
Specification and Verification
of a Linear-Time Temporal Logic

for Graph Transformation

Fabio Gadducci1, Andrea Laretto2(B), and Davide Trotta1

1 Department of Computer Science, University of Pisa, Pisa, Italy
fabio.gadducci@unipi.it, trottadavide92@gmail.com

2 Department of Software Science, Tallinn University of Technology, Tallinn, Estonia
andrea.laretto@taltech.ee

Abstract. We present a first-order linear-time temporal logic for rea-
soning about the evolution of directed graphs. Its semantics is based on
the counterpart paradigm, thus allowing our logic to represent the cre-
ation, duplication, merging, and deletion of elements of a graph as well as
how its topology changes over time. We then introduce a positive normal
forms presentation, thus simplifying the actual process of verification. We
provide the syntax and semantics of our logics with a computer-assisted
formalisation using the proof assistant Agda, and we round up the paper
by highlighting the crucial aspects of our formalisation and the practical
use of quantified temporal logics in a constructive proof assistant.

Keywords: Counterpart semantics · Linear-time logics · Agda
formalisation

1 Introduction

Among the many tools provided by formal methods, temporal logics have proven
to be one of the most effective techniques for the verification of both large-scale
and stand-alone programs. Along the years, the research on these logics focused
on improving the algorithmic procedures for the verification process as well as
on finding sufficiently expressive fragments of these logics for the specification
of complex multi-component systems. Several models for temporal logics have
been developed, with the leading example being transition systems, also known
as Kripke structures. In a transition system, each state represents a configuration
of the system and each transition identifies a possible state evolution. Often one is
interested in enriching the states and transitions given by the model with more
structure, for example by taking states as algebras and transitions as algebra
homomorphisms. A prominent use case is that of graph logics [9,10,12], where
states are specialised as graphs and transitions are families of (partial) graph

Research partially supported by the Italian MIUR projects PRIN 2017FTXR7S “IT-
MaTTerS” and 20228KXFN2 “STENDHAL” and by the University of Pisa project
PRA_2022_99 “FM4HD”.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Fernández and C. M. Poskitt (Eds.): ICGT 2023, LNCS 13961, pp. 22–42, 2023.
https://doi.org/10.1007/978-3-031-36709-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36709-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-36709-0_2

Specification and Verification of a Linear-Time Temporal Logic 23

morphisms. These logics combine temporal and spatial reasoning and allow to
express the possible transformation of a graph topology over time.

Quantified Temporal Logics. Under usual temporal logics, such as LTL and
CTL [13], the states of the model are taken as atomic, with propositions holding
for entire states: on the other hand, one of the defining characteristics of graph
logics is that they permit to reason and to express properties on the individual
elements of the graph. Despite their undecidability [15,26], quantified temporal
logics have been advocated in this setting due to their expressiveness and the
possibility for quantification to range over the elements in the states of the model.

The semantical models of these logics require some ingenuity, though. Con-
sider a simple model with two states s0, s1, two transitions s0 → s1 and s1 → s0,
and an item i that appears only in s0. Is the item i being destroyed and recre-
ated, or is it just an identifier being reused multiple times? This issue is denoted
in the literature as the trans-world identity problem [2,25]. A solution consists
in fixing a single set of universal items, which gives identity to each individual
appearing in the states of the model. Since each item i belongs to this universal
domain, it is exactly the same individual after every temporal evolution in s1.
However, this means that transitions basically behave as injections among the
items of the states, and this view is conceptually difficult to reconcile with the
simple model sketched above where we describe the destruction and recreation
of a given item. Similarly, the possibility of cloning items is then ruled out, since
it is impossible to accomodate it with the idea of evolution steps as injections.

Counterpart Semantics.A solution to this problem was proposed by Lewis [31]
with the counterpart paradigm: instead of a universal set of items, each state iden-
tifies a local set of elements, and (possibly partial) morphisms connect them by
carrying elements from one state to the other. This allows us to speak formally
about entities that are destroyed, duplicated, (re)created, or merged, and to ade-
quately deal with the identity problem of individuals between graphs.

In [16], a counterpart-based semantics is used to introduce a set-theoretical
semantics of a μ-calculus with second-order quantifiers. This modal logic pro-
vides a formalism that enriches states with algebras and transitions with partial
homomorphisms, subsuming the case of graph logics. These models are gener-
alised to a categorical setting in [17] by means of relational presheaves, building
on the ideas presented in [20,21]. The models are represented with categories
and (families of) relational presheaves, which give a categorical representation
for the states-as-algebras approach with partial homomorphisms. The temporal
advancement of a system is captured by equipping categories with the notion
of one-step arrows for a model, and the categorical framework is then used to
introduce a second-order linear temporal logic QLTL.

Classical Semantics and Positive Normal Form. We start by introducing
the notion of counterpart models in Sect. 2, and present the (admittedly rather
straightforward) syntax of our temporal logic QLTL as well as its counterpart-
based semantics in Sect. 3, using a standard set-theoretic perspective, with satis-
fiability given inductively as a logical predicate. Unlike [16,17] where the models

24 F. Gadducci et al.

use partial functions, we generalise to relations, thus modelling the duplication of
elements by allowing it to have multiple counterparts. In Sect. 4 we present some
results on the positive normal forms, where the models may use either partial
morphisms or relations, and we highlight their differences. Positive normal forms
(i.e., where negation is defined only for atomic formulae) are a standard tool of
temporal logics, since they simplify its theoretical treatment as well as facilitat-
ing model checking algorithms [5,27]. The use of relations instead of (possibly
partial) functions weakens the expressiveness of such normal forms, and requires
the introduction of additional operators for the logics. However, the duplication
of individuals is a central feature of graph transformation formalisms such as
Sequi-Pushout [7], and thus worthy of investigation.

Temporal Logics in Agda. An additional contribution of our work is a
computer-assisted formalisation using the dependently typed proof assistant
Agda [37] of the models, semantics, and positive normal forms of the logic pre-
sented in this paper. We introduce the main aspects of the mechanisation in
Sect. 5, which can be adapted for counterpart-based models whose worlds are
algebras on any multi-sorted signature, even if for the sake of presentation in
this paper we restrict our attention to graph signatures. A formal presenta-
tion of a temporal logic in a proof assistant has several advantages: it solidifies
the correctness and coherence of the mathematical ideas presented in the work,
as they can be independently inspected and verified concretely by means of a
software tool; moreover, the mechanisation effectively provides a playground in
which the mechanisms and validity of these logics can be expressed, tested, and
experimented with.

To the best of our knowledge, few formalisations of temporal logics have
been provided with a proof assistant, and none of these comes equipped with a
counterpart-based semantics. This work constitutes a step towards the machine-
verified use of temporal logics by embedding in an interactive proof assistant a
quantified extension of LTL that can reason on individual elements of states.

2 Counterpart Models

This section introduces our models for system evolution. We consider the instan-
tiation of counterpart models to the case where each world is not associated to a
mere (structureless) set of individuals, but to a directed graph with its evolution
in time being represented by suitable relations preserving the graph structure.

Definition 2.1. A (directed) graph is a 4-tuple G := 〈N,E, s, t〉 such that
N is a set of nodes, E is a set of edges, and s, t : E → N are two functions
assigning a source node s(e) ∈ N and a target node t(e) ∈ N to each edge e ∈ E,
respectively. The set of all directed graphs is denoted as Graphs.

Definition 2.2. A graph (relational) morphism between two graphs G =
〈N,E, s, t〉 and G′ = 〈N ′, E′, s′, t′〉 is a pair R := 〈RN , RE〉 such that RN ⊆
N × N ′ and RE ⊆ E × E′ are relations between nodes and edges of the graphs
such that e1REe2 implies s(e1)RNs′(e2) and t(e1)RN t′(e2). Given graphs G,G′,
the set of graph morphisms is denoted GraphRel(G,G′) ⊆ P((N×N ′)×(E×E′)).

