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Abstract
Temporal logics provide an expressive formalism for the verification of computer systems and their
evolution in time. Quantified variations of these logics allow to reason in terms of the individual
constituents of the system, thereby increasing their expressiveness and generality. A key property
for these logics is the presence of positive normal form of formulae, since it allows to provide a
fixpoint-based semantics and to simplify automated model checking.
The paper considers quantified linear time logics and, in order to deal with the trans-world identity
problem, it introduces a counterpart semantics to relate the elements of the system as it evolves in
time. A positive normal form of formulae is then discussed: in the case of counterpart semantics,
the positive normal form turns out to be a non-trivial transformation that noticeably alters the
logics in question, which we investigate in detail in this work.
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1 Introduction

The use of temporal logics for the specification and verification of computational systems
is well-established and has proved extremely effective both in the context of stand-alone
programs and large-scale systems, see for example [18, 4] among many others. After the
foundational work by Pnueli [17], the research on these topics has focused on both algorithmic
procedures for the verification of properties as well as finding sufficiently expressive fragments
of temporal logics suitable for the specification of complex multi-component systems. Over
the years, several models for temporal logics have been developed. Transition systems (also
known as Kripke frames) can be considered the leading example of such models for temporal
logics. In a transition system, each state represents a configuration of the device and each
transition identifies a possible state evolution. Depending on the setting one is considering,
states and transitions are usually specialized and enriched with algebraic structures. A
prominent example regards models of graph logics [5, 6, 7], where states are graphs and
transitions are families of (partial) graph morphisms. To this end, the concept of quantified
temporal logics has been proposed as a sufficiently expressive formalism that allows to refer
to the single elements of the system, despite the undecidability of these logics [9, 13].

From a theoretical point of view, the semantical models for such logics are not clearly
cut. Consider for example a simple model with two states s0, s1, two transitions s0 → s1
and s1 → s0, and an item i that appears in s0. Is the item i being destroyed and recreated
again and again, or is it just an identifier that is being reused? The issue is denoted in the
literature as the trans-world identity problem, [12, 1] and the typical solution provided by
the so-called “Kripke semantics” is to fix a set of universal items that gives identity to each
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23:2 Positive normal forms for counterpart-based temporal logics

element in the state. However, Kripke-like solutions are not fully adequate to model systems
with dynamic allocation and deallocation of components: in the example above, every i is
the same after each deallocation since it belongs to the universal domain. But intuitively,
every instance of i should be considered as distinct, despite being syntactically equivalent.

The proposal advanced by Lewis [15] is the counterpart paradigm: instead of a universal
set of items, each state identifies a local set of elements, and (partial) morphisms connect
them by carrying elements from one state to the other, allowing for deallocation and merging
of items. The flexibility of these models allows to properly deal with the trans-world identity
problem by letting us speak formally about entities that are destroyed and (re)created.

Besides its clear foundational appeal, the relevance of the counterpart solution has to be
validated by the possible application to the search of feasible algorithms for satisfiability. To
this end, positive normal forms (i.e., where negation is defined only for atomic propositions)
are a standard tool of temporal logics, since they can be used to simplify both the theoretical
treatment of such logics as well as facilitating model checking algorithms from a practical point
of view [14, 3]. Additionally, the positive normal form is especially useful when presenting a
fixpoint-based semantics of the logic and ensure its well-definition, as it excludes the notion
of negation and allows monotonicity to be easily shown.

The main purpose of this work is to provide a counterpart-style semantics and a present-
ation in positive normal form for a quantified linear temporal logic, denoted QLTL, and for
a strictly more expressive extension Q̂LTL. In particular, after introducing in detail their
syntax and semantics, we define two new logics, presented in positive normal form style and
denoted by PNF and P̂NF respectively, and their semantics. Then we prove a semantical
equivalence between QLTL and PNF, and similarly for Q̂LTL and P̂NF. This allows us to
formally conclude that, with respect to the counterpart semantics, PNF is precisely the
positive normal form presentation of QLTL, and that P̂NF is precisely the positive normal
form presentation of Q̂LTL.

The counterpart-based temporal logics QLTL and Q̂LTL we consider are inspired by the
previous work of [10, 11]. The presentation given here has been greatly simplified in order
to focus on the mechanisms required to obtain the positive normal form, while still aiming
for sufficient expressivity. In particular, we restrict ourselves to a first-order fragment in
which the states are considered not as algebras, but as standard Kripke-style sets of elements;
however, the minimal fragment of the logic presented here can easily be re-extended to a
richer presentation while still maintaining the results on the positive normal form.

Section 2 introduces our counterpart models, while Section 3 presents the syntax and the
semantics of our quantified temporal logics. Section 4 discusses positive normal forms, and
proves various equivalences among different operators. Finally, Section 5 wraps up the paper
and discusses possible future works. We formalised the proofs of the main results presented
in this work using the dependently-typed language and interactive proof assistant Agda [16].
The mechanization can be retrieved at https://github.com/iwilare/qltl-pnf.

2 Counterpart semantics

In this section we define the notions and class of models on which our quantified logic is
interpreted. We start by recalling the notion of Kripke frame as widely known in modal
logics [1, 2] and extend it for the case of counterpart semantics.

