in Elementary Affine Logic (EAL)

• If a term can be given a type in EAL (for which they give a
type-inference algorithm), bookkeeping is not necessary and a simple
labelling of fan nodes suffices.

• λ-terms have an inherent sharing, which can explode in size even with
an implementation of optimal duplication.

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 36 / 49

An Example of Higher-Order Sharing
• Sharing graphs take sharing to the extreme, sharing not only the basic

structures of λ-calculus, but sharing nodes themselves
• This allows for exponential terms to be coded in linear space graphs

with implicit sharing nets:

An isomorphic sharing graph representation for two ≜ λf.λx.f (f x))

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 37 / 49

An Example of Higher-Order Sharing

Sharing graph representation for two two

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 38 / 49

An Example of Higher-Order Sharing

Sharing graph representation for n two ∼= 2n

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 39 / 49

An Example of Higher-Order Sharing

Sharing graph representation for 2n 2n (in n family reductions)
Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 40 / 49

Practical aspects of Optimal Reduction

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 40 / 49

The Bologna Higher-Order Machine (BOHM)

• An efficient implementation of a (lazy) functional programming language
using sharing graphs, written in C [Asperti, Giovannetti, Naletto 1996]

• The source language is a sugared λ-calculus with integer, lists, booleans
• For pure λ-calculus terms, BOHM greatly outperforms the

competition (SML, Caml Light, Yale Haskell), giving polynomial
reductions for many exponential cases

• For real world functional programs, BOHM is one order of magnitude
slower than call-by-value languages (SML, Caml Light), and sometimes
only slightly worse than Yale Haskell

• The fundamental issue: real world programming rarely uses higher-order
functionals and functions-as-data (usually just for parametricity)

• However, higher-order programming is precisely what optimal reduction
exploits, by taking advantage of the inherent sharing of λ-terms

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 41 / 49

The Bologna Higher-Order Machine (BOHM)
• On total absence of sharing: BOHM 1.0 is 10x slower on λ-terms,

50x slower on numerical computations compared with Caml Light
• Experimentally, the slowdown compared to Caml Light is constant, but

on many cases the speedup is exponential
• Essential optimization: garbage collection must be performed frequently

because garbage can be reduced and duplicated along the graph
• In many cases, exponential reduction times can be reduced to linear
• BOHM 1.1: fans that can never pair with other fans (safe) are allowed

to be collected earlier (e.g.: in the initial graph all operators are safe)

Critical pair fan-garbage
Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 42 / 49

BOHM – Benchmarks (Factorial and Fibonacci)

def I = \x.x;;
def zero = \x.\y.y;;
def one = \x.\y.(x y);;
def two = \x.\y.(x (x y));;
def three = \x.\y.(x (x (x y)));;
...
def Pair = \x.\y.\z.(z x y);;
def Fst = \x.\y.x;;
def Snd = \x.\y.y;;
def Succ = \n.\x.\y.(x (n x y));;
def Add = \n.\m.\x.\y.(n x (m x y));;
def Mult = \n.\m.\x.(n (m x));;

def nextfact =
\p.let n1 = (p Fst) in

let n2 = (Succ (p Snd)) in
(Pair (Mult n1 n2) n2);;

def nextfibo =
\p.let n1 = (p Fst) in

let n2 = (p Snd) in
(Pair (Add n1 n2) n1);;

def fact = \n.
(n nextfact (Pair one zero) Fst);;

def fibo = \n.
(n nextfibo (Pair zero one) Fst);;

Factorial and Fibonacci implemented with Church numerals.