Specification and Verification of a Linear-Time Temporal Logic 25

Definition 2.3. A counterpart model is a triple M := 〈W,D, C〉 such that

– W is a non-empty set of elements, called worlds,
– D : W → Graphs is a function assigning a directed graph to each world,
– C : W ×W → P(GraphRel(D(ω),D(ω′))) is a function assigning to every pair

〈ω, ω′〉 a set of graph morphisms C〈ω, ω′〉 ⊆ GraphRel(D(ω),D(ω′)), where
every C ∈ C〈ω, ω′〉 is a graph morphism between the graphs associated to the
two worlds. We refer to these as atomic counterpart relations.

Given two worlds ω and ω′, the set C〈ω, ω′〉 is the collection of atomic tran-
sitions from ω to ω′, defining the possible ways we can access worlds with a
one-step transition in the system. When the set C〈ω, ω′〉 is empty, there are no
atomic transitions from ω to ω′. Each atomic relation C ∈ C〈ω, ω′〉 connects the
nodes and edges between two worlds ω and ω′, intuitively identifying them as
the same component after one time evolution of the model. For example, if we
consider two nodes n ∈ D(ω)N and n′ ∈ D(ω′)N and a relation C ∈ C〈ω, ω′〉, if
〈n, n′〉 ∈ CN then n′ represents a future development of the node n via C.

Definition 2.4. A node s′ ∈ D(ω′)N is the counterpart of s ∈ D(ω)N
through a counterpart relation C whenever 〈s, s′〉 ∈ CN , and similarly for edges.

Example 2.1. (Counterpart model). We give an example of a counterpart model
by indicating the set of worlds {ω0, ω1, ω2} and the cardinality of the sets of
relations C〈ω, ω′〉 in Fig. 1; the graph structures associated to each world and the
graph morphisms connecting them are shown in Fig. 2. There are two counterpart
relations C1, C2 ∈ C〈ω1, ω2〉 between ω1 and ω2, and we use blue dashed and
green dotted lines to distinguish C1 and C2, respectively.

Fig. 1. Graphical representation of the worlds and accessibility relations of a model.

Fig. 2. Graphical representation of a model.

26 F. Gadducci et al.

The use of relations as transitions allows us to model the removal of edges
and nodes of a graph, by having no counterpart for them in the next state. For
example, if there is no edge e′ ∈ D(ω′)E such that 〈e, e′〉 ∈ CE , we conclude
that the edge e has been removed by C. Similarly, the duplication of a node is
represented by connecting it with two instances of the counterpart relation, e.g.
by having elements n′

1, n
′
2 ∈ D(ω′)N such that 〈n, n′

1〉 ∈ CN and 〈n, n′
2〉 ∈ CN .

The simple counterpart model in Example 2.1 displays the effects of merging
and deletion. The first counterpart relation C0 merges the nodes n0 and n2

of ω0, yet this act does not generate a cycle: in fact, e2 is deleted, since it
is not connected to a counterpart in ω1. Similarly, both counterpart relations
C1 and C2 merge the nodes n3 and n4 of ω1, while they differ in which edge
they remove when transitioning from ω1 to ω2, by deleting either the edge e3
or e4, respectively. Note that in both cases the nodes n3 and n4 need to be
preserved, albeit possibly merged, in order to ensure that the relations considered
are actually (relational) morphisms of graphs.

2.1 Counterpart Relations and Traces

We assume hereafter a fixed counterpart model M := 〈W,D, C〉 and we for-
mally introduce the idea behind counterpart relations. We indicate composi-
tion of graph morphisms in diagrammatic order: as an example, given C ∈
GraphRel(G1, G2) and C ′ ∈ GraphRel(G2, G3), the composite graph morphism
is denoted with C;C ′ ∈ GraphRel(G1, G3) and is such that (C;C ′)N = {(a, c) |
∃b ∈ G2N . 〈a, b〉 ∈ CN ∧ 〈b, c〉 ∈ C ′

N}, and similarly for edges.

Definition 2.5. A graph morphism C ∈ GraphRel(D(ω),D(ω′)) is a counter-
part relation of the model if one of the following cases holds

– C is the identity graph morphism;
– C ∈ C〈ω, ω′〉 is an atomic graph morphism given by the model M;
– C is the composite of a sequence of counterpart relations C0; · · · ;Cn with

Ci ∈ C〈ωi, ωi+1〉.
Note that the composition C;C ′ ∈ GraphRel(D(ω1),D(ω3)) of two atomic

counterpart relations C ∈ C〈ω1, ω2〉 and C ′ ∈ C〈ω2, ω3〉 might not be atomic,
and the models define only atomic transitions. Transitioning directly between
two graphs might differ from transitioning through an intermediate one, since
the direct transition is not necessarily the composition of the two counterpart
relations. Moreover, the former requires one evolution step, the latter two.

As is the case of LTL where we can identify traces connecting linearly evolv-
ing states, see for example [3], we can consider linear sequences of counterpart
relations providing a list of sequentially accessible worlds with associated graphs.

Definition 2.6. A trace σ is an infinite sequence of atomic counterpart rela-
tions (C0, C1, . . .) such that Ci ∈ C〈ωi, ωi+1〉 for any i ≥ 0.

Specification and Verification of a Linear-Time Temporal Logic 27

In other words, a trace identifies a path in the graph induced by the coun-
terpart model, with worlds as nodes and atomic counterpart relations as edges.
Given a trace σ = (C0, C1, . . .), we use σi := (Ci, Ci+1, . . .) to denote the trace
obtained by excluding the first i counterpart relations. We use ω0, ω1, . . . and
ωi to indicate the worlds of the trace σ whenever it is clear from the context.
Similarly, we denote with C≤i the composite relation C0; · · · ;Ci−1 from the first
world ω0 up to the i-th world ωi through the relations given by the trace σ.
Should i = 0, the relation C≤0 is the identity graph morphism on ω0.

3 Quantified Linear Temporal Logic

We present the syntax and semantics of our (first-order) quantified linear tem-
poral logic QLTL by adopting a standard set-theoretic presentation.

3.1 Syntax and Semantics of QLTL

Since free variables may appear inside formulae, we recall the usual presentation
of context and terms-in-context. For the sake of simplicity we consider algebras
whose terms represent directed graphs, as per Definition 2.1. More precisely, the
signature has two sorts E and N and two functions symbols s and t, obviously
representing the source and target functions on edges, respectively. We assume
a set of sorted variables X = XN
 XE and define a typed context Γ as a finite
subset of such variables, using the notation [Γ] n : N to indicate that the term n
has type N and it is constructed in a typed context Γ , that is, its free variables
are contained among those occurring in Γ (and similarly for [Γ] e : E).

In order to give a simpler presentation for the semantics of temporal logics,
it is customary to exclude the elementary constructs that can be expressed in
terms of other operators. We thus present QLTL with a minimal set of standard
operators and derive conjunction and universal quantification by using negation.

Definition 3.1. (QLTL). Let Γ be a typed context on the set of variables X .
The set FQLTL

Γ of QLTL formulae is generated by the following rules

ψ := true | e1 =E e2 | n1 =N n2

φ := ψ | ¬φ | φ ∨ φ | ∃Nx.φ | ∃Ex.φ | Oφ | φUφ | φWφ,

where [Γ] ei : E and [Γ] ni : N for i = 1, 2.

The above definition actually provides formulae-in-context: we use the nota-
tion [Γ]φ to indicate that a formula φ belongs to FQLTL

Γ for the typed context
Γ . Clearly, saying that [Γ]φ is the same as stating that fv(φ) ⊆ Γ , i.e. the free
variables of φ are contained among those occurring in Γ . For both terms and
formulae we omit the bracketed context whenever it is unnecessary to specify it.

