Di- is for Directed:

First-Order Directed Type Theory via Dinaturality

Andrea Laretto, Fosco Loregian, Niccolo Veltri

Tallinn University of Technology

POPL 2026
16th January, 2026

Andrea Laretto Di- is for Directed POPL 2026

Category theory is hard.

Andrea Laretto Di- is for Directed POPL 2026

Category theory is hard.

We all love logic.

Andrea Laretto Di- is for Directed POPL 2026

Category theory is hard.
We all love logic.

The claim of this talk: category theory = logic.

Andrea Laretto Di- is for Directed POPL 2026

An innocuous equivalence...

Pla) & V(x:C). a=czr = P(x)

An innocuous equivalence...

Pla) &V(z:C). a=czx = P(x)
P(a) = L . home(a,2) = P(a)

An innocuous equivalence...

Pla) &V(z:C). a=czx = P(x)
P(a) = /x . home(a,2) = P(a)

This is the Yoneda lemmal!

An innocuous equivalence...

Pla) &V(z:C). a=czx = P(x)
P(a) = /x . home(a,2) = P(a)

This is the Yoneda lemmal!

We want to prove things like the Yoneda lemma
just as easily as the equivalence above.

POPL 2026

Proof of Yoneda in dinatural directed type theory

The previous equivalence in first-order logic:
[a:C] ®FVY(x:C). a=cz= P(x)
[a:C,z:C] @+ a=cz= P(x)
[a:C,2:C|l a=cxN®F P(x)
[a:C] @+ P(a)

(¥)

=)

Andrea Laretto Di- is for Directed POPL 2026

Proof of Yoneda in dinatural directed type theory

The previous equivalence in first-order logic:
[a:C] ®FVY(x:C). a=cz= P(x)

(V)
[a:C,z:C] @+ a=cz= P(x)
(=)
[a:C,2:C|l a=cxN®F P(x) B
a:C] @ F P(a)
Our formal proof for the Yoneda lemma Nat(hom¢(a, —), P) = P(a):
[a:C] @ /x-C home(a,Z) = P(x)
: ()

[a:C,z:C] &+ homc¢(a,T) = P(x)
[a:C,z:C] home(a,z) x & + P(x)
[a:C] ® + P(a)

=)

Andrea Laretto Di- is for Directed POPL 2026

Symmetric equality in first-order logic

Recall the rules of equality:

[z:A] Pz ==z (refl)

Andrea Laretto Di- is for Directed POPL 2026

Symmetric equality in first-order logic

Recall the rules of equality:

[2: A] O(z,2) - P(z,2)
ref
[x:A]in:x(! [a:A,b:A] a = b, ®(a,b) - P(a,b) (7)

Andrea Laretto Di- is for Directed POPL 2026

Symmetric equality in first-order logic

Recall the rules of equality:

[2: A] O(z,2) - P(z,2)
ref
[x:A]in:x(! [a:A,b:A] a = b, ®(a,b) - P(a,b) (7)

Equality is transitive:
(id)
(/)

[z:A,c: A z=ckz=c
[a:Ab:Ajc:Ala=b, b=ckFa=c

Andrea Laretto Di- is for Directed POPL 2026

Symmetric equality in first-order logic

Recall the rules of equality:

[2: A] O(z,2) - P(z,2)

(refl) (J)
[z:A] @z =2z [a:A,b:A] a = b, ®(a,b) F P(a,b)
Equality is transitive: Equality is symmetric:
id refl
[z:A,c: A z:cl—z:cij)) [2: 4] Fz=z2 EJ))
[a:A,b:A,c:Ala=b, b=cka=c [a:A,b:Ala=bFb=a

Andrea Laretto Di- is for Directed POPL 2026

Sets — groupoids — categories

® How many proofs of an equality a = b can there be?

Andrea Laretto Di- is for Directed POPL 2026

Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements...

Types as sets,

Andrea Laretto Di- is for Directed POPL 2026

Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

Types as groupoids,
with equalities as morphisms:

Andrea Laretto Di- is for Directed POPL 2026

Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

N a category where
all morphisms are invertible
Types as groupoids,
with equalities as morphisms:

Andrea Laretto Di- is for Directed POPL 2026

Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

N a category where
all morphisms are invertible
Types as groupoids,
with equalities as morphisms:

Whenever you're proving something about equality,
you're secretly proving something about groupoids and groupoid theory.

Andrea Laretto Di- is for Directed POPL 2026

Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

N a category where
all morphisms are invertible
Types as groupoids,
with equalities as morphisms:

Whenever you're proving something about equality,
you're secretly proving something about groupoids and groupoid theory.

...what about categories?!

Andrea Laretto Di- is for Directed POPL 2026

Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

N a category where
i Iy . b
Types as groupoids,
with equalities as morphisms:

Whenever you're proving something about equality,
you're secretly proving something about groupoids and groupoid theory.

...what about categories?!