▶ Definition 1. A Kripke frame is a 3-tuple ⟨W,R,D⟩ defined as
W is a non-empty set;
R is a binary relation on W ;

https://github.com/iwilare/qltl-pnf
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D is a function assigning to every element ω ∈ W a non-empty set D(w) such that if
ωRω′ then D(ω) ⊆ D(ω′).

The set W is intuitively interpreted as the domain of all possible worlds, whereas the
binary relation R represents an accessibility relation among worlds, connecting them whenever
a transition from a world to another is possible. The domain D(ω) identifies the set of
objects that are present in the world ω.

A crucial development in the presentation of Kripke models was introduced by Lewis [15]
with the notion of counterpart relations and the subsequent introduction of counterpart
theory. The idea is to tackle the trans-world identity problem by rejecting strict identity of
individuals, and instead employing the notion of counterpart relation between worlds.

Inspired by Lewis’s approach, a more general notion of counterpart model is considered
in [10], where worlds are related through multiple accessibility relations, and each accessibility
relation is equipped with a proper counterpart relation.

▶ Definition 2. A counterpart model is a 3-tuple ⟨W,D, C⟩ defined as
W and D are defined as for Kripke frames;
C is a function assigning to every 2-tuple ⟨ω, ω′⟩ a set C⟨ω, ω′⟩ ∈ ℘(D(ω) ⇀ D(ω′)),
where ℘ denotes the powerset, and every element C ∈ C⟨ω, ω′⟩ is a partial function. We
call these partial functions atomic (or one-step) counterpart functions.

Given two worlds ω and ω′, the set C⟨ω, ω′⟩ is the collection of atomic transitions from
ω to ω′, defining the possible ways we can access worlds with a one-step transition in the
system. When the set C⟨ω, ω′⟩ is empty, there are no atomic transitions from ω to ω′.

Each atomic counterpart function C ∈ C⟨ω, ω′⟩ connects the individuals between two
given worlds ω and ω′, intuitively identifying them as the same element after one time
evolution of the model. In particular, if we consider two elements s ∈ D(ω) and s′ ∈ D(ω′)
and a function C ∈ C⟨ω, ω′⟩, if C(s) is defined and C(s) = s′ then s′ represents a future
development of s via C.

The use of partial functions in the counterpart model allows us to model the notion of
removal of an element from the system, so that there exists no counterpart in the next state.
For example, if there is no element s′ ∈ D(ω′) such that s′ = C(s), then we can conclude
that the element s has been deallocated by C.

Now we formally introduce counterpart functions, fixing notation for the rest of the paper.

▶ Definition 3. A partial function C of D(ω) ⇀ D(ω′) is a counterpart function if one
of the following three cases holds: C is the identity function, C ∈ C⟨ω, ω′⟩ is a one-step
counterpart function given by the model, or C can be obtained by composing together a suitable
sequence of functions Cn ◦ · · · ◦ C0 with Ci ∈ C⟨ωi, ωi+1⟩.

We remark here that the resulting composition C2 ◦ C1 : D(ω1) ⇀ D(ω3) of two atomic
counterpart functions C1 ∈ C⟨ω1, ω2⟩ and C2 ∈ C⟨ω2, ω3⟩ might not necessarily be an atomic
counterpart function. This intuitively represents the fact that transitioning through an
intermediate state and transitioning directly between worlds can be regarded as two different
possibilities, with the model defining only the direct one-step transitions.

▶ Definition 4. We say that an individual s′ ∈ D(ω′) is the counterpart of s ∈ D(ω)
through a counterpart function C if C(s) is defined and C(s) = s′.

▶ Example 5 (Counterpart model). In Figure 1 we provide a graphical presentation of
the counterpart model defined by the set of worlds W := {ω1, ω2, ω3}, where for example
D(ω0) = {a0, b0, c0}, D(ω1) = {a1, b1, c1, d1}, and D(ω2) = {a2, b2, c2, d2}. The worlds are
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connected by the following functions: C⟨ω0, ω1⟩ := {C0} a single counterpart function C0
between ω0 and ω1, C⟨ω1, ω2⟩ := {C1, C2} has two possible counterpart functions between
ω1, ω2, and C⟨ω2, ω2⟩ = {C3} is a looping counterpart function. Note that we use solid and
dashed lines to distinguish C1 and C2, respectively.

ω0 ω1 ω2

C0 C2

C1

b0

a0

c0

b1

a1

c1

d1

b2

a2

c2

d2

C3

Figure 1 An example of counterpart model.

As is the case of LTL where we can identify traces connecting linearly evolving states, see
for example [2], we can consider linear sequences of counterpart functions providing a list of
sequentially accessible worlds.

▶ Definition 6. A trace σ on a counterpart model ⟨W,D, C⟩ is an infinite sequence of
one-step counterpart functions (C0, C1, . . . ) such that Ci ∈ C⟨ωi, ωi+1⟩ for any i ≥ 0.

Given a trace σ = (C0, C1, . . . ), we use i as subscript σi := (Ci, Ci+1, . . . ) to denote the
trace obtained by excluding the first i counterpart functions. We use σ• to indicate the first
world ω0 of the trace σ.