The letter ψ denotes the set of atomic formulae, built out of two sorted
equivalence predicates. Given two edge terms e1, e2 : E, the formula e1 =E e2
indicates that the two edges coincide in the graph associated to the current
world, and similarly for two node terms n1, n2 : N and the formula n1 =N n2.

28 F. Gadducci et al.

The existential operators ∃Nx.φ and ∃Ex.φ can be used to express the exis-
tence of a node (edge, respectively) in the current graph satisfying a certain
property φ, where the variable x is allowed to appear as a free variable of φ.

The next operator Oφ expresses the fact that a certain property φ has to
be true at the next state. The until operator φ1Uφ2 indicates that the property
φ1 has to hold at least until the property φ2 becomes true, which must hold at
the present or future time. Finally, the weak until operator φ1Wφ2 is similar to
the φ1Uφ2 operator, but allows for counterparts to exist indefinitely without ever
reaching a point where φ2 holds, provided that φ1 also keeps holding indefinitely.

The dual operators are syntactically expressed by false := ¬true, φ1 ∧ φ2 :=
¬(¬φ1 ∨¬φ2), and ∀Nx.φ := ¬∃Nx.¬φ and similarly for edges. Note that, differ-
ently from classical LTL, the until and the weak until operators are not self-dual:
this fact will be discussed and made explicit in Remark 3.3.

3.2 Satisfiability

To present the notion of satisfiability of a formula with respect to a counterpart
model we introduce the definition of assignment for a context in a world.

Definition 3.2. (Assignment). An assignment in the world ω ∈ W for the
typed context Γ is a pair of functions μ := 〈μN , μE〉 such that μN : ΓN →
D(ω)N and μE : ΓE → D(ω)E. We use the notation AΓ

ω to indicate the set of
assignments μ defined in ω for the typed context Γ .

Moreover, we denote by μ[x →τ n] ∈ AΓ,(x:τ)
ω the assignment obtained by

extending the domain of μ with n ∈ D(ω)τ at the variable x �∈ Γ , omitting the
type τ ∈ {N,E} whenever clear from context. We indicate with Γ, (x : τ) the
context Γ extended with an additional variable x with sort τ .

An assignment μ for a typed context Γ provides the interpretation of terms-
in-context whose context is (contained in) Γ : it allows for evaluating the free
variables of the term, thus defining its semantics (with respect to that assign-
ment). This will be used in Definition 3.5 to provide a meaning for the equalities
n1 =N n2 and e1 =E e2 for nodes and edges, respectively.

Definition 3.3. (Assignment on terms). Given an assignment μ ∈ AΓ
ω ,we

indicate with μ∗ := 〈μ∗
N , μ∗

E〉 the interpretation of μ on a term-in-context [Γ] n :
N or [Γ] e : E, given inductively by the rules: μ∗

E(x) := μE(x), μ∗
N (y) := μN (y),

μ∗
N (s(e)) := D(ω)s(μ∗

E(e)), and μ∗
N (t(e)) := D(ω)t(μ∗

E(e)).

We now look at how to transport assignments over counterpart relations.
The intuition is that we have to connect the nodes and the edges in the image
of two assignments when there is a counterpart relation among the worlds, and
the items of the underlying graphs are related point-wise.

Definition 3.4. (Counterpart relations on assignments). Given a coun-
terpart relation C ∈ GraphRel(D(ω1),D(ω2)) and two assignments μ1 ∈ AΓ

ω1

and μ2 ∈ AΓ
ω2

on the context Γ , we say that the assignments μ1 and μ2

Specification and Verification of a Linear-Time Temporal Logic 29

are counterpart related if 〈μ1N (x), μ2N (x)〉 ∈ CN for any x ∈ ΓN and
〈μ1E(x), μ2E(x)〉 ∈ CE for any x ∈ ΓE. We indicate this with the notation
〈μ1, μ2〉 ∈ C.

We can now introduce the notion of satisfiability of a QLTL formula with
respect to a trace σ and an assignment μ.

Definition 3.5. (QLTL satisfiability). Given a QLTL formula-in-context
[Γ]φ, a trace σ = (C0, C1, . . .), and an assignment μ ∈ AΓ

ω0
in the first world of

σ, we inductively define the satisfiability relation as follows

– σ, μ � true;
– σ, μ � e1 =E e2 if μ∗

E(e1) = μ∗
E(e2);

– σ, μ � n1 =N n2 if μ∗
N (n1) = μ∗

N (n2);
– σ, μ � ¬φ if σ, μ �� φ;
– σ, μ � φ1 ∨ φ2 if σ, μ � φ1 or σ, μ � φ2;
– σ, μ � ∃Nx.φ if there is a node n ∈ D(ω0)N such that σ, μ[x → n] � φ;
– σ, μ � ∃Ex.φ if there is an edge e ∈ D(ω0)E such that σ, μ[x → e] � φ;
– σ, μ � Oφ if there is μ1 ∈ AΓ

ω1
such that 〈μ, μ1〉 ∈ C0 and σ1, μ1 � φ;

– σ, μ � φ1Uφ2 if there is an n̄ ≥ 0 such that
1. for any i < n̄, there is μi ∈ AΓ

ωi
such that 〈μ, μi〉 ∈ C≤i and σi, μi � φ1;

2. there is μn̄ ∈ AΓ
ωn̄

such that 〈μ, μn̄〉 ∈ C≤n̄ and σn̄, μn̄ � φ2;
– σ, μ � φ1Wφ2 if one of the following holds

• the same conditions for φ1Uφ2 apply; or
• for any i there is μi ∈ AΓ

ωi
such that 〈μ, μi〉 ∈ C≤i and σi, μi � φ1.

3.3 Examples

We provide some examples of satisfiability for QLTL formulae on the running
example in Fig. 2 to illustrate how our counterpart semantics works in practice.
Take for example the trace given by σ := (C0, C1, C3, C3, . . .), thus considering
the case where e4 is the only edge preserved when transitioning from ω1.

Example 3.1. (Allocation and deallocation). As anticipated in Sect. 2, one of the
main advantages of a counterpart semantics is the possibility to reason about
existence, deallocation, duplication, and merging of elements in the system and
its evolution. Consider for example the following shorthand formulae

presentτ (x) := ∃τy.x =τ y
nextPreservedτ (x) := presentτ (x) ∧ Opresentτ (x)

nextDeallocτ (x) := presentτ (x) ∧ ¬Opresentτ (x)

The formula presentτ (x) captures the existence of a node or an edge at the
current moment. We can combine this predicate with the next operator to talk
about elements that are present in the current world and that will still be present
at the next step, which we condense with the nextPreservedτ (x) formula. We
can similarly refer to elements that are now present but that will be deallocated
at the next step by considering the formula nextDeallocτ (x). Indeed we have

30 F. Gadducci et al.

σ0, {x : E �→ e0 } � nextPreservedE(x);
σ0, {x : N �→ n1} � nextPreservedN (x);
σ0, {x : E �→ e2 } �� nextPreservedE(x);

σ1, {x : N �→ n3} �� nextDeallocN (x)
σ1, {x : E �→ e3 } � nextDeallocE(x)
σ1, {x : E �→ e4 } �� nextDeallocE(x)