Andrea Laretto Di- is for Directed POPL 2026

Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as categories:

Types as categories,
with "equalities” as morphisms:

Andrea Laretto Di- is for Directed POPL 2026

Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as categories:

Types as categories,
with "equalities” as morphisms:

Whenever you're proving something about "equality”,
you're secretly proving something about categories and category theory.

Andrea Laretto Di- is for Directed POPL 2026

Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as categories:

Types as categories,
with "equalities” as morphisms:

Whenever you're proving something about "equality”,
you're secretly proving something about categories and category theory.

— Type theory as a unifying framework for rewriting, processes, transitions, etc.

Andrea Laretto Di- is for Directed POPL 2026 5/23

Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Andrea Laretto Di- is for Directed POPL 2026

Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Types ~~ Categories

Andrea Laretto Di- is for Directed POPL 2026

Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Types ~~ Categories
Terms ~» Functors

Andrea Laretto Di- is for Directed POPL 2026

Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Types ~~ Categories
Terms ~- Functors
Equalities e : a = b ~» Morphisms e : hom(a, b)

Andrea Laretto Di- is for Directed POPL 2026

Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Types ~~ Categories
Terms ~- Functors
Equalities e : a = b ~» Morphisms e : hom(a, b)

Andrea Laretto Di- is for Directed POPL 2026

Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Types ~~ Categories
Terms ~- Functors
Equalities e : a = b ~» Morphisms e : hom(a, b)

Andrea Laretto Di- is for Directed POPL 2026

Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Types ~ Categories
Terms ~- Functors
Equalities e : a = b ~» Morphisms e : hom(a, b)

=c: CxC — Type ~» homgc : C®PxC — Type

— Now types have a polarity: if C type then C°P type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026

Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Types ~ Categories
Terms ~» Functors
Equalities e : a = b ~» Morphisms e : hom(a, b)
contravariant \

=c: CxC — Type ~» homgc : C®PxC — Type

covariant

— Now types have a polarity: if C type then C°P type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026

Category theory = logic

refl, : z== Reflexivity of equality
id; € hom(z,z) Categories have identities

Andrea Laretto Di- is for Directed POPL 2026

Category theory = logic

refl, : z== Reflexivity of equality
id; € hom(z,z) Categories have identities
r=y N y==z Fox==z Transitivity of equality
homc(z,y) x home(y, z) — home(z,z) | Composition in a category

Di- is for Directed POPL 2026

Andrea Laretto

Category theory = logic

refl, : z== Reflexivity of equality
id; € hom(z,z) Categories have identities
r=y N y=z F xz=z Transitivity of equality

homc(z,y) x home(y, z) — home(z,z) | Composition in a category

r=y F f(z) = f(y) Congruence / functions respect equality
home (z,y) — homp(F(x), F(y)) Action on morphisms of functors

Andrea Laretto Di- is for Directed POPL 2026

Category theory = logic

refl, : z== Reflexivity of equality
id; € hom(z,z) Categories have identities
r=y N y=z F xz=z Transitivity of equality

homc(z,y) x home(y, z) — home(z,z) | Composition in a category

r=y F f(z) = f(y) Congruence / functions respect equality
homc(z,y) — homp(F(x), F(y)) Action on morphisms of functors
x=y A P(x) - P(y) Substitution / transport along equality
homce(z,y) x P(z) — P(y) Action on morphisms of (co)presheaves

Andrea Laretto Di- is for Directed POPL 2026

Category theory = logic

refl, : z== Reflexivity of equality
id; € hom(z,z) Categories have identities
r=y N y==z Fox==z Transitivity of equality

homc(z,y) x home(y, z) — home(z,z) | Composition in a category

r=y F f(z) = f(y) Congruence / functions respect equality
homc(z,y) — homp(F(x), F(y)) Action on morphisms of functors
x=y A P(x) - P(y) Substitution / transport along equality
homce(z,y) x P(z) — P(y) Action on morphisms of (co)presheaves
V(z:C). f(x) =p g(x) Pointwise equality of functions
homp (F(z), G(x)) Natural transformations

Andrea Laretto Di- is for Directed POPL 2026 7/23

Directed type theory is not so easy...

® Polarity problems:

(refl?)

[z :C] ® F hom(z,x)

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refl?)
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!
— A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!
— A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

® How do we avoid symmetry?
What should J look like?

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!

— A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]
® How do we avoid symmetry?

What should J look like? | want to derive transitivity for free,

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!
— A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

® How do we avoid symmetry?
What should J look like? | want to derive transitivity for free,

(id)
(/)

[z:CP ¢:(C] hom(z, ¢) F hom(z, c)
[a:C°,b:C,c: C] hom(a,b), hom(b,c) F hom(a,c)

Andrea Laretto Di- is for Directed POPL 2026 8/23

Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!
— A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

® How do we avoid symmetry?
What should J look like? | want to derive transitivity for free, but somehow not symmetry?

(id)
(/)

[z:CP c:C] hom(z, ¢) F hom(z, c)
[a:C°.b:C,c: C] hom(a,b), hom(b,c) - hom(a,c)

Andrea Laretto Di- is for Directed POPL 2026

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

Andrea Laretto Di- is for Directed POPL 2026

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,

Andrea Laretto Di- is for Directed POPL 2026

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,

Andrea Laretto Di- is for Directed POPL 2026

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.

