
Di- is for Directed:
First-Order Directed Type Theory via Dinaturality

Andrea Laretto, Fosco Loregian, Niccolò Veltri
Tallinn University of Technology

POPL 2026
16th January, 2026

Andrea Laretto Di- is for Directed POPL 2026 0 / 23



Motivation

Category theory is hard.

We all love logic.

The claim of this talk: category theory = logic.

Andrea Laretto Di- is for Directed POPL 2026 1 / 23



Motivation

Category theory is hard.

We all love logic.

The claim of this talk: category theory = logic.

Andrea Laretto Di- is for Directed POPL 2026 1 / 23



Motivation

Category theory is hard.

We all love logic.

The claim of this talk: category theory = logic.

Andrea Laretto Di- is for Directed POPL 2026 1 / 23



An innocuous equivalence...

P (a) ⇔ ∀(x : C). a =C x ⇒ P (x)

Andrea Laretto Di- is for Directed POPL 2026 2 / 23



An innocuous equivalence...

P (a) ⇔ ∀(x : C). a =C x ⇒ P (x)

P (a) ∼=
∫

x:C
homC(a, x) ⇒ P (x)

This is the Yoneda lemma!

We want to prove things like the Yoneda lemma
just as easily as the equivalence above.

Andrea Laretto Di- is for Directed POPL 2026 2 / 23



An innocuous equivalence...

P (a) ⇔ ∀(x : C). a =C x ⇒ P (x)

P (a) ∼=
∫

x:C
homC(a, x) ⇒ P (x)

This is the Yoneda lemma!

We want to prove things like the Yoneda lemma
just as easily as the equivalence above.

Andrea Laretto Di- is for Directed POPL 2026 2 / 23



An innocuous equivalence...

P (a) ⇔ ∀(x : C). a =C x ⇒ P (x)

P (a) ∼=
∫

x:C
homC(a, x) ⇒ P (x)

This is the Yoneda lemma!

We want to prove things like the Yoneda lemma
just as easily as the equivalence above.

Andrea Laretto Di- is for Directed POPL 2026 2 / 23



Proof of Yoneda in dinatural directed type theory
The previous equivalence in first-order logic:

[a :C] Φ ⊢ ∀(x : C). a =C x ⇒ P (x)
(∀)

[a :C, x :C] Φ ⊢ a =C x ⇒ P (x)
(⇒)

[a :C, x :C] a =C x ∧ Φ ⊢ P (x)
(=)

[a :C] Φ ⊢ P (a)

Our formal proof for the Yoneda lemma Nat(homC(a, −), P ) ∼= P (a):

[a :C] Φ ⊢
∫

x:C
homC(a, x) ⇒ P (x)

(∫ )
[a :C, x :C] Φ ⊢ homC(a, x) ⇒ P (x)

(⇒)
[a :C, x :C] homC(a, x) × Φ ⊢ P (x)

(hom)
[a :C] Φ ⊢ P (a)

Andrea Laretto Di- is for Directed POPL 2026 3 / 23



Proof of Yoneda in dinatural directed type theory
The previous equivalence in first-order logic:

[a :C] Φ ⊢ ∀(x : C). a =C x ⇒ P (x)
(∀)

[a :C, x :C] Φ ⊢ a =C x ⇒ P (x)
(⇒)

[a :C, x :C] a =C x ∧ Φ ⊢ P (x)
(=)

[a :C] Φ ⊢ P (a)

Our formal proof for the Yoneda lemma Nat(homC(a, −), P ) ∼= P (a):

[a :C] Φ ⊢
∫

x:C
homC(a, x) ⇒ P (x)

(∫ )
[a :C, x :C] Φ ⊢ homC(a, x) ⇒ P (x)

(⇒)
[a :C, x :C] homC(a, x) × Φ ⊢ P (x)

(hom)
[a :C] Φ ⊢ P (a)

Andrea Laretto Di- is for Directed POPL 2026 3 / 23



Symmetric equality in first-order logic

Recall the rules of equality:

(refl)
[x :A] Φ ⊢ x = x

[z :A] Φ(z, z) ⊢ P (z, z)
(J)

[a :A, b :A] a = b, Φ(a, b) ⊢ P (a, b)

Equality is transitive:

(id)
[z :A, c :A] z = c ⊢ z = c

(J)
[a :A, b :A, c :A] a = b, b = c ⊢ a = c

Equality is symmetric:

(refl)
[z :A] ⊢ z = z

(J)
[a :A, b :A] a = b ⊢ b = a

Andrea Laretto Di- is for Directed POPL 2026 4 / 23



Symmetric equality in first-order logic

Recall the rules of equality:

(refl)
[x :A] Φ ⊢ x = x

[z :A] Φ(z, z) ⊢ P (z, z)
(J)

[a :A, b :A] a = b, Φ(a, b) ⊢ P (a, b)

Equality is transitive:

(id)
[z :A, c :A] z = c ⊢ z = c

(J)
[a :A, b :A, c :A] a = b, b = c ⊢ a = c

Equality is symmetric:

(refl)
[z :A] ⊢ z = z

(J)
[a :A, b :A] a = b ⊢ b = a

Andrea Laretto Di- is for Directed POPL 2026 4 / 23



Symmetric equality in first-order logic

Recall the rules of equality:

(refl)
[x :A] Φ ⊢ x = x

[z :A] Φ(z, z) ⊢ P (z, z)
(J)

[a :A, b :A] a = b, Φ(a, b) ⊢ P (a, b)

Equality is transitive:

(id)
[z :A, c :A] z = c ⊢ z = c

(J)
[a :A, b :A, c :A] a = b, b = c ⊢ a = c

Equality is symmetric:

(refl)
[z :A] ⊢ z = z

(J)
[a :A, b :A] a = b ⊢ b = a

Andrea Laretto Di- is for Directed POPL 2026 4 / 23



Symmetric equality in first-order logic

Recall the rules of equality:

(refl)
[x :A] Φ ⊢ x = x

[z :A] Φ(z, z) ⊢ P (z, z)
(J)

[a :A, b :A] a = b, Φ(a, b) ⊢ P (a, b)

Equality is transitive:

(id)
[z :A, c :A] z = c ⊢ z = c

(J)
[a :A, b :A, c :A] a = b, b = c ⊢ a = c

Equality is symmetric:

(refl)
[z :A] ⊢ z = z

(J)
[a :A, b :A] a = b ⊢ b = a

Andrea Laretto Di- is for Directed POPL 2026 4 / 23



Sets → groupoids → categories

• How many proofs of an equality a = b can there be?

Idea: interpret types not as sets of elements...

Types as sets,
A

a
b

c

d

e

Andrea Laretto Di- is for Directed POPL 2026 5 / 23



Sets → groupoids → categories

• How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements...

Types as sets,
A

a
b

c

d

e

Andrea Laretto Di- is for Directed POPL 2026 5 / 23



Sets → groupoids → categories

• How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

a category where

Types as groupoids,
with equalities as morphisms:

A
a

b

c

d

e

Whenever you’re proving something about equality,
you’re secretly proving something about groupoids and groupoid theory.

...what about categories?!

Andrea Laretto Di- is for Directed POPL 2026 5 / 23



Sets → groupoids → categories

• How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

a category where
all morphisms are invertible

Types as groupoids,
with equalities as morphisms:

A
a

b

c

d

e

Whenever you’re proving something about equality,
you’re secretly proving something about groupoids and groupoid theory.

...what about categories?!