Example 3.2. (Graph structure). Moreover, our syntax allows us to define for-
mulae that exploit the algebraic structure of our graphs, and combine them with
the temporal operators to state properties about how the graph evolves in time.
We illustrate this by providing the following formulae

loop(e) := s(e) =N t(e)
hasLoop(n) := ∃Ee.s(e) =N n ∧ loop(e)

composable(x, y) := t(x) =N s(y)
haveComposition(x, y) := composable(x, y) ∧ ∃Ee.(s(e) =N s(x) ∧ t(e) =N t(y))

adjacent(x, y) := ∃Ee.((s(e) =N x ∧ t(e) =N y) ∨ (t(e) =N x ∧ s(e) =N y))

which capture, respectively, the following scenarios: we can check whether a given
edge of the graph is a loop with loop(x), or verify with hasLoop(x) that the
only node having a loop is n5; alternatively, we can express this fact by stating
that the loop belongs to the entire world using hasLoop

σ0, {x �→ e0} �� loop(x);
σ1, {x �→ e3} �� loop(x);
σ2, {x �→ e5} � loop(x);

σ0, {x �→ n0} �� hasLoop(x);
σ1, {x �→ n3} �� hasLoop(x);
σ2, {x �→ n5} � hasLoop(x);

σ0, {} �� ∃Nx.hasLoop(x)
σ1, {} �� ∃Nx.hasLoop(x)
σ2, {} � ∃Nx.hasLoop(x)

Since ∃Nx.hasLoop(x) is a closed formula, the empty assignment is the only one
the formula can be valued on. Thus, we obtain the classical notion of a formula
simply providing the binary information of being true or false, with no choice of
individuals needed to satisfy it. Finally, we can express some properties about
the existence of intermediate nodes and composability of edges in the graph

σ0, {x �→ n0, y �→ n1} � adjacent(x, y);
σ1, {x �→ n3, y �→ n4} � adjacent(x, y);
σ1, {x �→ n3, y �→ n4} � Oadjacent(x, y);

σ0, {x �→ e0, y �→ e1} � composable(x, y)
σ0, {x �→ e0, y �→ e1} � Ocomposable(x, y)
σ1, {x �→ e3, y �→ e4} �� Ocomposable(x, y)

σ0, {x → e0, y → e1} �� haveComposition(x, y)
σ0, {x → e0, y → e1} �� OhaveComposition(x, y)
σ2, {x → e5, y → e5} � OhaveComposition(x, y)

Remark 3.1. (Eventually and always operators). As in LTL, we can define the
additional eventually ♦φ and always �φ operators as ♦φ := trueUφ and �φ :=
φWfalse, respectively. Alternatively, their semantics can be presented directly as

– σ, μ � ♦φ if there are i ≥ 0 and μi ∈ AΓ
ωi

s.t. 〈μ, μi〉 ∈ C≤i and σi, μi � φ.
– σ, μ � �φ if for any i ≥ 0 there is μi ∈ AΓ

ωi
s.t. 〈μ, μi〉 ∈ C≤i and σi, μi � φ.

Example 3.3. (Temporal evolution). We can use these operators to express the
evolution of the graph after an unspecified amount of steps

willMergeτ (x, y) := x �=τ y ∧ ♦(x =τ y)
alwaysPreservedτ (x) := �presentτ (x)
willBecomeLoop(e) := ¬loop(e) ∧ ♦loop(e)

Specification and Verification of a Linear-Time Temporal Logic 31

In the example in Fig. 1 for the same trace σ = (C0, C1, C3, . . .) we have

σ0, {} � ∃n.∃m.willMergeN (n, m),
σ0, {} �� ∀e.alwaysPreservedE(e),
σ0, {} � ∃e.willBecomeLoop(e),
σ0, {} � (∃e.s(e) �= t(e))U(∃x.∀y.x = y),

σ0, {} �� ∀e.♦loop(e),
σ0, {} � ∃e.♦�loop(e),
σ0, {} � ∃x.∃y.¬♦composable(x, y),
σ0, {} � (∃e.s(e) = t(e))W¬(∃x.loop(e)).

Remark 3.2. (Quantifier elision for unbound variables). A relevant difference
with standard quantified logics is that in QLTL we cannot elide quantifications
where the variable introduced does not appear in the subformula. Assuming ≡
to denote semantical equivalence and taking any φ with x �∈ fv(φ), we have
that in general ∃x.φ �≡ φ and, similarly, ∀x.φ �≡ φ. More precisely, the above
equivalences hold whenever φ does not contain any temporal operator and the
current world D(ω) being considered is not empty.

Consider a world ω with a single node D(ω)N = {s}, no edges, and a single
looping counterpart relation C〈ω, ω〉 = {C} where C = ∅ is the empty coun-
terpart relation. The trace is given by σ = (C,C, . . .). By taking the empty
assignment { } and the closed formula φ = O(true), one can easily check that
σ, { } � O(true), but σ, { } �� ∃Nx.O(true). The reason is that, once an assignment
is extended with some element, stepping from one world to the next one requires
every individual of the assignment to be preserved and have a counterpart in the
next world. Alternatively, we could have restricted assignments in the semantics
so that counterparts are required only for the free variables occurring in the
formula. For example, the definition for the next Oφ operator would become

– σ, μ � Oφ if there is μ1 ∈ A
fv(φ)
ω1 such that 〈μ|fv(φ), μ1〉 ∈ C0 and σ1, μ1 � φ.

For ease of presentation in this work and with respect to our Agda implementa-
tion, we consider the case where all elements in the context have a counterpart.

Remark 3.3. (Until and weak until are incompatible). In standard LTL, the
until φ1Uφ2 and weak until φ1Wφ2 operators have the same expressivity,
and can be defined in terms of each other by the equivalences φ1Uφ2 ≡LTL
¬(¬φ2W(¬φ1 ∧ ¬φ2)), φ1Wφ2 ≡LTL ¬(¬φ2U(¬φ1 ∧ ¬φ2)). However, this is not
the case in QLTL. Similarly, it might at first seem reasonable to define the stan-
dard always operator in QLTL with �φ := ¬♦¬φ. However, this definition does
not align with the semantics provided in Remark 3.1. This characteristic of
QLTL is again due to the fact that we are in the setting of (possibly deallocat-
ing) relations, and we formally explain and present an intuition for this when we
introduce the PNF semantics in Sect. 4. The LTL equivalences can be obtained
again by restricting to models whose counterpart relations are total functions:
this allows us to consider a unique trace of counterparts that are always defined,
which brings our models back to a standard LTL-like notion of trace.

4 Positive Normal Form for QLTL

Positive normal forms are a standard presentation of temporal logics: they can be
used to simplify constructions and algorithms on both the theoretical and imple-
mention side [5,27]. Their use is crucial for semantics based on fixpoints, such

32 F. Gadducci et al.

as in [16], while still preserving the expressiveness of the original presentation.
As we remark in Sect. 5, providing a negation-free semantics for our logic also
ensures that it can be more easily manipulated in a proof assistant where defini-
tions and proofs are constructive. Moreover, the positive normal form conversion
serves as a concrete procedure that can be used interactively to automatically
convert formulae into their positive normal form, which is proven in the proof
assistant to be correct. In this section we present an explicit semantics for the
positive normal form of QLTL, which we denote as PNF.

4.1 Semantics of PNF

As observed in Remark 3.3, to present the positive normal form we need addi-
tional operators to adequately capture the negation of temporal operators. Thus,
we introduce a new flavour of the next operator, called next-forall Aφ. Similarly,
we have to introduce a dual for until φ1Uφ2 and weak until φ1Wφ2, which we
indicate as the then φ1Tφ2 and until-forall φ1Fφ2 operators, respectively.

Definition 4.1. (QLTL in PNF). Let Γ be a typed context on the set of vari-
ables X . The set FPNF

Γ of formulae of QLTL in positive normal form is gen-
erated by the following rules

ψ := true | e1 =E e2 | n1 =N n2

φ := ψ | ¬ψ | φ ∨ φ | φ ∧ φ | ∃τx.φ | ∀τx.φ | Oφ | Aφ | φUφ | φFφ | φWφ | φTφ,

where [Γ] ei : E and [Γ] ni : N for i = 1, 2 and τ ∈ {N,E}.
The intuition for the next-forall Aφ operator is that it allows us to capture

the case where a counterpart of an individual does not exist at the next step: if
any counterpart exists, it is required to satisfy the formula φ.