Since a trace σ = (C0, C1, . . . ) provides a sequence of counterpart functions step-by-step
connected through a world, we denote with C≤i the composite function Ci−1 ◦ · · · ◦ C0 from
the first world ω0 up to the i-th world ωi through the functions given by the trace σ. In the
special case i = 0, the function C≤0 is defined to be the identity function on ω0.

3 Quantified linear temporal logics

In this section we present the syntax and semantics of our (first-order) quantified linear
temporal logic QLTL and its extension Q̂LTL. We will assume hereafter a fixed counterpart
model ⟨W,D, C⟩, with definitions referring to the data provided by the underlying model.

3.1 Syntax and semantics of QLTL
In order to provide a simpler presentation, it is customary to exclude all constructs that can
be expressed in terms of other operators, such as conjunction and universal quantification;
for this reason, we will initially present QLTL with a minimal set of operators and derive
other ones with negation.

▶ Definition 7 (QLTL). Let X be a set of variables with x, y ∈ X , and P a set of unary
predicates. The set FQLTL of QLTL formulae is generated by the following rules:

ψ := tt | x = y | P (x), ϕ := ψ | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | Oψ | ϕ1Uϕ2.

The next operator Oϕ expresses the fact that a certain property ϕ has to be true at the
next state. The until operator ϕ1Uϕ2 indicates that the property ϕ1 has to hold at least
until the property ϕ2 becomes true, which must hold at the present or future time.
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We use the letter ψ to indicate the case of elementary predicates and we refer to these
formulae as atomic formulae. Given two variables x, y ∈ X denoting two individuals, the
formula x = y indicates that the two individuals coincide in the current world. Our logic
is extended with a unary predicate symbol P (x) that will be used in the running example
in Figure 2. The usual dual operators can be syntactically expressed by taking ff := ¬tt,
ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2), and ∀x.ϕ := ¬∃x.¬ϕ.

As we anticipated in Section 2, one of the main advantages of a counterpart semantics is
the possibility to reason about deallocating and merging elements of a system. For example,
we can capture a notion of existence of an element at the current moment with the shorthand
present(x) := ∃y.x = y. We can then combine this predicate with the next operator to talk
about elements that are present in the current world and that will still be present at the next
step, for example with the formula nextStepPreserved(x) := present(x) ∧ Opresent(x).
Similarly, we can refer to elements that are now present but that will be deallocated at the
next step by considering nextStepDeallocated(x) := present(x) ∧ ¬Opresent(x).

Since free variables referring to individuals can now appear inside formulae, we recall the
usual presentation of context and formulae-in-context as similarly defined in [11, 10].

▶ Definition 8 (Context). A context Γ over a set of variables X is a subset of X . We use
the notation Γ , x to indicate the augmented context Γ ∪ {x}.

▶ Definition 9 (Formulae-in-context). A formula-in-context is a formula ϕ along with an
associated context Γ in which it is defined, and we indicate this decoration with [Γ ]ϕ. Any
context is such that fv (ϕ) ⊆ Γ , i.e., it contains the free variables of the formula ϕ.

We omit the bracketed context whenever it is unnecessary to specify it.
To properly present the notion of satisfiability of a formula with respect to a given

counterpart model, we need to first introduce the definition of assignment in a given world.

▶ Definition 10 (Assignment). An assignment in the world ω ∈ W for the context Γ is a
function µ : Γ → D(ω). We use the notation AΓ

ω to indicate the set of assignments µ defined
in ω for the context Γ .

Moreover, we denote by µ[x 7→ s] the assignment with type Γ , x → D(ω) obtained by
extending the domain of µ with s ∈ D(ω) at the variable x ̸∈ Γ .

We now define the lifting of counterpart functions to assignments. The intuition behind
this notion is that we want to translate all elements of an assignment to the next world using
the counterpart function individual-by-individual.

▶ Definition 11 (Counterpart functions on assignments). Given a counterpart function C :
D(ω1) ⇀ D(ω2) and an assignment µ : Γ → D(ω1), we say that the assignment C ◦ µ : Γ →
D(ω2) is defined whenever C(µ(x)) is defined for all variables x ∈ Γ .

We now introduce the notion of satisfiability of a formula in a given trace and assignment.

▶ Definition 12 (QLTL satisfiability). Given a QLTL formula-in-context [Γ ]ϕ, a trace σ =
(C0, C1, . . . ), and an assignment µ : Γ → D(σ•) defined in the first world of σ, we present
the satisfiability relation as follows:

σ, µ ⊨ tt;
σ, µ ⊨ x = y if µ(x) = µ(y);
σ, µ ⊨ P (x) if P (µ(x));
σ, µ ⊨ ¬ϕ if σ, µ ̸⊨ ϕ;
σ, µ ⊨ ϕ1 ∨ ϕ2 if σ, µ ⊨ ϕ1 or σ, µ ⊨ ϕ2;
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σ, µ ⊨ ∃x.ϕ if there exists an individual s ∈ D(σ•) such that σ, µ[x 7→ s] ⊨ ϕ;
σ, µ ⊨ Oϕ if C0 ◦ µ is defined and σ1, C0 ◦ µ ⊨ ϕ;
σ, µ ⊨ ϕ1Uϕ2 if there exists an n̄ ≥ 0 such that:

1. for any i < n̄, we have that C≤i ◦ µ is defined and σi, C≤i ◦ µ ⊨ ϕ1;
2. C≤n̄ ◦ µ is defined and σn̄, C≤n̄ ◦ µ ⊨ ϕ2.