Andrea Laretto Di- is for Directed POPL 2026

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,

® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.
— a simple description of directed type theory,

Andrea Laretto Di- is for Directed POPL 2026

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.

— a simple description of directed type theory,

— simple logical proofs of theorems in category theory.

Andrea Laretto Di- is for Directed POPL 2026

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.

— a simple description of directed type theory,

— simple logical proofs of theorems in category theory.

Sorts | Categories
Functions | Functors F': C — D

Andrea Laretto Di- is for Directed POPL 2026

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.

— a simple description of directed type theory,

— simple logical proofs of theorems in category theory.

Sorts | Categories
Functions | Functors F': C — D
Predicates | Dipresheaves: functors P : C°P x C — Set

Equality predicates | hom : C°P x C — Set

Andrea Laretto Di- is for Directed POPL 2026 9/23

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.

— a simple description of directed type theory,

— simple logical proofs of theorems in category theory.

Sorts
Functions

Categories
Functors F': C — D

Predicates
Equality predicates
Entailments

Quantifiers V, 3

Andrea Laretto

Dipresheaves: functors P : C°P x C — Set
hom : C°? x C — Set
Dinatural transformations (not required to compose)

z:C
Ends/ P(z,x), coends/ P(z,z).
z:C

Di- is for Directed POPL 2026 9/23

Syntax — simple types and terms

® Judgement for types:

Ctype Ctype D type Ctype D type
C°P type C x D type [C, D] type T type

® Semantics: a category [C].

Andrea Laretto Di- is for Directed POPL 2026

Syntax — simple types and terms

® Judgement for types:

Ctype Ctype D type Ctype D type
C°P type C x D type [C, D] type T type

® Semantics: a category [C].

e Judgement |I' -t : C| for simply-typed terms:

Andrea Laretto Di- is for Directed POPL 2026

Syntax — simple types and terms

® Judgement for types:

Ctype Ctype D type Ctype D type
C°P type C x D type [C, D] type T type

® Semantics: a category [C].

e Judgement |I' -t : C| for simply-typed terms:

I'sz:C 'Fs:C T'Ft:D

FFaz:C THI:T Tk(st):CxD
I'tp:CxD TI'kFp:CxD
F'Fm(p):C T Fma(p): D

¢ Semantics: functors [t] : [I'] — [C].

Andrea Laretto Di- is for Directed POPL 2026

Syntax — simple types and terms

® Judgement for types:

Ctype Ctype D type Ctype D type
C°P type C x D type [C, D] type T type

® Semantics: a category [C].

e Judgement |I' -t : C| for simply-typed terms:

I'sz:C '-s:C T'Ft:D
FFaz:C THI:T Tk(st):CxD r-t:C
I'kp:CxD T'kEp:CxD [oP | ¢op . C°P

F'Fm(p):C T Fma(p): D

¢ Semantics: functors [t] : [I'] — [C].

Andrea Laretto Di- is for Directed POPL 2026

Syntax — predicates

e A judgement | [I'] P prop | for predicates/formulas.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.

Andrea Laretto Di- is for Directed POPL 2026

Syntax — predicates

e A judgement | [I'] P prop | for predicates/formulas.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.

[T] P prop [I'] Q prop
[['] P x Q prop

[C] T prop

Andrea Laretto Di- is for Directed POPL 2026

Syntax — predicates

e A judgement | [I'] P prop | for predicates/formulas.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.

[['] Pprop [I']Q prop [I'°P] P prop [I'] Q prop
[I] P x @Q prop [I] P = @ prop

[C] T prop

Andrea Laretto Di- is for Directed POPL 2026

Syntax — predicates

® A judgement m for predicates/formulas.

® Semantics: dipresheaves, i.e., functors [P] : [I']° x [I'] — Set.

[[] P prop [I] Q prop [I'®] P prop [I @ prop
[['] P x Q prop [['] P = Q prop

[I',z:C] P(x) prop [[,z:C] P(x) prop

[I] f%C P(x) prop [I] fp.c P(x) prop

[C] T prop

Andrea Laretto Di- is for Directed POPL 2026

Syntax — predicates

e A judgement | [I'] P prop | for predicates/formulas.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.
[[] P prop [I] Q prop [I'®] P prop [I @ prop
[['] P x Q prop [['] P = Q prop
[I',z:C] P(x) prop [[,z:C] P(x) prop
[I] f%C P(x) prop [I] fp.c P(x) prop
Fs:C . it C
[['] homc(s,t) prop

[C] T prop

hom-predicates:

Andrea Laretto Di- is for Directed POPL 2026

Syntax — predicates

® A judgement m for predicates/formulas.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.
[[] P prop [I'] Q prop [I'’] P prop [I'] Q prop
[['] P x Q prop [['] P = Q prop
[I',z:C] P(x) prop [[,z:C] P(x) prop
[T] [“C P(z) prop [I] [p.c P(x) prop
Fs:C°P . FE:C
[['] homc(s,t) prop

[C] T prop

hom-predicates:

e Keyideal: s: C°° andt:C.