Andrea Laretto Di- is for Directed POPL 2026 5 / 23



Sets → groupoids → categories

• How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

a category where
all morphisms are invertible

Types as groupoids,
with equalities as morphisms:

A
a

b

c

d

e

Whenever you’re proving something about equality,
you’re secretly proving something about groupoids and groupoid theory.

...what about categories?!

Andrea Laretto Di- is for Directed POPL 2026 5 / 23



Sets → groupoids → categories

• How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

a category where
all morphisms are invertible

Types as groupoids,
with equalities as morphisms:

A
a

b

c

d

e

Whenever you’re proving something about equality,
you’re secretly proving something about groupoids and groupoid theory.

...what about categories?!

Andrea Laretto Di- is for Directed POPL 2026 5 / 23



Sets → groupoids → categories

• How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

a category where
all morphisms are invertible

Types as groupoids,
with equalities as morphisms:

A
a

b

c

d

e

Whenever you’re proving something about equality,
you’re secretly proving something about groupoids and groupoid theory.

...what about categories?!

Andrea Laretto Di- is for Directed POPL 2026 5 / 23



Sets → groupoids → categories

• How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as categories:

Types as categories,
with ”equalities” as morphisms:

A
a

b

c

d

e

Whenever you’re proving something about ”equality”,
you’re secretly proving something about categories and category theory.

→ Type theory as a unifying framework for rewriting, processes, transitions, etc.

Andrea Laretto Di- is for Directed POPL 2026 5 / 23



Sets → groupoids → categories

• How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as categories:

Types as categories,
with ”equalities” as morphisms:

A
a

b

c

d

e

Whenever you’re proving something about ”equality”,
you’re secretly proving something about categories and category theory.

→ Type theory as a unifying framework for rewriting, processes, transitions, etc.

Andrea Laretto Di- is for Directed POPL 2026 5 / 23



Sets → groupoids → categories

• How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as categories:

Types as categories,
with ”equalities” as morphisms:

A
a

b

c

d

e

Whenever you’re proving something about ”equality”,
you’re secretly proving something about categories and category theory.

→ Type theory as a unifying framework for rewriting, processes, transitions, etc.

Andrea Laretto Di- is for Directed POPL 2026 5 / 23



Motivation: Directed type theory

Type theories with refl and J ⇐⇒ symmetric equality,
Directed type theory ⇐⇒ “directed equality”.

Types ⇝ Categories
Terms ⇝ Functors

Equalities e : a = b ⇝ Morphisms e : hom(a, b)

→ Now types have a polarity: if C type then Cop type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026 6 / 23



Motivation: Directed type theory

Type theories with refl and J ⇐⇒ symmetric equality,
Directed type theory ⇐⇒ “directed equality”.

C
a

b

c

d

e

Types ⇝ Categories

Terms ⇝ Functors
Equalities e : a = b ⇝ Morphisms e : hom(a, b)

→ Now types have a polarity: if C type then Cop type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026 6 / 23



Motivation: Directed type theory

Type theories with refl and J ⇐⇒ symmetric equality,
Directed type theory ⇐⇒ “directed equality”.

C
a

b

c

d

e

Types ⇝ Categories
Terms ⇝ Functors

Equalities e : a = b ⇝ Morphisms e : hom(a, b)

→ Now types have a polarity: if C type then Cop type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026 6 / 23



Motivation: Directed type theory

Type theories with refl and J ⇐⇒ symmetric equality,
Directed type theory ⇐⇒ “directed equality”.

C
a

b

c

d

e

Types ⇝ Categories
Terms ⇝ Functors

Equalities e : a = b ⇝ Morphisms e : hom(a, b)

→ Now types have a polarity: if C type then Cop type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026 6 / 23



Motivation: Directed type theory

Type theories with refl and J ⇐⇒ symmetric equality,
Directed type theory ⇐⇒ “directed equality”.

C
a

b

c

d

e

Types ⇝ Categories
Terms ⇝ Functors

Equalities e : a = b ⇝ Morphisms e : hom(a, b)

→ Now types have a polarity: if C type then Cop type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026 6 / 23



Motivation: Directed type theory

Type theories with refl and J ⇐⇒ symmetric equality,
Directed type theory ⇐⇒ “directed equality”.

Cop

a
b

c

d

e

Types ⇝ Categories
Terms ⇝ Functors

Equalities e : a = b ⇝ Morphisms e : hom(a, b)

→ Now types have a polarity: if C type then Cop type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026 6 / 23



Motivation: Directed type theory

Type theories with refl and J ⇐⇒ symmetric equality,
Directed type theory ⇐⇒ “directed equality”.

Cop

a
b

c

d

e

Types ⇝ Categories
Terms ⇝ Functors

Equalities e : a = b ⇝ Morphisms e : hom(a, b)

=C : C×C → Type ⇝ homC : Cop×C → Type

→ Now types have a polarity: if C type then Cop type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026 6 / 23



Motivation: Directed type theory

Type theories with refl and J ⇐⇒ symmetric equality,
Directed type theory ⇐⇒ “directed equality”.

Cop

a
b

c

d

e

Types ⇝ Categories
Terms ⇝ Functors

Equalities e : a = b ⇝ Morphisms e : hom(a, b)

=C : C×C → Type ⇝ homC : Cop×C → Type

contravariant

covariant

→ Now types have a polarity: if C type then Cop type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026 6 / 23



Category theory = logic

reflx : x = x

idx ∈ hom(x, x)
Reflexivity of equality
Categories have identities

x = y ∧ y = z ⊢ x = z

homC(x, y) × homC(y, z) → homC(x, z)
Transitivity of equality
Composition in a category

x = y ⊢ f(x) = f(y)
homC(x, y) → homD(F (x), F (y))

Congruence / functions respect equality
Action on morphisms of functors

x = y ∧ P (x) ⊢ P (y)
homC(x, y) × P (x) → P (y)

Substitution / transport along equality
Action on morphisms of (co)presheaves

∀(x : C). f(x) =D g(x)∫
x:C

homD(F (x), G(x))

Pointwise equality of functions

Natural transformations

Andrea Laretto Di- is for Directed POPL 2026 7 / 23



Category theory = logic

reflx : x = x

idx ∈ hom(x, x)
Reflexivity of equality
Categories have identities

x = y ∧ y = z ⊢ x = z

homC(x, y) × homC(y, z) → homC(x, z)
Transitivity of equality
Composition in a category

x = y ⊢ f(x) = f(y)
homC(x, y) → homD(F (x), F (y))

Congruence / functions respect equality
Action on morphisms of functors

x = y ∧ P (x) ⊢ P (y)
homC(x, y) × P (x) → P (y)

Substitution / transport along equality
Action on morphisms of (co)presheaves

∀(x : C). f(x) =D g(x)∫
x:C

homD(F (x), G(x))

Pointwise equality of functions

Natural transformations

Andrea Laretto Di- is for Directed POPL 2026 7 / 23



Category theory = logic

reflx : x = x

idx ∈ hom(x, x)
Reflexivity of equality
Categories have identities

x = y ∧ y = z ⊢ x = z

homC(x, y) × homC(y, z) → homC(x, z)
Transitivity of equality
Composition in a category

x = y ⊢ f(x) = f(y)
homC(x, y) → homD(F (x), F (y))

Congruence / functions respect equality
Action on morphisms of functors

x = y ∧ P (x) ⊢ P (y)
homC(x, y) × P (x) → P (y)

Substitution / transport along equality
Action on morphisms of (co)presheaves

∀(x : C). f(x) =D g(x)∫
x:C

homD(F (x), G(x))