▶ Example 13. We present a running example in Figure 2 to better describe the expressiveness
of QLTL and to illustrate the mechanisms of working in a counterpart-based semantics.

ω0 ω1 ω2

C0
ω3

C1 C2

C3

a0

b1

a1

c1

a2

c2

a3

b2

b3

b0
c0

d0

Figure 2 An example with four worlds ω0, ω1, ω2, ω3

We consider a fixed trace σ = (C0, C1, C2, C3, C3, . . . ) and we indicate with B(x) and R(x)
the unary predicates that hold for any individual coloured in blue and red, respectively. As a
concrete scenario for the temporal operators Oϕ and ϕ1Uϕ2 we presented in Definition 12, we
have for example that σ, {x 7→ a0} ⊨ O(R(x)), and σ, {x 7→ c0} ⊨ B(x)UR(x). Also, we have
that a0 is preserved at the next step with σ, {x 7→ a0} ⊨ nextStepPreserved(x), whereas
c1 is removed and indeed σ1, {x 7→ c1} ⊨ nextStepDeallocated(x).

▶ Remark 14 (Eventually operator ♢ϕ). As in LTL, we can define an additional eventually ♢ϕ
operator as ♢ϕ := ttUϕ. Its semantics can be presented directly as

σ, µ ⊨ ♢ϕ if there exists i ≥ 0 such that C≤i ◦ µ is defined and σi, C≤i ◦ µ ⊨ ϕ.
In our example in Figure 2, we have for instance that σ, {x 7→ c0} ⊨ ♢R(x) but σ, {x 7→ d0} ⊭
♢R(x) and similarly σ2, {x 7→ c2} ⊭ ♢R(x).

▶ Example 15 (Merging). In QLTL we can express the merging of two individuals at some
point in the future with the predicate willMerge(x, y) := x ≠ y ∧ ♢(x = y). In our running
example in Figure 2, we have that in the first world σ, {x 7→ a0, y 7→ c0} ⊨ willMerge(x, y),
but clearly σ, {x 7→ c0, y 7→ d0} ⊭ willMerge(x, y).

▶ Remark 16 (Quantifier elision for unbound variables). A relevant difference with standard
quantified logics is that, in QLTL, we cannot elide quantifications where the variable introduced
does not appear in the subformula: taking any ϕ with x ̸∈ fv(ϕ) we have that in general
∃x.ϕ ̸≡ ϕ and, similarly, ∀x.ϕ ̸≡ ϕ. More precisely, since we have that each D(ω) is not
empty, the equivalences hold whenever ϕ does not contain any temporal operator.

We report here a concrete example: consider a world ω with a single individual D(ω) = {s}
and a single looping counterpart function C⟨ω, ω⟩ = {C}, where C = ∅ is the empty
counterpart function. The trace is given by σ = (C,C, . . . ). By taking the empty assignment
{ } and the closed formula ϕ = O(tt), one can easily check that σ, { } ⊨ O(tt), but σ, { } ⊭
∃x.O(tt). The reason is that, once an assignment is extended with some element, stepping
from one world to the next one requires every individual of the assignment to be transported
and have a counterpart in the next world.

Alternatively, we could have restricted assignments in the semantics so that counterparts
are required only for the free variables occurring in the formula. For example, the definition
for the next operator Oϕ becomes:
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σ, µ ⊨ Oϕ if C0 ◦ µ|fv(ϕ) is defined and σ1, C0 ◦ µ|fv(ϕ) ⊨ ϕ.
For ease of presentation both in this paper and with respect to our Agda implementation,
we consider the case where all elements in the context must have a counterpart. All our
developments could anyhow be rephrased with the alternative approach.
▶ Remark 17 (No self-duality for next). We observe that, contrary to classical LTL, the next
operator Oϕ in our counterpart-style semantics in general is not self-dual with respect to
negation, i.e.: ¬Oϕ ̸≡ O¬ϕ. It is necessary to introduce a separate next operator that allows
us to adequately capture the notion of negation. Notice that this absence of duality is due
to the fact that we use partial functions in our counterpart model, which forces us to talk
about the existence and the possible absence of a counterpart.

Consider again the counterpart model in Figure 2: it is easy to see that σ1, {x 7→ c1} ⊨
¬O(B(x)), but σ1, {x 7→ c1} ⊭ O(¬B(x)) since no counterpart for c1 exists after one step.

The idea is that the next operator Oϕ requires that a counterpart at the next step exists,
and this will force us in Section 4 to present a dual next operator to deal with the absence
of a counterpart. Indeed, the usual equivalence presented in LTL can be obtained again by
restricting our models whose counterpart relations are functions which are total on their
domain; this allows us to consider a unique trace of always-defined counterpart individuals,
which in turn brings us back to a more standard LTL notion of trace.

3.2 Syntax and semantics of Q̂LTL
We can further extend the syntax of QLTL with an additional operator weak until ϕ1Wϕ2,
as usually presented in LTL.