Andrea Laretto Di- is for Directed POPL 2026 11/23

Syntax — predicates

® A judgement | [I'] P prop | for predicates/formulas.
e Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.
[[] P prop [I'] Q prop [I°P] P prop [I] @ prop
[T] P x Q prop [T] P = Q prop
[[,z:C] P(x) prop [, z:C] P(x) prop
[I] [“C P(z) prop (] [p.c P(x) prop
[P Ths:C% TP TH¢:C
[['] home(s,t) prop

[T} T prop

hom-predicates:

e Keyideal: s:C°° and t:C.
e Key idea 2: | have two copies I'°P, I" to choose from in s, t.

Andrea Laretto Di- is for Directed POPL 2026 11/23

Syntax — predicates

® A judgement | [I'] P prop | for predicates/formulas.
e Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.
[[] P prop [I'] Q prop [I°P] P prop [I] @ prop
[T] P x Q prop [T] P = Q prop
[[,z:C] P(x) prop [, z:C] P(x) prop
[I] [“C P(z) prop (] [p.c P(x) prop
[P Ths:C% TP TH¢:C
[['] home(s,t) prop

[T} T prop

hom-predicates:

e Keyideal: s:C°° and t:C.
e Key idea 2: | have two copies I'°P, I" to choose from in s, t.
Notation: ifx:C in T, then T:C°P in I'°P,

Andrea Laretto Di- is for Directed POPL 2026 11/23

Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[:C] Frefl :hom(z,x)

Andrea Laretto Di- is for Directed POPL 2026

Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)

Andrea Laretto Di- is for Directed POPL 2026

Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
[a:C°P. b:C] hom(a, b) Fsym : hom(b, @)

Andrea Laretto Di- is for Directed POPL 2026

Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
[a:C°P. b:C] hom(a, b) Fsym : hom(b, @)

® We say that a variable is:
1. natural when it is used always correctly,

Andrea Laretto Di- is for Directed POPL 2026

Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
[a:C°P. b:C] hom(a, b) Fsym : hom(b, @)

® We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

Andrea Laretto Di- is for Directed POPL 2026

Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
[a:C°P. b:C] hom(a, b) Fsym : hom(b, @)

® We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x:C and T:C°P are in principle different variables...
we must give them the same value in the semantics!

Andrea Laretto Di- is for Directed POPL 2026 12/23

Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
[a:C°P. b:C] hom(a, b) Fsym : hom(b, @)

® We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x:C and T:C°P are in principle different variables...
we must give them the same value in the semantics!

~ dinatural transformations!

Andrea Laretto Di- is for Directed POPL 2026 12/23

Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)

Andrea Laretto Di- is for Directed POPL 2026

Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)

Ve € [C],y € [D], agy : [®](z, z,y,y) — [P](x,z,y,y) (+ one equation)

Andrea Laretto Di- is for Directed POPL 2026

Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)
Vo € [C],y € [D], oy : [®](x, 2,y,y) — [Pl(z,z,y,y) (4 one equation)

¢ Dinaturals do not always compose! ~~ sometimes you cannot do substitution!

Andrea Laretto Di- is for Directed POPL 2026

Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)
Vo € [C],y € [D], oy : [®](x, 2,y,y) — [Pl(z,z,y,y) (4 one equation)

¢ Dinaturals do not always compose! ~~ sometimes you cannot do substitution!
® Takeaway: in practice, they always do when we need them to.

Andrea Laretto Di- is for Directed POPL 2026 13/23

Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)
Vo € [C],y € [D], oy : [®](x, 2,y,y) — [Pl(z,z,y,y) (4 one equation)

¢ Dinaturals do not always compose! ~~ sometimes you cannot do substitution!
® Takeaway: in practice, they always do when we need them to.
¢ Dinaturals compose with natural transformations (both left and right):

Andrea Laretto Di- is for Directed POPL 2026 13/23

Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)
Vo € [C],y € [D], oy : [®](x, 2,y,y) — [Pl(z,z,y,y) (4 one equation)

¢ Dinaturals do not always compose! ~~ sometimes you cannot do substitution!
® Takeaway: in practice, they always do when we need them to.
¢ Dinaturals compose with natural transformations (both left and right):

pdt) — R
P @y R

Andrea Laretto Di- is for Directed POPL 2026 13 /23

Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)

Ve € [C],y € [D], agy : [®](z, z,y,y) — [P](x,z,y,y) (+ one equation)

Dinaturals do not always compose! ~~ sometimes you cannot do substitution!
® Takeaway: in practice, they always do when we need them to.