Similarly to the until φ1Uφ2 operator, the until-forall φ1Fφ2 operator allows
us to take a sequence of graphs where φ1 is satisfied for some steps until φ2 holds.
The crucial observation is that every intermediate counterpart satisfying φ1 and
the conclusive counterparts must satisfy φ2. Such counterparts are not required
to exist, and indeed any trace consisting of all empty counterpart relations always
satisfies both φ1Fφ2 and φ1Tφ2. Similarly to the weak until φ1Wφ2 operator, the
then φ1Tφ2 operator corresponds to a weak until-forall and can be validated by
a trace where all counterparts satisfy φ1 without ever satisfying φ2.

We now provide a satisfiability relation for PNF formulae by specifying the
semantics just for the additional operators, omitting the ones that do not change.

Definition 4.2. (QLTL in PNF satisfiability). Given a QLTL formula-in-
context [Γ]φ in positive normal form, a trace σ = (C0, C1, . . .), and an assign-
ment μ ∈ AΓ

ω0
in the first world of σ, we inductively define the satisfiability

relation with respect to the additional operators as follows

– σ, μ � ¬ψ if σ, μ �� ψ;
– σ, μ � φ1 ∧ φ2 if σ, μ � φ1 and σ, μ � φ2;

Specification and Verification of a Linear-Time Temporal Logic 33

– σ, μ � ∀τx.φ if for any s ∈ D(ω0)τ we have that σ, μ[x → s] � φ;
– σ, μ � Aφ if for any μ1 ∈ AΓ

ω1
such that 〈μ, μ1〉 ∈ C0 we have that σ1, μ1 � φ;

– σ, μ � φ1Fφ2 if there is an n̄ ≥ 0 such that
1. for any i < n̄ and μi ∈ AΓ

ωi
such that 〈μ, μi〉 ∈ C≤i we have σi, μi � φ1;

2. for any μn̄ ∈ AΓ
ωn̄

such that 〈μ, μn̄〉 ∈ C≤n̄ we have σn̄, μn̄ � φ2;
– σ, μ � φ1Tφ2 if one of the following holds

• the same conditions for φ1Fφ2 apply; or
• for any i and μi ∈ AΓ

ωi
such that 〈μ, μi〉 ∈ C≤i we have σi, μi � φ1.

Fig. 3. Graphical representation of a counterpart model.

Example 4.1. We illustrate with the example in Fig. 3 the possibility for a
counterpart relation to duplicate both edges and nodes of a graph, as well
as providing some concrete cases for the new operators defined in Defini-
tion 4.2. For example, we have that σ0, {x → n0} � A(hasLoop(x)), but
σ1, {x → n1} �� A(hasLoop(x)) since n4 is a counterpart of n1 but does
not have a loop. Moreover, σ1, {x → e1} � hasLoop(s(x))U(loop(x)), but
σ1, {x → e1} �� hasLoop(s(x))F(loop(x)) because we also require for e5 to
have a loop at its source since it is a counterpart of e1. Notice that σ2, {x →
e5} � A(loop(x)) since there is no counterpart at the next step, and indeed we
similarly have that σ2, {x → n5} � hasLoop(x)F(false). Finally, we have that
σ2, {x → e4} � hasLoop(s(x))T(¬loop(x)) because the intermediate condition
always holds.

34 F. Gadducci et al.

4.2 Negation of QLTL and PNF

The crucial observation that validates the PNF presented in Sect. 4 is that the
negation of next Oφ, until φ1Uφ2, and weak until φ1Wφ2 formulae can now be
expressed inside the logic. We indicate with �QLTL and �PNF the satisfiability
relations for formulae in standard QLTL and QLTL in PNF, respectively.

Proposition 4.1. (Negation is expressible in PNF).
(Relational.Negation)
Let ψ,ψ1, ψ2 be atomic formulae in PNF. Then we have

∀σ, μ ∈ AΓ
ω0

. σ, μ �QLTL ¬O(ψ) ⇐⇒ σ, μ �PNF A(¬ψ)
∀σ, μ ∈ AΓ

ω0
. σ, μ �QLTL ¬(ψ1Uψ2) ⇐⇒ σ, μ �PNF (¬ψ2)T(¬ψ1 ∧ ¬ψ2)

∀σ, μ ∈ AΓ
ω0

. σ, μ �QLTL ¬(ψ1Wψ2) ⇐⇒ σ, μ �PNF (¬ψ2)F(¬ψ1 ∧ ¬ψ2)

A converse statement that similarly expresses the negation of these new oper-
ators in PNF does not hold: the only exception is the easy case of the next-forall
Aφ operator, whose negation directly corresponds with the next Oφ operator.

Proposition 4.2. (Negation of new operators is not in PNF). Let
ψ,ψ1, ψ2 be atomic formulae in PNF. Then we have

∀σ, μ ∈ AΓ
ω0

. σ, μ ��PNF A(ψ) ⇐⇒ σ, μ �PNF O(¬ψ)
∀σ, μ ∈ AΓ

ω0
. σ, μ ��PNF ψ1Tψ2 �⇐⇒ σ, μ �PNF (¬ψ2)U(¬ψ1 ∧ ¬ψ2)

∀σ, μ ∈ AΓ
ω0

. σ, μ ��PNF ψ1Fψ2 �⇐⇒ σ, μ �PNF (¬ψ2)W(¬ψ1 ∧ ¬ψ2)

Proof. See [18, Proposition 4.2].

Let us now go back to Proposition 4.1. We exploit the correspondence
between operators given there to define a translation · : FQLTL → FPNF from
the QLTL syntax presented in Definition 3.5 to the current one in PNF. What
is noteworthy is that such translation preserves the equivalence of formulae.

Theorem 4.3. (PNF equivalence). (Relational.Conversion) Let · :
FQLTL → FPNF be the syntactical translation that replaces negated temporal
operators with their equivalent ones in PNF by pushing negation down to atomic
formulae. For any QLTL formula [Γ]φ ∈ FQLTL we have

∀σ, μ ∈ AΓ
ω0

. σ, μ �QLTL φ ⇐⇒ σ, μ �PNF φ

Contrary to what happens in LTL, the usual expansion laws where each oper-
ator is defined in terms of itself do not hold in QLTL for the case of counterpart
relations, as shown by the following result.

Proposition 4.4. (Expansion laws do not hold in QLTL). We have the
following inequalities in PNF

φ1Uφ2 �≡ φ2 ∨ (φ1 ∧ O(φ1Uφ2)) φ1Fφ2 �≡ φ2 ∨ (φ1 ∧ A(φ1Fφ2))
φ1Wφ2 �≡ φ2 ∨ (φ1 ∧ O(φ1Wφ2)) φ1Tφ2 �≡ φ2 ∨ (φ1 ∧ A(φ1Tφ2))

https://github.com/iwilare/algebraic-temporal-logics/blob/main/PNF/Relational/Negation.agda
https://github.com/iwilare/algebraic-temporal-logics/blob/main/PNF/Relational/Conversion.agda

Specification and Verification of a Linear-Time Temporal Logic 35

Proof. See [18, Proposition 4.4].