▶ Definition 18 (Q̂LTL). Let X be a set of variables and x, y ∈ X . The set F Q̂LTL of Q̂LTL
formulae is defined by the following rules:

ψ = tt | x = y | P (x), ϕ := ψ | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | Oψ | ϕ1Uϕ2 | ϕ1Wϕ2.

Since Q̂LTL is an extension of QLTL, the semantics of common formulae is the same as
the one in Definition 12, and we only present the semantics for the new operator weak until.

▶ Definition 19 (Semantics of weak until). The weak until operator is defined as follows:
σ, µ ⊨ ϕ1Wϕ2 if at least one of the following conditions applies:

1. either the same conditions for ϕ1Uϕ2 hold;
2. for any i ≥ 0 we have that C≤i ◦ µ is defined and σi, C≤i ◦ µ ⊨ ϕ1.

▶ Remark 20 (Always operator □ϕ). Similarly as with Remark 14, having the weak until
operator allows us to directly define an always operator □ϕ := ϕWff. Equivalently, we
explicitly provide its semantics as follows:

σ, µ ⊨ □ϕ if for any i ≥ 0 we have that C≤i ◦ µ is defined and σi, C≤i ◦ µ ⊨ ϕ.
For example, we have in Figure 2 that σ, {x 7→ c0} ⊨ ♢□R(x) and σ2, {x 7→ c2} ⊨ □B(x).
However, σ, {x 7→ d0} ⊭ □B(x) since a counterpart is always required to exist.

▶ Remark 21 (Q̂LTL is strictly more expressive than QLTL). It seems reasonable to also define
the standard always operator in QLTL with □ϕ := ¬♢¬ϕ; however, this definition does not
align with the semantics provided in Remark 20 for Q̂LTL, and it turns out that the □ϕ
operator is not expressible in QLTL. By Theorem 41, it similarly can be seen that the weak
until ϕ1Wϕ2 operator cannot be expressed in QLTL. This is due to the fact we are working
in the setting of partial functions, and we will formally explain and present an intuition for
this when we introduce the syntax and semantics of QLTL in PNF in Section 4.
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As usual, two formulae are said to be equivalent whenever they are satisfied by the same
traces and assignments.

▶ Definition 22 (Q̂LTL equivalence). Given two Q̂LTL formulae [Γ ]ϕ1, [Γ ]ϕ2, defined on the
same context Γ , we define equivalence as follows:

ϕ1 ≡ ϕ2
def⇐⇒ ∀σ, µ ∈ AΓ

σ•
.(σ, µ ⊨ ϕ1 ⇐⇒ σ, µ ⊨ ϕ2).

Observe that the assignments we quantify on are defined on the same context Γ as the
two formulae, and must again assign variables to the first world σ• of the trace.

▶ Theorem 23 (Equivalences in Q̂LTL). ( QLTL.Equivalences) As in LTL, the following
equivalences also hold in Q̂LTL:

ϕ1Uϕ2 ≡ ϕ1Wϕ2 ∧ ♢ϕ2, ϕ1Wϕ2 ≡ ϕ1Uϕ2 ∨ □ϕ1.

▶ Theorem 24 (Expansion laws in Q̂LTL). ( QLTL.ExpansionLaws) We have the following
expansion laws in Q̂LTL:

♢ϕ ≡ ϕ ∨ O(♢ϕ) ϕ1Uϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ O(ϕ1Uϕ2))
□ϕ ≡ ϕ ∧ O(□ϕ) ϕ1Wϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ O(ϕ1Wϕ2))

4 Positive Normal Form

Positive normal forms are a standard presentation of temporal logics, and can be used to
simplify constructions and algorithms on both the theoretical and pratical implementation
side [14, 3] while still preserving the full expressiveness of the original logic. The main
purpose of this section is to provide the positive normal forms for both QLTL and Q̂LTL.

4.1 Positive normal form for QLTL
As observed in Remark 17, to present the positive normal form we need additional operators
to adequately capture the negation of the temporal operators we described. Thus, we
introduce a new flavour of the next operator, called next-forall Aϕ. Similarly, we have to
introduce a negative dual to the until operator which we indicate as the then ϕ1Tϕ2 operator.

▶ Definition 25 (QLTL in PNF). Let X be a set of variables and x, y ∈ X. The set FPNF of
formulae of QLTL in positive normal form is generated by the following rules:

ψ := tt | x = y | P (x),

ϕ := ψ | ¬ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ | Oϕ | Aϕ | ϕ1Uϕ2 | ϕ1Tϕ2.

We now provide a satisfiability relation for PNF formulae by specifying the semantics
just for the additional operators, omitting the ones that do not change.

▶ Definition 26 (QLTL in PNF satisfiability). We define the following additional constructs:
σ, µ ⊨ ¬ψ if σ, µ ̸⊨ ψ;
σ, µ ⊨ ϕ1 ∧ ϕ2 if σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
σ, µ ⊨ ∀x.ϕ if for any individual s ∈ D(σ•) we have that σ, µ[x 7→ s] ⊨ ϕ;
σ, µ ⊨ Aϕ if whenever C0 ◦ µ is defined then σ1, C0 ◦ µ ⊨ ϕ;
σ, µ ⊨ ϕ1Tϕ2 if at least one of the two conditions holds:

https://github.com/iwilare/time2022-agda/blob/main/QLTL/Equivalences.agda
https://github.com/iwilare/time2022-agda/blob/main/QLTL/ExpansionLaws.agda
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there exists an n̄ ≥ 0 such that, for any i < n̄, if C≤i ◦µ is defined then σi, C≤i ◦µ ⊨ ϕ1;
furthermore, if C≤n̄ ◦ µ is defined then σn̄, C≤n̄ ◦ µ ⊨ ϕ2.
for any i, if C≤i ◦ µ is defined then σi, C≤i ◦ µ ⊨ ϕ1.