Dinaturals compose with natural transformations (both left and right):
@, R do not depend on I

[x:C, T P(ZT,z)F~v :Q(T,x)

Pt) 5 R [a:C°" b:C,T] Qa,b) Fa : R(a,b)

e 4 (cut-nat)
p dn2ty R [: C, T P(Z,z)F alv] : R(T,x)

Andrea Laretto Di- is for Directed POPL 2026 13 /23

Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)

Andrea Laretto Di- is for Directed POPL 2026

Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)

® Directed equality elimination:

[z:C,T] ®(z,Z)Fh: Pz, 2)

[a:C° b:C,T] e:homg(a,b), ®(@,b) - J(h): P(a,b)

Andrea Laretto

Di- is for Directed

POPL 2026

Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)

® Directed equality elimination:

[z:C,T] ®(z,Z)Fh: Pz, 2)

[a:C° b:C,T] e:homg(a,b), ®(@,b) - J(h): P(a,b)

If | have a directed equality e : hom¢(a, b) in context,

Andrea Laretto Di- is for Directed

POPL 2026 14 /23

Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)

® Directed equality elimination:

[z:C,T] ®(z,Z)Fh: Pz, 2)

[a:C° b:C,T] e:homg(a,b), ®(@,b) - J(h): P(a,b)

If | have a directed equality e : hom¢(a, b) in context,

» | can contract it only if a, b appear correctly in the conclusion P,

Andrea Laretto Di- is for Directed

POPL 2026 14 /23

Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)

® Directed equality elimination:

[z:C,T] ®(z,Z)Fh: Pz, 2)

[a:C° b:C,T] e:homg(a,b), ®(@,b) - J(h): P(a,b)

If | have a directed equality e : hom¢(a, b) in context,

» | can contract it only if a, b appear correctly in the conclusion P,
» and a, b appear incorrectly in the context ®.

Andrea Laretto Di- is for Directed

POPL 2026 14 /23

Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)
® Directed equality elimination:
[z:C,T] ®(z,Z)Fh: Pz, 2)

[a:C° b:C,T] e:homg(a,b), ®(@,b) - J(h): P(a,b)

If | have a directed equality e : hom¢(a, b) in context,
» | can contract it only if a, b appear correctly in the conclusion P,
» and a, b appear incorrectly in the context ®.

» Then, it is enough to prove that P holds “on the diagonal” z : C.

Andrea Laretto Di- is for Directed POPL 2026 14 /23

Dinatural directed type theory — examples

Example (Transitivity of directed equality)

[a:C%®.b:C,c:C] f:hom(a,b), g:hom(b,c)F? hom(a, c)

Andrea Laretto Di- is for Directed POPL 2026 15/23

Dinatural directed type theory — examples

Example (Transitivity of directed equality)

[a:C%®.b:C,c:C] f:hom(a,b), g:hom(b,c)F? hom(a, c)
We contract f : hom(a, b).

Andrea Laretto Di- is for Directed POPL 2026 15/23

Dinatural directed type theory — examples

Example (Transitivity of directed equality)

[a:C%®.b:C,c:C] f:hom(a,b), g:hom(b,c)F? hom(a, c)

We contract f : hom(a, b).
Rule (J) can be applied: a,b appear correctly in conclusion (b does not)
and incorrectly in context (a does not).

Andrea Laretto Di- is for Directed POPL 2026 15/23

Dinatural directed type theory — examples

Example (Transitivity of directed equality)

[z:C,c: C] g :hom(z,¢c) F g : hom(z, c¢) (id)
[a:C% b:C,c:C] f:hom(a,b), g:hom(b,c)F J(g) : hom(a,c)

We contract f : hom(a, b).
Rule (J) can be applied: a,b appear correctly in conclusion (b does not)
and incorrectly in context (a does not).

(/)

Andrea Laretto Di- is for Directed POPL 2026 15/23

Dinatural directed type theory — examples

Example (Congruence / terms are functors)
Given a term C'= F' : D:

[z:D] F refl, : homp(Z, z) (refl) (reidx)
reidx
[2:C] F reflpg : homp(F(Z), F(z)))
[a: C%®,b:C] e: homcg(a,b) - J(reflp,)) : homp(F(a), F(b))]

Andrea Laretto Di- is for Directed POPL 2026 16 /23

Dinatural directed type theory — examples

Example (Congruence / terms are functors)
Given a term C'= F' : D:

[z:D] F refl, : homp(
[2:C] F reflpg : homp(F()
[a: C%®,b:C] e: homcg(a,b) - J(reflp,)) : homp(F(a), F(b))

=l
8

"

Example (Transport / predicates are functors)

Given a predicate [z : C| P(x) prop:

[2:Clp: P(z2)F p:P(2))
[a:C° b:C]e:hom(a,b),p: P(@)k J(p): P(b)

Andrea Laretto Di- is for Directed POPL 2026 16 /23

Dinatural directed type theory — non-examples

Failure of symmetry for directed equality

The restrictions do not allow us to obtain directed equality is symmetric:
[a:C°?.b:C] e: hom(a,b) t/sym : hom(b,a)

hom(a, b) cannot be contracted: a,b must appear correctly in conclusion.