Remark 4.1. (Functional counterpart relations). The previous results can be
reframed in the case in which each counterpart relation is a partial function,
following the definition of counterpart models given in [16,17]. It turns out that
under the assumption of partial functions we recover all the equivalences stated
in Proposition 4.2 (Functional.Negation) as well as the expansion laws of
Proposition 4.4 (Functional.ExpansionLaws). The latter can be used to pro-
vide a presentation of the temporal operators as least fixpoint (φ1Uφ2, φ1Fφ2)
and greatest fixpoints (φ1Wφ2, φ1Tφ2) of a suitably defined operator; this defini-
tion based on fixpoints would coincide with the semantics of the operators given
in Definition 4.2 only in the case of partial (or total) functions.

5 Agda Formalisation

This section presents an overview of an additional contribution of this work: a
complete formalisation of the semantics of QLTL and its PNF using the depen-
dently typed programming language and proof assistant Agda [37]. We provide a
brief exposition and usage of our development in [18], showing how the temporal
evolution of the running example in Fig. 2 can be concretely modelled in Agda.
The complete formalisation of the logic along with the PNF results is available
at https://github.com/iwilare/algebraic-temporal-logics.

5.1 Formalisation Aspects

Our formalisation work consists in the mechanisation of all the aspects presented
in the paper: we start by defining the notion of counterpart relations and traces
of relational morphisms as models of the logic, and provide a representation for
(well-typed and well-scoped) syntax for formulae of QLTL and PNF along with
their satisfiability semantics. Then, we provide a conversion function from QLTL
to PNF along with proofs of correctness and completeness of the procedure;
finally, using the defined framework, we prove among other equivalences the
relevant expansion laws introduced in Sect. 4.2 for the functional setting.

For the sake of presentation in this paper we restricted our attention to
graph signatures, and a concrete example in Agda of our library instantiated on
the signature of directed graphs is available in [18]. However, we remark that
our implementation is general enough to model algebras over any generic multi-
sorted signature. In particular, this means that, by specifying a suitable signa-
ture, the class of models (and formulae) considered by the logic can be extended
to the case of any graphical formalism that admits an algebraic representation
on a multi-sorted signature, such as trees, hypergraphs, and so on.

Moreover, given the constructive interpretation of the formalisation, proving
the correctness and completeness of PNF with respect to QLTL also yields a
concrete procedure that can convert formulae into their positive normal form
version. We describe now how the main components provided by our formalisa-
tion can be employed by the user to interact with the proof assistant.

https://github.com/iwilare/algebraic-temporal-logics/blob/main/PNF/Functional/Negation.agda
https://github.com/iwilare/algebraic-temporal-logics/blob/main/PNF/Functional/ExpansionLaws.agda
https://github.com/iwilare/algebraic-temporal-logics

36 F. Gadducci et al.

Signature Definition. Using the definitions given in our formalisation, the user
can write their own algebraic signature that will be used to represent the system
of interest as algebras on the signature. For example, by defining the signature
of graphs Gr the user can reason on the temporal evolution of graphs, using
(relational) graph homomorphisms as counterpart relations between worlds.

Formula Construction. After having provided the signature of interest, the user
can construct formulae using the full expressiveness of QLTL and can reason on
equality of terms constructed according to the signature. This allows the user
to express properties that combine both logical quantifiers as well as exploiting
the specific structure of the system, possibly composing and reusing previously
defined formulae. The infrastructure provided by the formalisation is such that
the formulae constructed by the user are inherently checked to be well-scoped
and well-typed with respect to the sorts of the signature, e.g. edges and nodes
in the case of graphs. The user can freely use negation in formulae, and can
(optionally) use the procedures we defined to automatically convert formulae to
their PNF, which as we have seen in Sect. 4 can be particularly counterintuitive
in the counterpart setting with respect to standard temporal logics.

Model Definition. The models of the system at various time instances can be
constructed by the user, following again the signature provided. Then, the user
specifies a series of symbolic worlds and indicates the possible transitions that can
be taken by defining a relation on the worlds. Then, an algebra of the signature
must be assigned to each world, and the connection of worlds is translated into a
morphism between the algebras which the user provides. The transitions of the
models are checked by Agda to preserve the algebraic structure of the worlds
considered, thus corresponding to the notion of graph morphisms; this step is
relatively straightforward as the automation available in Agda helps with proving
the structure-preservation of the maps. Traces between worlds are defined using
a coinductive definition of traces using sized types [11], thus allowing for infinite
(repeating) traces to be modelled and defined by the user.

Validation of Formulae in the Model. Using the library the user can prove that a
specific model satisfies a given formula; our formalisation automatically simplifies
the goal that must be proven to verify the formula, and the user is guided by the
proof assistant by automatically constructing the skeleton of the proof term.

5.2 Intuitionistic Proof Assistant

In our setting, some crucial usability issues need to be mentioned. Agda is a proof
assistant based on the intuitionistic interpretation of mathematics [24]. This
means that some useful logical principles often used in the setting of temporal
logics are not provable in the system, such as the law of excluded middle or the
De Morgan laws to switch connectives and quantifiers whenever negation appears
in subformulae. Thus, without assuming these logical principles, the embedding
of our temporal logic QLTL would actually be restricted to the intuitionistic

Specification and Verification of a Linear-Time Temporal Logic 37

fragment; in practice, this is not particularly problematic since classical reasoning
can simply be assumed as axiom, and allows the equivalences mentioned to be
recovered. This, however, would be undesirable from the user’s perspective, as
they would have to explicitly use these classical axioms in their proofs. In order to
tackle these usability aspects and the treatment of negation in the intuitionistic
setting, we take the following approach: the formulae of the logic are expressed
in Agda using a full positive normal form similar to the one presented in Sect. 4,
which we have proven correct in Agda in Theorem 4.3 by postulating classical
principles. This effectively shifts the burden of dealing (classically) with negation
from the user to the implementer, while also giving them complete accessibility
over the extended set of correct quantifiers. Moreover, the correctness proof of
the conversion to PNF constitutes both a theoretical guarantee that no expressive
power is either gained or lost in the presentation of the logic, as well as a concrete
algorithm that the user can execute to convert their formulae into equivalent ones
in PNF, for which validity can be easier to prove.

5.3 Automation

Embedding a temporal logic in a proof assistant allows the user to exploit the
assistant aspect of the tool, for example, by aiding the user in showing (or even
prove automatically) that a certain formula in a model is satisfied or not.

In Agda, this automation aspect is limited, especially if compared to proof
assistants where automation and the use of tactics is a core aspect of the software
environment, such as Coq [6], Lean [34], and Isabelle [36]. The Agda synthesizer
Agsy [32] is the main helper tool in Agda implementing a form of automated
proof search. Unfortunately, Agsy only provides general-purpose searching pro-
cedures and its theorem proving capabilities are nowhere near those of specialised
model checking algorithms. Still, the goal-oriented interactivity available in Agda
is an invaluable tool in proving theorems step-by-step and manually verify for-
mulae in our setting, and the assisted introduction of constructors allows the user
to quickly generate the proof structure needed to validate temporal formulae.

6 Related Works

Up to the early 2010s,s, there has been a series of papers devoted to some variants
of quantified logics for expressing properties of graphs and of graph evolutions.
Our models are inspired by the counterpart-based logics explored in the context
of a μ-calculus with fixpoints in [16], and we refer there for an overview of and
a comparison with the by-then current proposals, such as the well-known [1],
all favouring an approach based on universal domains. Among the follow-ups of
the works mentioned there, there is [19] and the related [44,47], which further
explore one of the relevant tools developed in the graph community, GROOVE.
To some extent, the present paper and its companion [17], which introduces the
categorical semantics of second-order QLTL, are summarising a previous thread
of research concerning counterpart models, including its implementation. And in

38 F. Gadducci et al.

fact, the categorical semantics for counterpart models appears of interest in itself
in the literature on modal logics, as witnessed by the works surveyed in [17].