Pointwise equality of functions

Natural transformations

Andrea Laretto Di- is for Directed POPL 2026 7 / 23



Category theory = logic

reflx : x = x

idx ∈ hom(x, x)
Reflexivity of equality
Categories have identities

x = y ∧ y = z ⊢ x = z

homC(x, y) × homC(y, z) → homC(x, z)
Transitivity of equality
Composition in a category

x = y ⊢ f(x) = f(y)
homC(x, y) → homD(F (x), F (y))

Congruence / functions respect equality
Action on morphisms of functors

x = y ∧ P (x) ⊢ P (y)
homC(x, y) × P (x) → P (y)

Substitution / transport along equality
Action on morphisms of (co)presheaves

∀(x : C). f(x) =D g(x)∫
x:C

homD(F (x), G(x))

Pointwise equality of functions

Natural transformations

Andrea Laretto Di- is for Directed POPL 2026 7 / 23



Category theory = logic

reflx : x = x

idx ∈ hom(x, x)
Reflexivity of equality
Categories have identities

x = y ∧ y = z ⊢ x = z

homC(x, y) × homC(y, z) → homC(x, z)
Transitivity of equality
Composition in a category

x = y ⊢ f(x) = f(y)
homC(x, y) → homD(F (x), F (y))

Congruence / functions respect equality
Action on morphisms of functors

x = y ∧ P (x) ⊢ P (y)
homC(x, y) × P (x) → P (y)

Substitution / transport along equality
Action on morphisms of (co)presheaves

∀(x : C). f(x) =D g(x)∫
x:C

homD(F (x), G(x))

Pointwise equality of functions

Natural transformations

Andrea Laretto Di- is for Directed POPL 2026 7 / 23



Directed type theory is not so easy...

1 Polarity problems:

(refl?)
[x : C] Φ ⊢ hom(x, x)

but, in the semantics...

homC : Cop × C → Set!

→ Problem: what’s the type of x? Is it x :Cop or x :C? Both?!
2 How do we avoid symmetry?

What should J look like? I want to derive transitivity for free,

Andrea Laretto Di- is for Directed POPL 2026 8 / 23



Directed type theory is not so easy...

1 Polarity problems:

(refl?)
[x : C] Φ ⊢ hom(x, x)

but, in the semantics...

homC : Cop × C → Set!

→ Problem: what’s the type of x? Is it x :Cop or x :C? Both?!
2 How do we avoid symmetry?

What should J look like? I want to derive transitivity for free,

Andrea Laretto Di- is for Directed POPL 2026 8 / 23



Directed type theory is not so easy...

1 Polarity problems:

(refl?)
[x : C] Φ ⊢ hom(x, x)

but, in the semantics...

homC : Cop × C → Set!

contravariant

covariant

→ Problem: what’s the type of x? Is it x :Cop or x :C? Both?!
2 How do we avoid symmetry?

What should J look like? I want to derive transitivity for free,

Andrea Laretto Di- is for Directed POPL 2026 8 / 23



Directed type theory is not so easy...

1 Polarity problems:

(refl?)
[x : C] Φ ⊢ hom(x, x)

but, in the semantics...

homC : Cop × C → Set!

contravariant

covariant

→ Problem: what’s the type of x? Is it x :Cop or x :C? Both?!

2 How do we avoid symmetry?
What should J look like? I want to derive transitivity for free,

Andrea Laretto Di- is for Directed POPL 2026 8 / 23



Directed type theory is not so easy...

1 Polarity problems:

(refl?)
[x : C] Φ ⊢ hom(x, x)

but, in the semantics...

homC : Cop × C → Set!

contravariant

covariant

→ Problem: what’s the type of x? Is it x :Cop or x :C? Both?!
→ A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

2 How do we avoid symmetry?
What should J look like? I want to derive transitivity for free,

Andrea Laretto Di- is for Directed POPL 2026 8 / 23



Directed type theory is not so easy...

1 Polarity problems:

(refl?)
[x : C] Φ ⊢ hom(x, x)

but, in the semantics...

homC : Cop × C → Set!

contravariant

covariant

→ Problem: what’s the type of x? Is it x :Cop or x :C? Both?!
→ A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

2 How do we avoid symmetry?
What should J look like?

I want to derive transitivity for free,

Andrea Laretto Di- is for Directed POPL 2026 8 / 23



Directed type theory is not so easy...

1 Polarity problems:

(refl?)
[x : C] Φ ⊢ hom(x, x)

but, in the semantics...

homC : Cop × C → Set!

contravariant

covariant

→ Problem: what’s the type of x? Is it x :Cop or x :C? Both?!
→ A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

2 How do we avoid symmetry?
What should J look like? I want to derive transitivity for free,

(id)
[z : Cop, c : C] hom(z, c) ⊢ hom(z, c)

(J)
[a : Cop, b : C, c : C] hom(a, b), hom(b, c) ⊢ hom(a, c)

Andrea Laretto Di- is for Directed POPL 2026 8 / 23



Directed type theory is not so easy...

1 Polarity problems:

(refl?)
[x : C] Φ ⊢ hom(x, x)

but, in the semantics...

homC : Cop × C → Set!

contravariant

covariant

→ Problem: what’s the type of x? Is it x :Cop or x :C? Both?!
→ A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

2 How do we avoid symmetry?
What should J look like? I want to derive transitivity for free,

(id)
[z : Cop, c : C] hom(z, c) ⊢ hom(z, c)

(J)
[a : Cop, b : C, c : C] hom(a, b), hom(b, c) ⊢ hom(a, c)

Andrea Laretto Di- is for Directed POPL 2026 8 / 23



Directed type theory is not so easy...

1 Polarity problems:

(refl?)
[x : C] Φ ⊢ hom(x, x)

but, in the semantics...

homC : Cop × C → Set!

contravariant

covariant

→ Problem: what’s the type of x? Is it x :Cop or x :C? Both?!
→ A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

2 How do we avoid symmetry?
What should J look like? I want to derive transitivity for free, but somehow not symmetry?

(id)
[z : Cop, c : C] hom(z, c) ⊢ hom(z, c)

(J)
[a : Cop, b : C, c : C] hom(a, b), hom(b, c) ⊢ hom(a, c)

Andrea Laretto Di- is for Directed POPL 2026 8 / 23



This work

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

• Dinaturality solves the polarity problem without groupoids,
• tells us what syntactic restriction to put on J to avoid symmetry,
• tells us what directed quantifiers of DTT should be.

→ a simple description of directed type theory,
→ simple logical proofs of theorems in category theory.

Sorts Categories
Functions Functors F : C → D
Predicates Dipresheaves: functors P : Cop × C → Set

Equality predicates hom : Cop × C → Set
Entailments Dinatural transformations (not required to compose)

Quantifiers ∀, ∃ Ends
∫

x:C
P (x, x), coends

∫ x:C
P (x, x).

Andrea Laretto Di- is for Directed POPL 2026 9 / 23



This work

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

• Dinaturality solves the polarity problem without groupoids,

• tells us what syntactic restriction to put on J to avoid symmetry,
• tells us what directed quantifiers of DTT should be.

→ a simple description of directed type theory,
→ simple logical proofs of theorems in category theory.

Sorts Categories
Functions Functors F : C → D
Predicates Dipresheaves: functors P : Cop × C → Set

Equality predicates hom : Cop × C → Set
Entailments Dinatural transformations (not required to compose)

Quantifiers ∀, ∃ Ends
∫

x:C
P (x, x), coends

∫ x:C
P (x, x).