Andrea Laretto Di- is for Directed POPL 2026 17 /23

Dinatural directed type theory — non-examples

Failure of symmetry for directed equality

The restrictions do not allow us to obtain directed equality is symmetric:
[a:C°?.b:C] e: hom(a,b) t/sym : hom(b,a)

hom(a, b) cannot be contracted: a,b must appear correctly in conclusion.

® By soundness, the interval I := {0 — 1} is a counterexample to derivability in the syntax.

Andrea Laretto Di- is for Directed POPL 2026 17 /23

Directed type theory: equational theory

® A judgement ‘ oFa=p:P ‘ for equality of entailments.

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory: equational theory

® A judgement ‘ oFa=p:P ‘ for equality of entailments.

e Computation rule for J:
(J-comp)

[2:C,T] ®F J(h)[refl,] =h: P

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory: equational theory

® A judgement ‘ oFa=p:P ‘ for equality of entailments.

e Computation rule for J:

[2:C,T] ®F J(h)[refl,] = h: P (1/-comp)

Example (Left unitality for composition)

Recall that compose[f, g] := J(g)[f, g]:

(J-comp)
[2:C,c:C] g:hom(z,c)F compose[refl,, g] = g : hom(z,)

Andrea Laretto Di- is for Directed POPL 2026 18 /23

Directed type theory: equational theory

® A judgement ‘ oFa=p:P ‘ for equality of entailments.

e Computation rule for J:

[2:C,T] ®F J(h)[refl,] = h: P (1/-comp)

Example (Left unitality for composition)

Recall that compose[f, g] := J(g)[f, g]:

(J-comp)
[2:C,c:C] g:hom(z,c)F compose[refl,, g] = g : hom(z,)

Example (Functors send identities to identities)

— (J-comp)
[z: C] F mapglrefl,] = reflp(,) : hom(F' (), F(z))

Andrea Laretto Di- is for Directed POPL 2026 18 /23

Directed equality induction

e What if we want to prove unitality on the right, or associativity?

Andrea Laretto Di- is for Directed POPL 2026

Directed equality induction

e What if we want to prove unitality on the right, or associativity?

® A "dependent version of J" for equality of entailments:

Andrea Laretto Di- is for Directed POPL 2026

Directed equality induction

e What if we want to prove unitality on the right, or associativity?

® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%) F afrefl,] = Brefl,] : P(Z, 2)
[a:C° b:C,T] e:home(a,b),®(@,b) - ale] = Ble] : P(a,b)

Andrea Laretto Di- is for Directed POPL 2026

Directed equality induction

e What if we want to prove unitality on the right, or associativity?

® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%) F afrefl,] = Brefl,] : P(Z, 2)
[a:C° b:C,T] e:home(a,b),®(@,b) - ale] = Ble] : P(a,b)

(J-eq)

Intuition: two dinaturals o, 3 are equal everywhere if they agree on refl.

Andrea Laretto Di- is for Directed POPL 2026

Directed equality induction

e What if we want to prove unitality on the right, or associativity?
® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%2) F afrefl,] = B[refl,] : P(z, z) (J-eq)
- -€q
[a:C°P b: C,T] e: home(a,b), ®(a,b) - ale] = Sle] : Pla,b)

Intuition: two dinaturals o, 3 are equal everywhere if they agree on refl.
® Semantics: dinaturality!

Andrea Laretto

Di- is for Directed

POPL 2026

Directed equality induction

e What if we want to prove unitality on the right, or associativity?

® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%2) F afrefl,] = B[refl,] : P(z, z)
[a:C° b:C,T] e:home(a,b),®(@,b) - ale] = Ble] : P(a,b)

(J-eq)

Intuition: two dinaturals o, 3 are equal everywhere if they agree on refl.

® Semantics: dinaturality!

Example (Unitality on the right)

[w:C] t refly ;refl, = refl, : hom(w, w)

[a:C° z:C| f:hom(a,z)F f;refl, = f:hom(a,2)

Andrea Laretto Di- is for Directed POPL 2026 19 /23

Directed equality induction

e What if we want to prove unitality on the right, or associativity?
® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%2) F afrefl,] = B[refl,] : P(z, z) (J-eq)
- -€q
[a:C°P b: C,T] e: home(a,b), ®(a,b) - ale] = Sle] : Pla,b)

Intuition: two dinaturals o, 3 are equal everywhere if they agree on refl.
® Semantics: dinaturality!

Example (Associativity)

[z,¢,d : C]
[z,¢,d : C]

g : hom(z, ¢), h : hom(c, d) gsh=g;h : hom(z, d)
(J-comp)

g : hom(z, ¢), h : hom(c,d) & refl, 5 (g3 h) = (refl, 5 g) 5 h : hom(Z, d)
d

[a,b,c,d: C] f:hom(a,b),g:hom(b,c),h:hom(c,d) - f3;(g;h)=(f;9);h

Andrea Laretto Di- is for Directed POPL 2026 19 /23

Directed equality induction

e What if we want to prove unitality on the right, or associativity?

® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%2) F afrefl,] = B[refl,] : P(z, z)
[a:C° b:C,T] e:home(a,b),®(@,b) - ale] = Ble] : P(a,b)

(J-eq)

Intuition: two dinaturals o, 3 are equal everywhere if they agree on refl.