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 43 / 49

BOHM – Benchmarks (fact)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 44 / 49

BOHM – Benchmarks (fibo)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 45 / 49

BOHM – Benchmarks (Garbage Collection)
n Term GC off GC on
1 fact one I I 1188 1178
2 fact two I I 1242 1219
3 fact three I I 1303 1276
5 fact five I I 1515 1383
10 fact ten I I 4544 1797
15 fact fifteen I I 20029 2452
20 fact twenty I I 73661 3226
1 fibo one I I 1220 1209
2 fibo two I I 1247 1234
3 fibo three I I 1296 1283
5 fibo five I I 1418 1381
10 fibo ten I I 2439 1763
15 fibo fifteen I I 26984 6228
20 fibo twenty I I 288003 57269

Maximum number of nodes allocated with and without GC.
Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 46 / 49

BOHM – Benchmarks (g ≜ λn.n two I 0)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 47 / 49

BOHM – Benchmarks (f ≜ λn.(n two) two I 0)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 48 / 49

Conclusion and Related Work

Sharing graphs provide a theoretically-relevant and elegant model for the
optimal and asymptotically more efficient (parallel) evaluation of λ-terms.

• Many other interesting connections:
• the relation with linear logic [Gonthier, Abadi, Lévy 1997],
• Lamping’s paths, semantic equivalence [Asperti, Laneve 1997],
• read-back, safe nodes, garbage collection [Asperti and Guerrini 1998],
• interaction nets, algorithm optimizations [Mackie 2004],
• parallel GPU-based implementations [Pedicini, Pellitta 2010]

• Other techiques for optimal reduction: Lambdascope [van Oostrom 2010]
• The cost of bookkeeping is still not yet exactly known [Asperti 2017]
• More recently: the literature is concentrating on abstract machines and

their complexity [Accattoli, Dal Lago 2016], [Accattoli et al. 2019]

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 49 / 49

Thank you for your attention!

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 49 / 49

Bibliography I

Andrea Asperti and Harry G. Mairson.
Parallel beta reduction is not elementary recursive.
In POPL ’98, The 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 303–315. ACM, 1998.
Andrea Asperti, Paolo Coppola, and Simone Martini.
(optimal) duplication is not elementary recursive.
Inf. Comput., 193(1):21–56, 2004.

Andrea Asperti and Stefano Guerrini.
The optimal implementation of functional programming languages,
volume 45 of Cambridge tracts in theoretical computer science.
Cambridge University Press, 1998.
Andrea Asperti, Cecilia Giovanetti, and Andrea Naletto.
The bologna optimal higher-order machine.
J. Funct. Program., 6(6):763–810, 1996.

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 49 / 49

Bibliography II

Andrea Asperti.
About the efficient reduction of lambda terms.
CoRR, abs/1701.04240, 2017.

Andrea Asperti.
On the complexity of beta-reduction.
In POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 110–118. ACM, 1996.
Christopher P. Wadsworth.
Semantics and pragmatics of the lambda-calculus.
PhD thesis, Oxford, 1971.
Jean-Jacques Lévy.
Réductions correctes et optimales dans le lambda-calcul.
PhD thesis, January, 1978.

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 49 / 49

Bibliography III

Julia L. Lawall and Harry G. Mairson.
Optimality and inefficiency: What isn’t a cost model of the lambda
calculus?
In Proceedings of the 1996 ACM SIGPLAN International Conference
on Functional Programming, ICFP 1996, pages 92–101. ACM, 1996.
Andrea Asperti and Cosimo Laneve.
Interaction systems I: the theory of optimal reductions.
Math. Struct. Comput. Sci., 4(4):457–504, 1994.

Andrea Asperti and Cosimo Laneve.
Interaction systems II: the practice of optimal reductions.
Theor. Comput. Sci., 159(2):191–244, 1996.

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 49 / 49

Appendix: Sharing Graphs – An Intuition for Levels

• The brackets enclose ”shareable data”, i.e.: application arguments
• The level of a term represents the number of ways it can be shared:

A (B C)

• (B C) can be shared inside A: to avoid conflicts between the fans of the
two terms, one must be put at a (conventionally) higher level

• Similarly, C can be shared both in A and B, thus its level = 2

• The level is increased when we pass in the argument of an application
• When does a term ”lose” a level of sharing? When it is accessed by a

variable inside a function (which will be at a lower level)

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 49 / 49

Appendix: BOHM Rules for Lists, Booleans, Conditionals

Andrea Laretto (Università di Pisa) Foundation of Computing 23 luglio 2021 49 / 49