The intuition for the next-forall Aϕ operator is that it allows us to capture the case where
the counterpart of an individual does not exist at the next step: if it does, it is required to
satisfy the formula ϕ.

Similarly to the until ϕ1Uϕ2 operator, the then ϕ1Tϕ2 operator allows us to take a sequence
of worlds where ϕ1 is satisfied for some steps until ϕ2 holds. The crucial observation is that
both the intermediate counterparts satisfying ϕ1 and the conclusive counterpart satisfying ϕ2
are allowed to not exist, and indeed any trace consisting of all empty counterpart functions
always satisfies ϕ1Tϕ2. As a special case, ϕ1Tϕ2 can also be validated by considering a trace
in which every counterpart of the initial assignment exists, and they all satisfy ϕ1.
▶ Remark 27 (Alternative definition of then). It could be wondered whether the then ϕ1Tϕ2
operator can be expressed by requiring that counterparts exist where ϕ1 is satisfied, and
allow non-existence just for the assignment that satisfies ϕ2. It turns out that this variation
is equivalent to the one shown here, and we have formally shown this equivalence in Agda
( Alternative.QLTL). We present the current one as it lends itself to a more intuitive
representation of the expansion law shown in Theorem 41.

▶ Example 28 (Then and next-forall). In our running example in Figure 2, we illustrate the
possibility for B(x)TR(x) and AB(x) to be satisfied even when a counterpart does not exist
after one or more steps. In particular, it can be verified that σ, {x 7→ c0} ⊨ B(x)TR(x) holds
since R(x) is eventually satisfied while B(x) holds, just like the until operator. We have that
both σ, {x 7→ a0} ⊨ AR(x) and σ1, {x 7→ c1} ⊨ AR(x) hold, since no counterpart for c1 exists
after one step. Finally, we have that σ, {x 7→ d0} ⊨ B(x)TR(x) holds since B(x) holds but no
counterpart exists after two steps, and σ2, {x 7→ c2} ⊨ B(x)TR(x) since a counterpart always
exists but B(x) holds forever.

The crucial observation that validates the PNF presented in Section 4 is that the negation
of both the next Oϕ and until ϕ1Uϕ2 formulae can now be expressed inside the logic. We
will explicitly indicate with ⊨QLTL and ⊨PNF the satisfiability relations defined for formulae
in standard QLTL and QLTL in PNF, respectively.

▶ Theorem 29 (Negation of next and until is expressible in PNF). ( QLTL.Negation)

Let ψ be an atomic formula in PNF. Then we have

∀σ, µ ∈ AΓ
σ•
.σ, µ ⊨QLTL ¬O(ψ) ⇐⇒ σ, µ ⊨PNF A(¬ψ)

∀σ, µ ∈ AΓ
σ•
.σ, µ ⊨QLTL ¬(ψ1Uψ2) ⇐⇒ σ, µ ⊨PNF (¬ψ2)T(¬ψ1 ∧ ¬ψ2).

Similarly, we have that the negation of the new operators is itself contained in PNF.

▶ Proposition 30 (Negation of then and next-forall is in PNF). ( PNF.Negation)

Let ψ be an atomic formula in PNF. Then we have

∀σ, µ ∈ AΓ
σ•
.σ, µ ̸⊨PNF A(ψ) ⇐⇒ σ, µ ⊨PNF O(¬ψ)

∀σ, µ ∈ AΓ
σ•
.σ, µ ̸⊨PNF ψ1Tψ2 ⇐⇒ σ, µ ⊨PNF (¬ψ2)U(¬ψ1 ∧ ¬ψ2).

Notice how the previous results can be easily generalized to the case where full formulae ϕ
are considered. These equivalences allow us to define a formal translation · : FQLTL → FPNF
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from the QLTL syntax presented in Definition 12 to the current one in PNF, preserving
equivalence of formulae. This is done with the obvious syntactical transformation that pushes
the negation in QLTL formulae down to elementary formulae and replaces temporal operators
with their negated counterpart. For example:

Oϕ := Oϕ ¬Oϕ := A¬ϕ ϕ1Uϕ2 := ϕ1Uϕ2 ¬ϕ1Uϕ2 := ¬ϕ2T(¬ϕ1 ∧ ¬ϕ2)

▶ Theorem 31 (PNF equivalence). ( PNF.Conversion) Let · : FQLTL → FPNF be the
aforementioned syntactical translation that replaces negated temporal operators with their
equivalent ones in PNF. For any QLTL formula [Γ ]ϕ ∈ FQLTL, we can express the following
result:

∀σ, µ ∈ AΓ
σ•
.σ, µ ⊨QLTL ϕ ⇐⇒ σ, µ ⊨PNF ϕ .