Andrea Laretto Di- is for Directed POPL 2026 9 / 23



This work

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

• Dinaturality solves the polarity problem without groupoids,
• tells us what syntactic restriction to put on J to avoid symmetry,

• tells us what directed quantifiers of DTT should be.
→ a simple description of directed type theory,
→ simple logical proofs of theorems in category theory.

Sorts Categories
Functions Functors F : C → D
Predicates Dipresheaves: functors P : Cop × C → Set

Equality predicates hom : Cop × C → Set
Entailments Dinatural transformations (not required to compose)

Quantifiers ∀, ∃ Ends
∫

x:C
P (x, x), coends

∫ x:C
P (x, x).

Andrea Laretto Di- is for Directed POPL 2026 9 / 23



This work

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

• Dinaturality solves the polarity problem without groupoids,
• tells us what syntactic restriction to put on J to avoid symmetry,
• tells us what directed quantifiers of DTT should be.

→ a simple description of directed type theory,
→ simple logical proofs of theorems in category theory.

Sorts Categories
Functions Functors F : C → D
Predicates Dipresheaves: functors P : Cop × C → Set

Equality predicates hom : Cop × C → Set
Entailments Dinatural transformations (not required to compose)

Quantifiers ∀, ∃ Ends
∫

x:C
P (x, x), coends

∫ x:C
P (x, x).

Andrea Laretto Di- is for Directed POPL 2026 9 / 23



This work

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

• Dinaturality solves the polarity problem without groupoids,
• tells us what syntactic restriction to put on J to avoid symmetry,
• tells us what directed quantifiers of DTT should be.

→ a simple description of directed type theory,

→ simple logical proofs of theorems in category theory.
Sorts Categories

Functions Functors F : C → D
Predicates Dipresheaves: functors P : Cop × C → Set

Equality predicates hom : Cop × C → Set
Entailments Dinatural transformations (not required to compose)

Quantifiers ∀, ∃ Ends
∫

x:C
P (x, x), coends

∫ x:C
P (x, x).

Andrea Laretto Di- is for Directed POPL 2026 9 / 23



This work

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

• Dinaturality solves the polarity problem without groupoids,
• tells us what syntactic restriction to put on J to avoid symmetry,
• tells us what directed quantifiers of DTT should be.

→ a simple description of directed type theory,
→ simple logical proofs of theorems in category theory.

Sorts Categories
Functions Functors F : C → D
Predicates Dipresheaves: functors P : Cop × C → Set

Equality predicates hom : Cop × C → Set
Entailments Dinatural transformations (not required to compose)

Quantifiers ∀, ∃ Ends
∫

x:C
P (x, x), coends

∫ x:C
P (x, x).

Andrea Laretto Di- is for Directed POPL 2026 9 / 23



This work

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

• Dinaturality solves the polarity problem without groupoids,
• tells us what syntactic restriction to put on J to avoid symmetry,
• tells us what directed quantifiers of DTT should be.

→ a simple description of directed type theory,
→ simple logical proofs of theorems in category theory.

Sorts Categories
Functions Functors F : C → D

Predicates Dipresheaves: functors P : Cop × C → Set
Equality predicates hom : Cop × C → Set

Entailments Dinatural transformations (not required to compose)

Quantifiers ∀, ∃ Ends
∫

x:C
P (x, x), coends

∫ x:C
P (x, x).

Andrea Laretto Di- is for Directed POPL 2026 9 / 23



This work

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

• Dinaturality solves the polarity problem without groupoids,
• tells us what syntactic restriction to put on J to avoid symmetry,
• tells us what directed quantifiers of DTT should be.

→ a simple description of directed type theory,
→ simple logical proofs of theorems in category theory.

Sorts Categories
Functions Functors F : C → D
Predicates Dipresheaves: functors P : Cop × C → Set

Equality predicates hom : Cop × C → Set

Entailments Dinatural transformations (not required to compose)

Quantifiers ∀, ∃ Ends
∫

x:C
P (x, x), coends

∫ x:C
P (x, x).

Andrea Laretto Di- is for Directed POPL 2026 9 / 23



This work

We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

• Dinaturality solves the polarity problem without groupoids,
• tells us what syntactic restriction to put on J to avoid symmetry,
• tells us what directed quantifiers of DTT should be.

→ a simple description of directed type theory,
→ simple logical proofs of theorems in category theory.

Sorts Categories
Functions Functors F : C → D
Predicates Dipresheaves: functors P : Cop × C → Set

Equality predicates hom : Cop × C → Set
Entailments Dinatural transformations (not required to compose)

Quantifiers ∀, ∃ Ends
∫

x:C
P (x, x), coends

∫ x:C
P (x, x).

Andrea Laretto Di- is for Directed POPL 2026 9 / 23



Syntax – simple types and terms

• Judgement C type for types:
C type

Cop type
C type D type

C × D type
C type D type

[C, D] type ⊤ type
• Semantics: a category JCK.

• Judgement Γ ⊢ t : C for simply-typed terms:

Γ ∋ x : C

Γ ⊢ x : C Γ ⊢ ! : ⊤
Γ ⊢ s : C Γ ⊢ t : D

Γ ⊢ ⟨s, t⟩ : C × D

Γ ⊢ p : C × D

Γ ⊢ π1(p) : C

Γ ⊢ p : C × D

Γ ⊢ π2(p) : D
. . .

Γ ⊢ t : C

Γop ⊢ top : Cop

• Semantics: functors JtK : JΓK → JCK.

Andrea Laretto Di- is for Directed POPL 2026 10 / 23



Syntax – simple types and terms

• Judgement C type for types:
C type

Cop type
C type D type

C × D type
C type D type

[C, D] type ⊤ type
• Semantics: a category JCK.
• Judgement Γ ⊢ t : C for simply-typed terms:

Γ ∋ x : C

Γ ⊢ x : C Γ ⊢ ! : ⊤
Γ ⊢ s : C Γ ⊢ t : D

Γ ⊢ ⟨s, t⟩ : C × D

Γ ⊢ p : C × D

Γ ⊢ π1(p) : C

Γ ⊢ p : C × D

Γ ⊢ π2(p) : D
. . .

Γ ⊢ t : C

Γop ⊢ top : Cop

• Semantics: functors JtK : JΓK → JCK.

Andrea Laretto Di- is for Directed POPL 2026 10 / 23



Syntax – simple types and terms

• Judgement C type for types:
C type

Cop type
C type D type

C × D type
C type D type

[C, D] type ⊤ type
• Semantics: a category JCK.
• Judgement Γ ⊢ t : C for simply-typed terms:

Γ ∋ x : C

Γ ⊢ x : C Γ ⊢ ! : ⊤
Γ ⊢ s : C Γ ⊢ t : D

Γ ⊢ ⟨s, t⟩ : C × D

Γ ⊢ p : C × D

Γ ⊢ π1(p) : C

Γ ⊢ p : C × D

Γ ⊢ π2(p) : D
. . .

Γ ⊢ t : C

Γop ⊢ top : Cop

• Semantics: functors JtK : JΓK → JCK.

Andrea Laretto Di- is for Directed POPL 2026 10 / 23



Syntax – simple types and terms

• Judgement C type for types:
C type

Cop type
C type D type

C × D type
C type D type

[C, D] type ⊤ type
• Semantics: a category JCK.
• Judgement Γ ⊢ t : C for simply-typed terms:

Γ ∋ x : C

Γ ⊢ x : C Γ ⊢ ! : ⊤
Γ ⊢ s : C Γ ⊢ t : D

Γ ⊢ ⟨s, t⟩ : C × D

Γ ⊢ p : C × D

Γ ⊢ π1(p) : C

Γ ⊢ p : C × D

Γ ⊢ π2(p) : D
. . .