® Semantics: dinaturality!

Example (Functoriality)

=-refl
[2,¢: C] g :hom(z,c) - mapp[g] = mapp|g] - Lol e EJ-com)p)
[z,c: C] g+ hom(z, ¢) - mapglrefl. 5 g] = reflp.,) 3 mapp[g] : hom(F(z), F(c)) (J-eq)

[a,b,c: C] f:hom(a,b), g : hom(b,c) = mapg|f;g] = mapg[f]; mapgg] : hom(F (@), F(c))

Andrea Laretto Di- is for Directed POPL 2026 19 /23

Naturality for free!

Example (Naturality for terms)

Given a natural transformation o from F' to G,

[:C] Fa:homp(F(Z),G(z))

Andrea Laretto Di- is for Directed POPL 2026 19/23

Naturality for free!

Example (Naturality for terms)

Given a natural transformation o from F' to G,

[:C] Fa:homp(F(Z),G(z))

we prove naturality by contracting f : hom(a, b):

(=-refl)
[z:C] F a=a«a : hom(F(z),G(2)) (J-comp)
[z:C] F reflpoy 5 = a;reflg,) :hom(F(z),G(z)) (J-comp)
[2:C] F mapg[refl,] ; &« = a3 mapg[refl,] : hom(F(z), G(z)) (J-eq)
[@:C°Pb:C] f:hom(a,b) - mapp[f];a=a;mapg[f] :hom(F(a),G(b))

Andrea Laretto Di- is for Directed POPL 2026 19 /23

Naturality for free!

Example (Naturality of entailments)

Given a natural entailment o from P to @,

[x:C]p: P(x)F alp] : Q(x)

Andrea Laretto Di- is for Directed POPL 2026 20/23

Naturality for free!

Example (Naturality of entailments)

Given a natural entailment o from P to @,

[z:Clp: P(x) Falp]: Qx)

we prove naturality by contracting f : hom(a, b):

(=-refl)
[2: C] p: P(z)Fapl = afp] : Q(2)

[z:C] p: P(z) I transpg|refl., a[p]] = aftranspp|refl., p]] : Q(2) (J-cq)
[a:CPb:C] f:hom(a,b),p: P(@) - transpglf, a[p]] = aftranspp[f,p]] : Q(d)

(J-comp)

Andrea Laretto Di- is for Directed POPL 2026 20/23

Directed type theory: logical rules

® |ogical rules are given in "adjoint form”, i.e., as bijections:
e+ PxQ
] @+ P, rekFQ

(prod)

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory: logical rules

® |ogical rules are given in "adjoint form”, i.e., as bijections:
e+ PxQ
] @+ P, rekFQ

(prod)

¢ Dinaturals can be curried (all positions invert polarity):
[:T] A(Z,z),®(z,x) - B(T,x)
[: T o(z,x) - A(x,T) = B(T,x)

(=)

Andrea Laretto Di- is for Directed POPL 2026

Directed type theory: logical rules

® |ogical rules are given in "adjoint form”, i.e., as bijections:

[]&FPxQ

(prod)
] @+ P, rekFQ
¢ Dinaturals can be curried (all positions invert polarity):
[:T] A(Z,z),®(z,x) - B(T,x)
- - — (=)
[: T o(z,x) - A(x,T) = B(T,x)
® Rules for (co)ends as "adjoints":
[a:C,T] ®F+ Q(a,a) T (/“C Q(@,a)),®+ P
— (/) () (cof)
] @ F oo Q@ a) [a:C.T] Q(@a),®+ P

Andrea Laretto Di- is for Directed POPL 2026

(Co)end calculus

® \We can prove theorems in category theory logically.

Andrea Laretto Di- is for Directed POPL 2026

(Co)end calculus

® \We can prove theorems in category theory logically.
® Rules for (co)ends as quantifiers + directed equality:
@ (Co)Yoneda,
@ Adjointess of Kan extensions via (co)ends,
© Presheaves are closed under exponentials,
@ Associativity of composition of profunctors,
@ Right lifts in profunctors,
® (Co)ends preserve limits,
@ Adjointness of (co)ends in natural transformations,
® Characterization of (di)naturals as ends,
© Frobenius property of (co)ends using exponentials,
@ Contractibility of singletons: lign coLim hom(z,y) = 1.