▶ Remark 32 (Weak until and then). In classic LTL, the weak until operator ϕ1Wϕ2 and until
operator ϕ1Uϕ2 can each be used to express the negation of the other; in QLTL, it is easy
to see that the then operator ϕ1Tϕ2 does not provide the same semantics of the weak until
definition ϕ1Wϕ2 as we presented it in Definition 19.

The crucial difference between the two operators is in the deallocation of elements: the
then ϕ1Tϕ2 operator holds even if no counterpart for the current element exists, while the
weak until ϕ1Wϕ2 operator requires for a counterpart to exist at every step. Since the
temporal operators of QLTL ensure that counterparts exist, their dual operators must be
able to show that no counterpart can exist while still satisfying the formula. Indeed, the
absence of counterparts can be expressed with the Aϕ and ϕ1Tϕ2 operators.
▶ Remark 33 (Non-expressibility of □ϕ and ϕ1Wϕ2 in QLTL). As previously mentioned in
Remark 21, the □ϕ and ϕ1Wϕ2 operators are not expressible in standard QLTL, and need to
be defined as primitives in an extended logic Q̂LTL.

The reason is made clearer now that we have explicitly seen how the negations of the
until and next operators behave. The idea for this restriction in expressive power is that the
operators considered in QLTL cannot be manipulated into providing the semantics of the
always operator □ϕ: the next Oϕ and until ϕ1Uϕ2 operators only consider finite prefixes of
a trace; on the other hand, their corresponding negations next-forall Aϕ and then ϕ1Tϕ2
operators allow for counterparts not to exist.

4.2 Positive normal form for Q̂LTL
In this section we extend the PNF introduced for QLTL to the case of Q̂LTL and consider
the additional operators required to express it.

It turns out that to obtain the positive normal for Q̂LTL form we need to define yet
another operator until-forall ϕ1Fϕ2 that expresses the negation of the weak-until ϕ1Wϕ2
operator. This fully completes the picture of the temporal operators required.

▶ Definition 34 (Q̂LTL in PNF). Let X be a set of variables with x, y ∈ X . The set F P̂NF of
formulae of Q̂LTL in positive normal form is generated by the following rules:

ψ := tt | x = y | P (x),

ϕ := ψ | ¬ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ | Oϕ | Aϕ | ϕ1Uϕ2 | ϕ1Tϕ2 | ϕ1Wϕ2 | ϕ1Fϕ2.

▶ Definition 35 (Semantics of until-forall). The until-forall operator is defined as follows:
σ, µ ⊨ ϕ1Fϕ2 if there exists an n̄ ≥ 0 such that:

https://github.com/iwilare/time2022-agda/blob/main/PNF/Conversion.agda
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for any i < n̄, if C≤i ◦ µ is defined then σi, C≤i ◦ µ ⊨ ϕ1;
if C≤n̄ ◦ µ is defined then σn̄, C≤n̄ ◦ µ ⊨ ϕ2.

The intuition for the until-forall ϕ1Fϕ2 is similar to the classical until ϕ1Uϕ2, with the
caveat that the counterparts are allowed not to exist. Crucially, we observe how the definition
of the until-forall ϕ1Fϕ2 operator coincides with the first satisfiability condition of the then
ϕ1Tϕ2 operator presented in Definition 26.

Now that we have defined the complete set of the temporal operators, the second then
condition can similarly be expressed by a derived always-forall □∗ϕ operator, which we
present along with a eventually-forall ♢∗ϕ operator.

Similarly as with the then and until-forall operators, the difference with their standard
counterparts eventually ♢ϕ and always □ϕ is that they can still be satisfied even when
counterparts do not exist.
▶ Remark 36 (Always-forall and eventually-forall). The always-forall and eventually-forall
operators are defined as □∗ϕ := ϕTff and ♢∗ϕ := ttFϕ, respectively. Their semantics can be
explicitly presented as follows:

σ, µ ⊨ □∗ϕ for any i, if C≤i ◦ µ is defined then σi, C≤i ◦ µ ⊨ ϕ;
σ, µ ⊨ ♢∗ϕ if there exists i ≥ 0 such that if C≤i ◦ µ is defined then σi, C≤i ◦ µ ⊨ ϕ.

The equivalence between Q̂LTL and its positive normal form can again be retrieved again
by observing the following equivalences:

▶ Theorem 37 (Negation of weak-until and until-forall is expressible in PNF). ( QLTL.Ext.Negation)

Let ψ be an atomic formula. Then we have

∀σ, µ ∈ AΓ
σ•
.σ, µ ⊨Q̂LTL ¬(ψ1Wψ2) ⇐⇒ σ, µ ⊨P̂NF (¬ψ2)F(¬ψ1 ∧ ¬ψ2),

∀σ, µ ∈ AΓ
σ•
.σ, µ ̸⊨P̂NF ψ1Fψ2 ⇐⇒ σ, µ ⊨P̂NF (¬ψ2)W(¬ψ1 ∧ ¬ψ2).