Γ ⊢ t : C

Γop ⊢ top : Cop

• Semantics: functors JtK : JΓK → JCK.

Andrea Laretto Di- is for Directed POPL 2026 10 / 23



Syntax – predicates
• A judgement [Γ] P prop for predicates/formulas.
• Semantics: dipresheaves, i.e., functors JP K : JΓKop × JΓK → Set.

[Γ] ⊤ prop
[Γ] P prop [Γ] Q prop

[Γ] P × Q prop
[Γop] P prop [Γ] Q prop

[Γ] P ⇒ Q prop
[Γ, x :C] P (x) prop

[Γ]
∫ x:C P (x) prop

[Γ, x :C] P (x) prop
[Γ]

∫
x:C P (x) prop

hom-predicates:
. . . ⊢ s : Cop . . . ⊢ t : C

[Γ] homC(s, t) prop

• Key idea 1: s : Cop and t : C.
• Key idea 2: I have two copies Γop, Γ to choose from in s, t.

Notation: if x :C in Γ, then x :Cop in Γop.

Andrea Laretto Di- is for Directed POPL 2026 11 / 23



Syntax – predicates
• A judgement [Γ] P prop for predicates/formulas.
• Semantics: dipresheaves, i.e., functors JP K : JΓKop × JΓK → Set.

[Γ] ⊤ prop
[Γ] P prop [Γ] Q prop

[Γ] P × Q prop

[Γop] P prop [Γ] Q prop
[Γ] P ⇒ Q prop

[Γ, x :C] P (x) prop

[Γ]
∫ x:C P (x) prop

[Γ, x :C] P (x) prop
[Γ]

∫
x:C P (x) prop

hom-predicates:
. . . ⊢ s : Cop . . . ⊢ t : C

[Γ] homC(s, t) prop

• Key idea 1: s : Cop and t : C.
• Key idea 2: I have two copies Γop, Γ to choose from in s, t.

Notation: if x :C in Γ, then x :Cop in Γop.

Andrea Laretto Di- is for Directed POPL 2026 11 / 23



Syntax – predicates
• A judgement [Γ] P prop for predicates/formulas.
• Semantics: dipresheaves, i.e., functors JP K : JΓKop × JΓK → Set.

[Γ] ⊤ prop
[Γ] P prop [Γ] Q prop

[Γ] P × Q prop
[Γop] P prop [Γ] Q prop

[Γ] P ⇒ Q prop

[Γ, x :C] P (x) prop

[Γ]
∫ x:C P (x) prop

[Γ, x :C] P (x) prop
[Γ]

∫
x:C P (x) prop

hom-predicates:
. . . ⊢ s : Cop . . . ⊢ t : C

[Γ] homC(s, t) prop

• Key idea 1: s : Cop and t : C.
• Key idea 2: I have two copies Γop, Γ to choose from in s, t.

Notation: if x :C in Γ, then x :Cop in Γop.

Andrea Laretto Di- is for Directed POPL 2026 11 / 23



Syntax – predicates
• A judgement [Γ] P prop for predicates/formulas.
• Semantics: dipresheaves, i.e., functors JP K : JΓKop × JΓK → Set.

[Γ] ⊤ prop
[Γ] P prop [Γ] Q prop

[Γ] P × Q prop
[Γop] P prop [Γ] Q prop

[Γ] P ⇒ Q prop
[Γ, x :C] P (x) prop

[Γ]
∫ x:C P (x) prop

[Γ, x :C] P (x) prop
[Γ]

∫
x:C P (x) prop

hom-predicates:
. . . ⊢ s : Cop . . . ⊢ t : C

[Γ] homC(s, t) prop

• Key idea 1: s : Cop and t : C.
• Key idea 2: I have two copies Γop, Γ to choose from in s, t.

Notation: if x :C in Γ, then x :Cop in Γop.

Andrea Laretto Di- is for Directed POPL 2026 11 / 23



Syntax – predicates
• A judgement [Γ] P prop for predicates/formulas.
• Semantics: dipresheaves, i.e., functors JP K : JΓKop × JΓK → Set.

[Γ] ⊤ prop
[Γ] P prop [Γ] Q prop

[Γ] P × Q prop
[Γop] P prop [Γ] Q prop

[Γ] P ⇒ Q prop
[Γ, x :C] P (x) prop

[Γ]
∫ x:C P (x) prop

[Γ, x :C] P (x) prop
[Γ]

∫
x:C P (x) prop

hom-predicates:
. . . ⊢ s : Cop . . . ⊢ t : C

[Γ] homC(s, t) prop

• Key idea 1: s : Cop and t : C.
• Key idea 2: I have two copies Γop, Γ to choose from in s, t.

Notation: if x :C in Γ, then x :Cop in Γop.

Andrea Laretto Di- is for Directed POPL 2026 11 / 23



Syntax – predicates
• A judgement [Γ] P prop for predicates/formulas.
• Semantics: dipresheaves, i.e., functors JP K : JΓKop × JΓK → Set.

[Γ] ⊤ prop
[Γ] P prop [Γ] Q prop

[Γ] P × Q prop
[Γop] P prop [Γ] Q prop

[Γ] P ⇒ Q prop
[Γ, x :C] P (x) prop

[Γ]
∫ x:C P (x) prop

[Γ, x :C] P (x) prop
[Γ]

∫
x:C P (x) prop

hom-predicates:
. . . ⊢ s : Cop . . . ⊢ t : C

[Γ] homC(s, t) prop

• Key idea 1: s : Cop and t : C.

• Key idea 2: I have two copies Γop, Γ to choose from in s, t.

Notation: if x :C in Γ, then x :Cop in Γop.

Andrea Laretto Di- is for Directed POPL 2026 11 / 23



Syntax – predicates
• A judgement [Γ] P prop for predicates/formulas.
• Semantics: dipresheaves, i.e., functors JP K : JΓKop × JΓK → Set.

[Γ] ⊤ prop
[Γ] P prop [Γ] Q prop

[Γ] P × Q prop
[Γop] P prop [Γ] Q prop

[Γ] P ⇒ Q prop
[Γ, x :C] P (x) prop

[Γ]
∫ x:C P (x) prop

[Γ, x :C] P (x) prop
[Γ]

∫
x:C P (x) prop

hom-predicates:
Γop, Γ ⊢ s : Cop Γop, Γ ⊢ t : C

[Γ] homC(s, t) prop

• Key idea 1: s : Cop and t : C.
• Key idea 2: I have two copies Γop, Γ to choose from in s, t.

Notation: if x :C in Γ, then x :Cop in Γop.

Andrea Laretto Di- is for Directed POPL 2026 11 / 23



Syntax – predicates
• A judgement [Γ] P prop for predicates/formulas.
• Semantics: dipresheaves, i.e., functors JP K : JΓKop × JΓK → Set.

[Γ] ⊤ prop
[Γ] P prop [Γ] Q prop

[Γ] P × Q prop
[Γop] P prop [Γ] Q prop

[Γ] P ⇒ Q prop
[Γ, x :C] P (x) prop

[Γ]
∫ x:C P (x) prop

[Γ, x :C] P (x) prop
[Γ]

∫
x:C P (x) prop

hom-predicates:
Γop, Γ ⊢ s : Cop Γop, Γ ⊢ t : C

[Γ] homC(s, t) prop

• Key idea 1: s : Cop and t : C.
• Key idea 2: I have two copies Γop, Γ to choose from in s, t.