Concerning the formalisation of temporal logics in (constructive) proof assis-
tants, the topic has a long history, see e.g. [8,45,48]. A practical application and
comparison with modern model checkers is in [14], and a fully verified LTL model
checker is implemented in the Isabelle theorem prover. In [38], a verified proof-
search program is formalised in Agda for standard CTL, together with a toolbox
to implement well-typed proof-searching procedures; a similar embedding of con-
structive LTL in Agda is provided in [29] for the verification of functional reactive
programs. Our proof-of-concept implementation of QLTL in Agda witnesses the
possibility to move towards the formalisation of quantified temporal logics for
proof assistants, an issue sparsely tackled in the literature.

Concerning graph computation models (GCMs), we find in the literature sev-
eral formalisms that use graph-specific definitions where syntactical statements
on nodes, edges, sources of edges, targets of edges, and equalities are first-class
citizens in the logic to express properties on the system under analysis. The last
decade has seen a series of papers advocating quantified temporal logics as a
formalism for the specification of GCMs properties. We offer a short review of
some of the most recent proposals appeared in the literature, focussing on the
dichotomy between the universal domains and the counterpart-based approaches.

Graph Programs/Flow Graphs. The use of monadic-second order logics to prove
properties of graph-based programming languages has been advocated in [39,46],
where the emphasis is placed on distilling post-conditions formulae from a graph
transformation rule and a precondition formula. A more abstract meta-model
for run-time verification is proposed in [4,33], where a control flow graph can
be instantiated to concrete models and the properties are given by first-order
formulae. Despite the differences, in both cases the resulting analysis is akin to
the adoption of a universal domain approach.

Metric Logics, I. The use of traces and first-order specifications is a key ingre-
dient of runtime verification. A relevant proposal is the use of metric first-order
temporal logic (MFOTL) [40,41], investigated with respect to the expressiveness
of suitable fragments in [28] or to duality results akin to our PNF in [35]. These
logics allows to reason on the individual components of states, using (arbitrary)
sets of relations as models, which allows for different kinds of graphs to be
encoded. The core difference with our line of work is that, contrary to standard
models of MFOTL, we allow for variable domains in the temporal structure and
for nodes to be created and destroyed using counterpart relations.
Metric Logics, II. A graph-oriented approach to MFOTL is given by Metric
Temporal Graph Logic (MTGL) [23,43], which allows to model properties on the
structures and the attributes of the state and has been used in the context of
formal testing [42]. Here traces are pairs of injective spans representing a rule,
and are equivalent to our partial graph morphisms. The syntax is tailored over
such rules, so that φG refers to a formula over a given graph G, and a one step
∃(f, φH) is indexed over a mono f : G → H, roughly representing the partial

Specification and Verification of a Linear-Time Temporal Logic 39

morphism induced by a rule. Thus, besides our use of relations, identity and
preservation/deletion of elements seem to be left implicit, and the exploration of
the connection with counterpart-based QLTL is among our future endeavours.

7 Conclusions and Future Works

We have seen how a set-theoretic semantics for a first-order linear-time temporal
logic QLTL can be presented in the counterpart setting. We saw how its syntax
and semantics can be naturally used in an algebraic setting to express properties
of direct graphs and their evolution in time, and how the notions and models
presented in the previous sections can be formalised and practically experimented
with in a proof assistant based on dependent type theory such as Agda. We have
investigated some results on the positive normal forms of this logic in the case of
relations and partial functions, and argued for their usefulness both in practice
and in the case of constructive proof assistants.

We identify a variety of possible expansions for our work.

Second-Order. Our theoretical presentation and formalisation work focuses on
the first-order aspects of QLTL. The semantics in [16,17] allows also for the
quantification over sets of elements. This is impractical in Agda due to the
typical formalisation of subsets as predicates, which would be cumbersome to
present in concrete examples, e.g. when expressing universal quantification and
extensional equality over subsets of elements. A possible extension could be to
investigate practical encodings and possible automation techniques to introduce
second-order quantification for counterpart-based temporal logics.

CTL and Other Logics. The quantified temporal logics presented here focus
on providing a restricted yet sufficiently powerful set of operators and struc-
tures. These logics could be extended to alternative constructs and models, such
as those of CTL [13]. Extending our logic to more complex models seems a
straightforward task, which might however cause a combinatorial explosion in
the temporal operators required to obtained a positive normal form.

Automation and Solvers. We highlighted how the proofs required to validate
temporal formulae need to be provided manually by the user. Considerable
amount of effort has been spent in interfacing proof assistants with external
solvers and checkers to both reuse existing work and algorithms and to provide
more efficient alternatives to the automation given by proof assistants. The tra-
ditional way of employing proof automation is through the use of internal and
external solvers: the first technique uses the reflection capabilities of Agda to
allow a (verified) solver and proof-searching procedure to be written in Agda
itself, in the spirit of [14,30,38]. The second mechanism consists in writing bind-
ings to external programs, such as model checkers or SMT and SAT solvers, so
that proving the formula or providing a counterexample is offloaded to a more
efficient and specialised program. A possible extension of this work would be
the implementation of either of these mechanisms to the setting of counterpart
semantics.

40 F. Gadducci et al.

Finite Traces. A current trend in artificial intelligence is the study of temporal
formulas over finite traces [22], due to applications in planning and reinforcement
learning. Our models seem to be well-suited to tackle such a development, since
each finite trace can be thought of as an infinite one terminating with a cycle
in an empty graph, thus inheriting all the issues we highlighted about positive
normal forms for our logic.

References

1. Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic
for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-
Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71998-4_1

2. Belardinelli, F.: Quantified Modal Logic and the Ontology of Physical Objects.
Ph.D. work, Scuola Normale Superiore of Pisa (2004–2005)

3. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic, vol.
3. North Holland (2007)

4. Búr, M., Marussy, K., Meyer, B.H., Varró, D.: Worst-case execution time calcula-
tion for query-based monitors by witness generation. ACM Trans. Embed. Comput.
Syst. 20(6), 1–36 (2021)

5. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular
vacuity. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp.
191–206. Springer, Heidelberg (2005). https://doi.org/10.1007/11560548_16

6. Coq Development Team: The Coq Proof Assistant Reference Manual (2016)
7. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:

Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer (2006)

8. Coupet-Grimal, S.: An axiomatization of linear temporal logic in the calculus of
inductive constructions. J. Logic Comput. 13(6), 801–813 (2003)

9. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inform. Comput. 85(1), 12–75 (1990)

10. Courcelle, B.: The monadic second-order logic of graphs. XII. Planar graphs and
planar maps. Theor. Comput. Sci. 237(1), 1–32 (2000)

11. Danielsson, N.A.: Up-to techniques using sized types. In: POPL 2018, pp. 43:1–
43:28. ACM (2018)

12. Dawar, A., Gardner, P., Ghelli, G.: Expressiveness and complexity of graph logic.
Inf. Comput. 205(3), 263–310 (2007)

13. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp.
995–1072. Elsevier and MIT Press (1990)

14. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8_31

15. Franconi, E., Toman, D.: Fixpoint extensions of temporal description logics. In:
Calcanese, D., De Giacomo, G., Franconi, E. (eds.) DL 2003. CEUR Workshop
Proceedings, vol. 81 (2003)

16. Gadducci, F., Lluch-Lafuente, A., Vandin, A.: Counterpart semantics for a second-
order µ-calculus. Fundamenta Informaticae 118(1–2), 177–205 (2012)

https://doi.org/10.1007/978-3-540-71998-4_1
https://doi.org/10.1007/11560548_16
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31

Specification and Verification of a Linear-Time Temporal Logic 41

17. Gadducci, F., Trotta, D.: A presheaf semantics for quantified temporal logics.
CoRR abs/2111.03855 (2021)

18. Gadducci, F., Laretto, A., Trotta, D.: Specification and verification of a linear-time
temporal logic for graph transformation. CoRR abs/2305.03832 (2023)

19. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. Int. J. Softw. Tools Technol. Trans. 14(1), 15–40
(2012)

20. Ghilardi, S., Meloni, G.: Modal and tense predicate logic: models in presheaves
and categorical conceptualization. In: Borceux, F. (ed.) Categorical Algebra and
its Applications. LNM, vol. 1348, pp. 130–142. Springer (1988)

21. Ghilardi, S., Meloni, G.: Relational and partial variable sets and basic predicate
logic. J. Symbol. Logic 61(3), 843–872 (1996)

22. Giacomo, G.D., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: Yang,
Q., Wooldridge, M.J. (eds.) IJCAI 2015, pp. 1558–1564. AAAI Press (2015)

23. Giese, H., Maximova, M., Sakizloglou, L., Schneider, S.: Metric temporal graph
logic over typed attributed graphs. In: Hähnle, R., van der Aalst, W. (eds.) FASE
2019. LNCS, vol. 11424, pp. 282–298. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-16722-6_16

24. Girard, J., Lafont, Y., Taylor, P.: Proofs and Types, Cambridge Tracts in Theo-
retical Computer Science, vol. 7. Cambridge University Press (1989)

25. Hazen, A.: Counterpart-theoretic semantics for modal logic. J. Philos. 76(6), 319–
338 (1979)

26. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Monodic fragments of first-order
temporal logics: 2000–2001 A.D. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR
2001. LNCS (LNAI), vol. 2250, pp. 1–23. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45653-8_1

27. Huang, S., Cleaveland, R.: A tableau construction for finite linear-time temporal
logic. J. Logic Algebr. Meth. Program. 125, 100743 (2022)

28. Hublet, F., Basin, D., Krstić, S.: Real-time policy enforcement with metric first-
order temporal logic. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.)
ESORICS 2022. LNCS, vol. 13555, pp. 211–232. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-17146-8_11

29. Jeffrey, A.: LTL types FRP: linear-time temporal logic propositions as types, proofs
as functional reactive programs. In: Claessen, K., Swamy, N. (eds.) PLPV 2012,
pp. 49–60. ACM (2012)

30. Kokke, P., Swierstra, W.: Auto in Agda. In: Hinze, R., Voigtländer, J. (eds.) MPC
2015. LNCS, vol. 9129, pp. 276–301. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19797-5_14

31. Lewis, D.K.: Counterpart theory and quantified modal logic. J. Philos. 65(5), 113–
126 (1968)

32. Lindblad, F., Benke, M.: A tool for automated theorem proving in Agda. In: Fil-
liâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839,
pp. 154–169. Springer, Heidelberg (2006). https://doi.org/10.1007/11617990_10

33. Marussy, K., Semeráth, O., Babikian, A.A., Varró, D.: A specification language
for consistent model generation based on partial models. J. Object Technol. 19(3),
1–22 (2020)

34. Moura, L., Ullrich, S.: The lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp.
625–635. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_37

https://doi.org/10.1007/978-3-030-16722-6_16
https://doi.org/10.1007/978-3-030-16722-6_16
https://doi.org/10.1007/3-540-45653-8_1
https://doi.org/10.1007/3-540-45653-8_1
https://doi.org/10.1007/978-3-031-17146-8_11
https://doi.org/10.1007/978-3-031-17146-8_11
https://doi.org/10.1007/978-3-319-19797-5_14
https://doi.org/10.1007/978-3-319-19797-5_14
https://doi.org/10.1007/11617990_10
https://doi.org/10.1007/978-3-030-79876-5_37

42 F. Gadducci et al.

35. Huerta, Y., Munive, J.J.: Relaxing safety for metric first-order temporal logic via
dynamic free variables. In: Dang, T., Stolz, V. (eds.) RV 2022. LNCS, vol. 13498,
pp. 45–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17196-3_3

36. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283, pp. 67–104. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45949-9_5

37. Norell, U.: Dependently typed programming in Agda. In: Kennedy, A., Ahmed, A.
(eds.) TLDI 2009, pp. 1–2. ACM (2009)

38. O’Connor, L.: Applications of applicative proof search. In: Chapman, J., Swierstra,
W. (eds.) TyDe@ICFP 2016, pp. 43–55. ACM (2016)

39. Poskitt, C.M., Plump, D.: Monadic second-order incorrectness logic for GP 2. J.
Logic Algebr. Meth. Program. 130, 100825 (2023)

40. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for
metric first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019.
LNCS, vol. 11757, pp. 310–328. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-32079-9_18

41. Schneider, J., Traytel, D.: Formalization of a monitoring algorithm for metric first-
order temporal logic. Archive of Formal Proofs (2019)

42. Schneider, S., Maximova, M., Sakizloglou, L., Giese, H.: Formal testing of timed
graph transformation systems using metric temporal graph logic. Int. J. Softw.
Tools Technol. Transf. 23(3), 411–488 (2021). https://doi.org/10.1007/s10009-020-
00585-w

43. Schneider, S., Sakizloglou, L., Maximova, M., Giese, H.: Optimistic and pessimistic
on-the-fly analysis for metric temporal graph logic. In: Gadducci, F., Kehrer, T.
(eds.) ICGT 2020. LNCS, vol. 12150, pp. 276–294. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-51372-6_16

44. Smid, W., Rensink, A.: Class diagram restructuring with GROOVE. In: Gorp,
P.V., Rose, L.M., Krause, C. (eds.) TTC 2013. EPTCS, vol. 135, pp. 83–87 (2013)

45. Sprenger, C.: A verified model checker for the modal µ-calculus in Coq. In: Steffen,
B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054171

46. Wulandari, G.S., Plump, D.: Verifying graph programs with monadic second-order
logic. In: Gadducci, F., Kehrer, T. (eds.) ICGT 2021. LNCS, vol. 12741, pp. 240–
261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78946-6_13

47. Zambon, E., Rensink, A.: Recipes for coffee: Compositional construction of JAVA
control flow graphs in GROOVE. In: Müller, P., Schaefer, I. (eds.) Principled Soft-
ware Development. LNCS, pp. 305–323. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98047-8_19

48. Zanarini, D., Luna, C., Sierra, L.: Alternating-time temporal logic in the calculus
of (Co)inductive constructions. In: Gheyi, R., Naumann, D. (eds.) SBMF 2012.
LNCS, vol. 7498, pp. 210–225. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33296-8_16

https://doi.org/10.1007/978-3-031-17196-3_3
https://doi.org/10.1007/3-540-45949-9_5
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1007/s10009-020-00585-w
https://doi.org/10.1007/s10009-020-00585-w
https://doi.org/10.1007/978-3-030-51372-6_16
https://doi.org/10.1007/978-3-030-51372-6_16
https://doi.org/10.1007/BFb0054171
https://doi.org/10.1007/978-3-030-78946-6_13
https://doi.org/10.1007/978-3-319-98047-8_19
https://doi.org/10.1007/978-3-319-98047-8_19
https://doi.org/10.1007/978-3-642-33296-8_16
https://doi.org/10.1007/978-3-642-33296-8_16

	Specification and Verification of a Linear-Time Temporal Logic for Graph Transformation
	1 Introduction
	2 Counterpart Models
	2.1 Counterpart Relations and Traces

	3 Quantified Linear Temporal Logic
	3.1 Syntax and Semantics of QLTL
	3.2 Satisfiability
	3.3 Examples

	4 Positive Normal Form for QLTL
	4.1 Semantics of PNF
	4.2 Negation of QLTL and PNF

	5 Agda Formalisation
	5.1 Formalisation Aspects
	5.2 Intuitionistic Proof Assistant
	5.3 Automation

	6 Related Works
	7 Conclusions and Future Works
	References