Andrea Laretto Di- is for Directed POPL 2026 22/23

(Co)end calculus with dinaturality (1)

Yoneda lemma: ([P],[®] : C — Set)

la: C) ®(a) F /x _home(a,7) = P(2)

(/)

[a:C,z:C] ®(a) Fhome(a,z) = P(x)
[a:C,z:C] home(a,z) x ®(a) - P(x)
[z:C] ®(2) F P(z)

=)

(/)

POPL 2026

(Co)end calculus with dinaturality (1)

Yoneda lemma: ([P],[®] : C — Set)

la: C) ®(a) F /x _home(a,7) = P(2)

(/)

[a:C,z:C] ®(a) Fhome(a,z) = P(x)
[a:C,z:C] home(a,z) x ®(a) - P(x)
[z:C] ®(2) F P(z)

=)

(/)

. x:C
CoYoneda lemma: la: C] / home (F, a) x P(z) - ®(a)

[a:C,x:C] homg(a,r) x P(a) - ®(z) (cof)

POPL 2026

(Co)end calculus with dinaturality (2)

Presheaves are cartesian closed: ([®], [A], [B] : C — Set)

[x:C] ®(z) F (A= B)(x)
:= Nat(hom¢(z,—) x A, B)

o /y:C home(z,7) x A(y) = B(y)

(/)

[:C,y:C] ®(x) F home(z,7) x A(y) = B(y)
[x:C,y:C] A(y) X home(Z,y) x ®(x) F B(y)
ly: C] A(y) x ©(y) - B(y)

=)

(/)

POPL 2026

(Co)end calculus with dinaturality (3)

Right Kan extensions are right adjoint to precomposing with [F] : C' — D:

ly: D] Q(y) - (RanpP)(y)

= / homp(y, F(%)) = P(x)
[:C,y: D] Q(y) F homp(y, F(Z)) = P(x) (=))
[z : C,y : D] homp(y, F(z)) x Q(y) - P(z)

[z : C] Q(F(z)) = P(x)

POPL 2026

(Co)end calculus with dinaturality (4)

Fubini for ends ([] ® propctx, [C, D] P prop)
ner [[p@egy
z:C Jy:D

[x:C] ® l—/. P(z,z,7,y)

(/)

()

(structural property)

(/)

[x:C,y: D] ®F P(Z,z,7,
ly:D,x:C| ®F P(Z,2,7,y)

y:D @k/ P(z,,7,y)

(I)I—//Pa:xyy

(/)

Andrea Laretto Di- is for Directed POPL 2026

Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:

Andrea Laretto Di- is for Directed POPL 2026

Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:

@ What is the deeper reason why dinaturals do not compose?

Andrea Laretto Di- is for Directed POPL 2026

Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:

@ What is the deeper reason why dinaturals do not compose?
» Non-compositionality is intrinsic to Cat,

Andrea Laretto Di- is for Directed POPL 2026

Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:

@ What is the deeper reason why dinaturals do not compose?
» Non-compositionality is intrinsic to Cat,
» Directed homotopical reason, like failure of UIP.

Andrea Laretto Di- is for Directed POPL 2026

Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:

@ What is the deeper reason why dinaturals do not compose?
» Non-compositionality is intrinsic to Cat,
» Directed homotopical reason, like failure of UIP.

® Long-term vision:
» Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).

Andrea Laretto Di- is for Directed POPL 2026

Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:

@ What is the deeper reason why dinaturals do not compose?
» Non-compositionality is intrinsic to Cat,
» Directed homotopical reason, like failure of UIP.

® Long-term vision:
» Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).
» Revisit more category theory, logically.

Andrea Laretto Di- is for Directed POPL 2026

Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:

@ What is the deeper reason why dinaturals do not compose?
» Non-compositionality is intrinsic to Cat,
» Directed homotopical reason, like failure of UIP.

® Long-term vision:
» Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).
» Revisit more category theory, logically.

©® Immediate future: we have a notion of dinatural context extension
~ towards dependent dinatural directed type theory.

Andrea Laretto Di- is for Directed POPL 2026

The /

Paper: “Di- is for Directed: First-Order Directed Type Theory via Dinaturality”
(arXiv:2409.10237)
Website: iwilare.com

Thank you for the attention!

Andrea Laretto Di- is for Directed POPL 2026 23/23

https://arxiv.org/abs/2409.10237
https://iwilare.com/

Where J comes from

There is a bijection (natural in P,Q : C°° x C — Set)
between sets of dinaturals and sets of naturals like this:

P dmat,
hom(a, b) — P°P(b,a) = Q(a, b)

Proof. precisely by Yoneda: pick the identities, use (di)naturality.

Andrea Laretto Di- is for Directed POPL 2026 23/23

Where J comes from

There is a bijection (natural in P,Q : C°° x C — Set)
between sets of dinaturals and sets of naturals like this:

P dmat,
hom(a, b) — P°P(b,a) = Q(a, b)

Proof. precisely by Yoneda: pick the identities, use (di)naturality.

[a:C°Pb: C]| homg(a,b) b ®(b,a) = P(a,b) (J)
(=)

[a:C°P b: C| homg(a,b), ®(b,a) - P(a,b)

® Thm: all rules for hom are derivable <= (/J) is a bijection.

Andrea Laretto Di- is for Directed POPL 2026 23/23

Homotopical interpretation of dinaturality

We have maps both ways: In DTT, we do not even have both maps!
[TEHP [] TEHP
[z:Clz=aFP [z : C] hom(Z,z) F P

but in MLTT they are not isomorphic. We only have a map from top to bottom.

Andrea Laretto Di- is for Directed POPL 2026