▶ Proposition 38 (Negation for always-forall and eventually-forall). ( All.Negation)

Let ψ be an atomic formula. Then we have

∀σ, µ ∈ AΓ
σ•
.σ, µ ⊨Q̂LTL ¬♢ψ ⇐⇒ σ, µ ⊨P̂NF □∗(¬ψ),

∀σ, µ ∈ AΓ
σ•
.σ, µ ⊨Q̂LTL ¬□ψ ⇐⇒ σ, µ ⊨P̂NF ♢∗(¬ψ),

∀σ, µ ∈ AΓ
σ•
.σ, µ ̸⊨P̂NF ♢∗ψ ⇐⇒ σ, µ ⊨P̂NF □(¬ψ),

∀σ, µ ∈ AΓ
σ•
.σ, µ ̸⊨P̂NF □∗ψ ⇐⇒ σ, µ ⊨P̂NF ♢(¬ψ).

We can extend the formal translation · : F Q̂LTL → F P̂NF to deal with the new operator:

ϕ1Wϕ2 := ϕ1Wϕ2 ¬(ϕ1Wϕ2) := ¬ϕ2F(¬ϕ1 ∧ ¬ϕ2)

As with Theorem 31, we obtain a similar result for the case of Q̂LTL:

▶ Theorem 39 (P̂NF equivalence). ( PNF.Conversion) For any Q̂LTL formula [Γ ]ϕ ∈
F Q̂LTL we have that:

∀σ, µ ∈ AΓ
σ•
.σ, µ ⊨Q̂LTL ϕ ⇐⇒ σ, µ ⊨P̂NF ϕ .

Each pair of operators can now be uniformly expressed in terms of each other.
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▶ Theorem 40 (Equivalences between operators in P̂NF). ( All.Equivalences)

The following equivalences hold in P̂NF:
ϕ1Uϕ2 ≡ ϕ1Wϕ2 ∧ ♢ϕ2 ϕ1Wϕ2 ≡ ϕ1Uϕ2 ∨ □ϕ1
ϕ1Fϕ2 ≡ ϕ1Tϕ2 ∧ ♢∗ϕ2 ϕ1Tϕ2 ≡ ϕ1Fϕ2 ∨ □∗ϕ1.

As shown by the following result, each operator introduced so far can be described with
an expansion law that allows for the operator to be specified in terms of itself, recursively.
▶ Theorem 41 (Expansion laws). ( All.ExpansionLaws) The following hold in P̂NF:

ϕ1Uϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ O(ϕ1Uϕ2)) ϕ1Tϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ A(ϕ1Tϕ2))
ϕ1Wϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ O(ϕ1Wϕ2)) ϕ1Fϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ A(ϕ1Fϕ2)).

The then ϕ1Tϕ2 and until-forall ϕ1Fϕ2 operators satisfy a similar expansion law as the
until ϕ1Tϕ2 and weak until operators ϕ1Wϕ2, but by dually employing the next-forall Aϕ
operator to advance in the sequence.
▶ Remark 42 (Functional counterparts collapse the semantics). As briefly mentioned in Re-
mark 17, when our counterpart model is restricted to functions that are always defined and
are total on their domain we actually have that the pairs of operators previously introduced
collapse and provide the same semantics of the classical operators. In particular, we obtain
that Oϕ ≡ Aϕ, ϕ1Uϕ2 ≡ ϕ1Fϕ2, ϕ1Wϕ2 ≡ ϕ1Tϕ2, and this fact in turn allows us to obtain
the same semantics and dualities of the classic presentation of LTL.
▶ Remark 43 (Temporal operators as fixpoints). We remark how in a set-based semantics
with fixpoints the until-forall ϕ1Fϕ2 and then ϕ1Tϕ2 correspond to, respectively, least and
greatest fixpoints of the expansion law presented in Theorem 41.

5 Conclusions and future works

In this paper we presented a positive normal form for quantified temporal logics based on
counterpart semantics. We have shown how counterpart-based models provide a solution to
the trans-world problem, and allow for an adequate modelling of deallocation and merging
for the components of a system even from a practical point of view. To ensure a proper
treatment of negation, we introduced and investigated a positive normal form that can
explicitly deal with the notion of deallocation and it is pivotal for the use of fixpoints.

Several issues arise from the identification of a suitable positive normal form, leading to
a variety of different perspectives for future work.

The flexibility of our approach, combined with the minimality of our syntax, suggests that
extending our results to different or richer logics should be straightforward. For example,
we believe that our approach can be used to obtain a counterpart semantics and a positive
normal form presentation for CTL [8] and a second-order version of LTL.

From a semantical point of view there are at least two possible directions that can be
explored, through the generalization or specialization of the models we introduce.

In particular, the counterpart models we considered only allow for the counterpart relation
to be functional; this choice aims to maintain a tight correspondence with the original context
of graph rewriting, where these modal counterpart logics were presented [5, 6, 7]. We believe
that our approach can be easily extended in the setting of arbitrary counterpart relations,
which allow for the duplication of individuals. This, however, requires a more precise analysis
for the case of fixpoints and how they can be used to derive the usual temporal operators.

Finally, specializing the worlds of the models to be algebras instead of plain sets, as it is
presented in [10] and [11], can be easily done while still preserving the positive normal form
results we obtained.

https://github.com/iwilare/time2022-agda/blob/main/All/Equivalences.agda
https://github.com/iwilare/time2022-agda/blob/main/All/ExpansionLaws.agda
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