Notation: if x :C in Γ, then x :Cop in Γop.
Andrea Laretto Di- is for Directed POPL 2026 11 / 23



Syntax – polarity and variance

• I can use variables “incorrectly”, regardless of the outermost op: x :C, x :Cop:

[x :C] ⊢ refl : hom(x, x)

• We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x :C and x :Cop are in principle different variables...
we must give them the same value in the semantics!

⇝ dinatural transformations!

Andrea Laretto Di- is for Directed POPL 2026 12 / 23



Syntax – polarity and variance

• I can use variables “incorrectly”, regardless of the outermost op: x :C, x :Cop:

[x :C] ⊢ refl : hom(x, x)
[a :Cop, b :C, c :C] hom(a, b), hom(b, c) ⊢ trans : hom(a, c)

[a :Cop, b :C] hom(a, b) ⊢ sym : hom(b, a)

• We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x :C and x :Cop are in principle different variables...
we must give them the same value in the semantics!

⇝ dinatural transformations!

Andrea Laretto Di- is for Directed POPL 2026 12 / 23



Syntax – polarity and variance

• I can use variables “incorrectly”, regardless of the outermost op: x :C, x :Cop:

[x :C] ⊢ refl : hom(x, x)
[a :Cop, b :C, c :C] hom(a, b), hom(b, c) ⊢ trans : hom(a, c)

[a :Cop, b :C] hom(a, b) ⊢ sym : hom(b, a)

• We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x :C and x :Cop are in principle different variables...
we must give them the same value in the semantics!

⇝ dinatural transformations!

Andrea Laretto Di- is for Directed POPL 2026 12 / 23



Syntax – polarity and variance

• I can use variables “incorrectly”, regardless of the outermost op: x :C, x :Cop:

[x :C] ⊢ refl : hom(x, x)
[a :Cop, b :C, c :C] hom(a, b), hom(b, c) ⊢ trans : hom(a, c)

[a :Cop, b :C] hom(a, b) ⊢ sym : hom(b, a)

• We say that a variable is:
1. natural when it is used always correctly,

2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x :C and x :Cop are in principle different variables...
we must give them the same value in the semantics!

⇝ dinatural transformations!

Andrea Laretto Di- is for Directed POPL 2026 12 / 23



Syntax – polarity and variance

• I can use variables “incorrectly”, regardless of the outermost op: x :C, x :Cop:

[x :C] ⊢ refl : hom(x, x)
[a :Cop, b :C, c :C] hom(a, b), hom(b, c) ⊢ trans : hom(a, c)

[a :Cop, b :C] hom(a, b) ⊢ sym : hom(b, a)

• We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x :C and x :Cop are in principle different variables...
we must give them the same value in the semantics!

⇝ dinatural transformations!

Andrea Laretto Di- is for Directed POPL 2026 12 / 23



Syntax – polarity and variance

• I can use variables “incorrectly”, regardless of the outermost op: x :C, x :Cop:

[x :C] ⊢ refl : hom(x, x)
[a :Cop, b :C, c :C] hom(a, b), hom(b, c) ⊢ trans : hom(a, c)

[a :Cop, b :C] hom(a, b) ⊢ sym : hom(b, a)

• We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x :C and x :Cop are in principle different variables...
we must give them the same value in the semantics!

⇝ dinatural transformations!

Andrea Laretto Di- is for Directed POPL 2026 12 / 23



Syntax – polarity and variance

• I can use variables “incorrectly”, regardless of the outermost op: x :C, x :Cop:

[x :C] ⊢ refl : hom(x, x)
[a :Cop, b :C, c :C] hom(a, b), hom(b, c) ⊢ trans : hom(a, c)

[a :Cop, b :C] hom(a, b) ⊢ sym : hom(b, a)

• We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x :C and x :Cop are in principle different variables...
we must give them the same value in the semantics!

⇝ dinatural transformations!

Andrea Laretto Di- is for Directed POPL 2026 12 / 23



Syntax – entailments
• Entailments [Γ] Φ ⊢ α : P (Φ is a list of predicates):
• Semantics: dinatural transformations (JΦK, JP K : JΓKop × JΓK → Set):

[x : C, y : D, . . . ] Φ(x, x, y, y, . . . ) ⊢ α : P (x, x, y, y, . . . )

∀x ∈ JCK, y ∈ JDK, αxy : JΦK(x, x, y, y) −→ JP K(x, x, y, y) (+ one equation)

• Dinaturals do not always compose! ⇝ sometimes you cannot do substitution!
• Takeaway: in practice, they always do when we need them to.
• Dinaturals compose with natural transformations (both left and right):

P dinat−→ Q −→ R

P dinat−→ R
⇝

Q, R do not depend on Γ
[x : C, Γ] P (x, x) ⊢ γ : Q(x, x)

[a : Cop, b : C, Γ] Q(a, b) ⊢ α : R(a, b)
(cut-nat)

[x : C, Γ] P (x, x)⊢ α[γ] : R(x, x)

Andrea Laretto Di- is for Directed POPL 2026 13 / 23



Syntax – entailments
• Entailments [Γ] Φ ⊢ α : P (Φ is a list of predicates):
• Semantics: dinatural transformations (JΦK, JP K : JΓKop × JΓK → Set):

[x : C, y : D, . . . ] Φ(x, x, y, y, . . . ) ⊢ α : P (x, x, y, y, . . . )

∀x ∈ JCK, y ∈ JDK, αxy : JΦK(x, x, y, y) −→ JP K(x, x, y, y) (+ one equation)

• Dinaturals do not always compose! ⇝ sometimes you cannot do substitution!
• Takeaway: in practice, they always do when we need them to.
• Dinaturals compose with natural transformations (both left and right):

P dinat−→ Q −→ R

P dinat−→ R
⇝

Q, R do not depend on Γ
[x : C, Γ] P (x, x) ⊢ γ : Q(x, x)

[a : Cop, b : C, Γ] Q(a, b) ⊢ α : R(a, b)
(cut-nat)

[x : C, Γ] P (x, x)⊢ α[γ] : R(x, x)

Andrea Laretto Di- is for Directed POPL 2026 13 / 23



Syntax – entailments
• Entailments [Γ] Φ ⊢ α : P (Φ is a list of predicates):
• Semantics: dinatural transformations (JΦK, JP K : JΓKop × JΓK → Set):

[x : C, y : D, . . . ] Φ(x, x, y, y, . . . ) ⊢ α : P (x, x, y, y, . . . )

∀x ∈ JCK, y ∈ JDK, αxy : JΦK(x, x, y, y) −→ JP K(x, x, y, y) (+ one equation)

• Dinaturals do not always compose! ⇝ sometimes you cannot do substitution!

• Takeaway: in practice, they always do when we need them to.
• Dinaturals compose with natural transformations (both left and right):

P dinat−→ Q −→ R

P dinat−→ R
⇝

Q, R do not depend on Γ
[x : C, Γ] P (x, x) ⊢ γ : Q(x, x)

[a : Cop, b : C, Γ] Q(a, b) ⊢ α : R(a, b)
(cut-nat)

[x : C, Γ] P (x, x)⊢ α[γ] : R(x, x)

Andrea Laretto Di- is for Directed POPL 2026 13 / 23



Syntax – entailments
• Entailments [Γ] Φ ⊢ α : P (Φ is a list of predicates):
• Semantics: dinatural transformations (JΦK, JP K : JΓKop × JΓK → Set):

[x : C, y : D, . . . ] Φ(x, x, y, y, . . . ) ⊢ α : P (x, x, y, y, . . . )

∀x ∈ JCK, y ∈ JDK, αxy : JΦK(x, x, y, y) −→ JP K(x, x, y, y) (+ one equation)

• Dinaturals do not always compose! ⇝ sometimes you cannot do substitution!
• Takeaway: in practice, they always do when we need them to.

• Dinaturals compose with natural transformations (both left and right):

P dinat−→ Q −→ R

P dinat−→ R
⇝

Q, R do not depend on Γ
[x : C, Γ] P (x, x) ⊢ γ : Q(x, x)

[a : Cop, b : C, Γ] Q(a, b) ⊢ α : R(a, b)
(cut-nat)

[x : C, Γ] P (x, x)⊢ α[γ] : R(x, x)

Andrea Laretto Di- is for Directed POPL 2026 13 / 23



Syntax – entailments
• Entailments [Γ] Φ ⊢ α : P (Φ is a list of predicates):
• Semantics: dinatural transformations (JΦK, JP K : JΓKop × JΓK → Set):

[x : C, y : D, . . . ] Φ(x, x, y, y, . . . ) ⊢ α : P (x, x, y, y, . . . )

∀x ∈ JCK, y ∈ JDK, αxy : JΦK(x, x, y, y) −→ JP K(x, x, y, y) (+ one equation)

• Dinaturals do not always compose! ⇝ sometimes you cannot do substitution!
• Takeaway: in practice, they always do when we need them to.
• Dinaturals compose with natural transformations (both left and right):

P dinat−→ Q −→ R

P dinat−→ R
⇝

Q, R do not depend on Γ
[x : C, Γ] P (x, x) ⊢ γ : Q(x, x)

[a : Cop, b : C, Γ] Q(a, b) ⊢ α : R(a, b)
(cut-nat)

[x : C, Γ] P (x, x)⊢ α[γ] : R(x, x)

Andrea Laretto Di- is for Directed POPL 2026 13 / 23



Syntax – entailments
• Entailments [Γ] Φ ⊢ α : P (Φ is a list of predicates):
• Semantics: dinatural transformations (JΦK, JP K : JΓKop × JΓK → Set):

[x : C, y : D, . . . ] Φ(x, x, y, y, . . . ) ⊢ α : P (x, x, y, y, . . . )

∀x ∈ JCK, y ∈ JDK, αxy : JΦK(x, x, y, y) −→ JP K(x, x, y, y) (+ one equation)

• Dinaturals do not always compose! ⇝ sometimes you cannot do substitution!
• Takeaway: in practice, they always do when we need them to.
• Dinaturals compose with natural transformations (both left and right):

P dinat−→ Q −→ R

P dinat−→ R

⇝

Q, R do not depend on Γ
[x : C, Γ] P (x, x) ⊢ γ : Q(x, x)

[a : Cop, b : C, Γ] Q(a, b) ⊢ α : R(a, b)
(cut-nat)

[x : C, Γ] P (x, x)⊢ α[γ] : R(x, x)

Andrea Laretto Di- is for Directed POPL 2026 13 / 23



Syntax – entailments
• Entailments [Γ] Φ ⊢ α : P (Φ is a list of predicates):
• Semantics: dinatural transformations (JΦK, JP K : JΓKop × JΓK → Set):

[x : C, y : D, . . . ] Φ(x, x, y, y, . . . ) ⊢ α : P (x, x, y, y, . . . )

∀x ∈ JCK, y ∈ JDK, αxy : JΦK(x, x, y, y) −→ JP K(x, x, y, y) (+ one equation)

• Dinaturals do not always compose! ⇝ sometimes you cannot do substitution!
• Takeaway: in practice, they always do when we need them to.
• Dinaturals compose with natural transformations (both left and right):

P dinat−→ Q −→ R

P dinat−→ R
⇝

Q, R do not depend on Γ
[x : C, Γ] P (x, x) ⊢ γ : Q(x, x)

[a : Cop, b : C, Γ] Q(a, b) ⊢ α : R(a, b)
(cut-nat)

[x : C, Γ] P (x, x)⊢ α[γ] : R(x, x)

Andrea Laretto Di- is for Directed POPL 2026 13 / 23



Syntax – rules for hom

• Directed equality introduction:
(refl)

[x : C, Γ] Φ ⊢ reflx : homC(x, x)

• Directed equality elimination:

[z : C, Γ] Φ(z, z) ⊢ h : P (z, z)
(J)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ J(h) : P (a, b)

If I have a directed equality e : homC(a, b) in context,
▶ I can contract it only if a, b appear correctly in the conclusion P ,
▶ and a, b appear incorrectly in the context Φ.

▶ Then, it is enough to prove that P holds “on the diagonal” z : C.

Andrea Laretto Di- is for Directed POPL 2026 14 / 23



Syntax – rules for hom

• Directed equality introduction:
(refl)

[x : C, Γ] Φ ⊢ reflx : homC(x, x)

• Directed equality elimination:

[z : C, Γ] Φ(z, z) ⊢ h : P (z, z)
(J)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ J(h) : P (a, b)

If I have a directed equality e : homC(a, b) in context,
▶ I can contract it only if a, b appear correctly in the conclusion P ,
▶ and a, b appear incorrectly in the context Φ.

▶ Then, it is enough to prove that P holds “on the diagonal” z : C.

Andrea Laretto Di- is for Directed POPL 2026 14 / 23



Syntax – rules for hom

• Directed equality introduction:
(refl)

[x : C, Γ] Φ ⊢ reflx : homC(x, x)

• Directed equality elimination:

[z : C, Γ] Φ(z, z) ⊢ h : P (z, z)
(J)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ J(h) : P (a, b)

If I have a directed equality e : homC(a, b) in context,

▶ I can contract it only if a, b appear correctly in the conclusion P ,
▶ and a, b appear incorrectly in the context Φ.

▶ Then, it is enough to prove that P holds “on the diagonal” z : C.

Andrea Laretto Di- is for Directed POPL 2026 14 / 23



Syntax – rules for hom

• Directed equality introduction:
(refl)

[x : C, Γ] Φ ⊢ reflx : homC(x, x)

• Directed equality elimination:

[z : C, Γ] Φ(z, z) ⊢ h : P (z, z)
(J)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ J(h) : P (a, b)

If I have a directed equality e : homC(a, b) in context,
▶ I can contract it only if a, b appear correctly in the conclusion P ,

▶ and a, b appear incorrectly in the context Φ.

▶ Then, it is enough to prove that P holds “on the diagonal” z : C.

Andrea Laretto Di- is for Directed POPL 2026 14 / 23



Syntax – rules for hom

• Directed equality introduction:
(refl)

[x : C, Γ] Φ ⊢ reflx : homC(x, x)

• Directed equality elimination:

[z : C, Γ] Φ(z, z) ⊢ h : P (z, z)
(J)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ J(h) : P (a, b)

If I have a directed equality e : homC(a, b) in context,
▶ I can contract it only if a, b appear correctly in the conclusion P ,
▶ and a, b appear incorrectly in the context Φ.

▶ Then, it is enough to prove that P holds “on the diagonal” z : C.

Andrea Laretto Di- is for Directed POPL 2026 14 / 23



Syntax – rules for hom

• Directed equality introduction:
(refl)

[x : C, Γ] Φ ⊢ reflx : homC(x, x)

• Directed equality elimination:

[z : C, Γ] Φ(z, z) ⊢ h : P (z, z)
(J)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ J(h) : P (a, b)

If I have a directed equality e : homC(a, b) in context,
▶ I can contract it only if a, b appear correctly in the conclusion P ,
▶ and a, b appear incorrectly in the context Φ.

▶ Then, it is enough to prove that P holds “on the diagonal” z : C.

Andrea Laretto Di- is for Directed POPL 2026 14 / 23



Dinatural directed type theory – examples

Example (Transitivity of directed equality)

[a : Cop, b : C, c : C] f : hom(a, b), g : hom(b, c) ⊢ ? hom(a, c)

We contract f : hom(a, b).
Rule (J) can be applied: a, b appear correctly in conclusion (b does not)

and incorrectly in context (a does not).

Andrea Laretto Di- is for Directed POPL 2026 15 / 23



Dinatural directed type theory – examples

Example (Transitivity of directed equality)

[a : Cop, b : C, c : C] f : hom(a, b), g : hom(b, c) ⊢ ? hom(a, c)
We contract f : hom(a, b).

Rule (J) can be applied: a, b appear correctly in conclusion (b does not)
and incorrectly in context (a does not).

Andrea Laretto Di- is for Directed POPL 2026 15 / 23



Dinatural directed type theory – examples

Example (Transitivity of directed equality)

[a : Cop, b : C, c : C] f : hom(a, b), g : hom(b, c) ⊢ ? hom(a, c)
We contract f : hom(a, b).
Rule (J) can be applied: a, b appear correctly in conclusion (b does not)

and incorrectly in context (a does not).

Andrea Laretto Di- is for Directed POPL 2026 15 / 23



Dinatural directed type theory – examples

Example (Transitivity of directed equality)
(id)

[z : C, c : C] g : hom(z, c) ⊢ g : hom(z, c)
(J)

[a : Cop, b : C, c : C] f : hom(a, b), g : hom(b, c) ⊢ J(g) : hom(a, c)
We contract f : hom(a, b).
Rule (J) can be applied: a, b appear correctly in conclusion (b does not)

and incorrectly in context (a does not).

Andrea Laretto Di- is for Directed POPL 2026 15 / 23



Dinatural directed type theory – examples

Example (Congruence / terms are functors)
Given a term C ⊢ F : D:

(refl)
[z : D] ⊢ reflx : homD(x, x)

(reidx)
[z : C] ⊢ reflF (x) : homD(F (z), F (z))

(J)
[a : Cop, b : C] e : homC(a, b) ⊢ J(reflF (x)) : homD(F (a), F (b))

Example (Transport / predicates are functors)
Given a predicate [x : C] P (x) prop:

(id)
[z : C] p : P (z) ⊢ p : P (z)

(J)
[a : Cop, b : C] e : hom(a, b), p : P (a) ⊢ J(p) : P (b)

Andrea Laretto Di- is for Directed POPL 2026 16 / 23



Dinatural directed type theory – examples

Example (Congruence / terms are functors)
Given a term C ⊢ F : D:

(refl)
[z : D] ⊢ reflx : homD(x, x)

(reidx)
[z : C] ⊢ reflF (x) : homD(F (z), F (z))

(J)
[a : Cop, b : C] e : homC(a, b) ⊢ J(reflF (x)) : homD(F (a), F (b))

Example (Transport / predicates are functors)
Given a predicate [x : C] P (x) prop:

(id)
[z : C] p : P (z) ⊢ p : P (z)

(J)
[a : Cop, b : C] e : hom(a, b), p : P (a) ⊢ J(p) : P (b)

Andrea Laretto Di- is for Directed POPL 2026 16 / 23



Dinatural directed type theory – non-examples

Failure of symmetry for directed equality
The restrictions do not allow us to obtain directed equality is symmetric:

[a : Cop, b : C] e : hom(a, b) ̸⊢ sym : hom(b, a)

hom(a, b) cannot be contracted: a, b must appear correctly in conclusion.

• By soundness, the interval I := {0 → 1} is a counterexample to derivability in the syntax.

Andrea Laretto Di- is for Directed POPL 2026 17 / 23



Dinatural directed type theory – non-examples

Failure of symmetry for directed equality
The restrictions do not allow us to obtain directed equality is symmetric:

[a : Cop, b : C] e : hom(a, b) ̸⊢ sym : hom(b, a)

hom(a, b) cannot be contracted: a, b must appear correctly in conclusion.

• By soundness, the interval I := {0 → 1} is a counterexample to derivability in the syntax.

Andrea Laretto Di- is for Directed POPL 2026 17 / 23



Directed type theory: equational theory

• A judgement [Γ] Φ ⊢ α = β : P for equality of entailments.

• Computation rule for J :
(J-comp)

[z : C, Γ] Φ ⊢ J(h)[reflz] = h : P

Example (Left unitality for composition)
Recall that compose[f, g] := J(g)[f, g]:

(J-comp)
[z : C, c : C] g : hom(z, c) ⊢ compose[reflz, g] = g : hom(z, c)

Example (Functors send identities to identities)
(J-comp)

[z : C] ⊢ mapF [reflz] = reflF (z) : hom(F (z), F (z))

Andrea Laretto Di- is for Directed POPL 2026 18 / 23



Directed type theory: equational theory

• A judgement [Γ] Φ ⊢ α = β : P for equality of entailments.
• Computation rule for J :

(J-comp)
[z : C, Γ] Φ ⊢ J(h)[reflz] = h : P

Example (Left unitality for composition)
Recall that compose[f, g] := J(g)[f, g]:

(J-comp)
[z : C, c : C] g : hom(z, c) ⊢ compose[reflz, g] = g : hom(z, c)

Example (Functors send identities to identities)
(J-comp)

[z : C] ⊢ mapF [reflz] = reflF (z) : hom(F (z), F (z))

Andrea Laretto Di- is for Directed POPL 2026 18 / 23



Directed type theory: equational theory

• A judgement [Γ] Φ ⊢ α = β : P for equality of entailments.
• Computation rule for J :

(J-comp)
[z : C, Γ] Φ ⊢ J(h)[reflz] = h : P

Example (Left unitality for composition)
Recall that compose[f, g] := J(g)[f, g]:

(J-comp)
[z : C, c : C] g : hom(z, c) ⊢ compose[reflz, g] = g : hom(z, c)

Example (Functors send identities to identities)
(J-comp)

[z : C] ⊢ mapF [reflz] = reflF (z) : hom(F (z), F (z))

Andrea Laretto Di- is for Directed POPL 2026 18 / 23



Directed type theory: equational theory

• A judgement [Γ] Φ ⊢ α = β : P for equality of entailments.
• Computation rule for J :

(J-comp)
[z : C, Γ] Φ ⊢ J(h)[reflz] = h : P

Example (Left unitality for composition)
Recall that compose[f, g] := J(g)[f, g]:

(J-comp)
[z : C, c : C] g : hom(z, c) ⊢ compose[reflz, g] = g : hom(z, c)

Example (Functors send identities to identities)
(J-comp)

[z : C] ⊢ mapF [reflz] = reflF (z) : hom(F (z), F (z))

Andrea Laretto Di- is for Directed POPL 2026 18 / 23



Directed equality induction

• What if we want to prove unitality on the right, or associativity?

• A “dependent version of J” for equality of entailments:

[z : C, Γ] Φ(z, z) ⊢ α[reflz] = β[reflz] : P (z, z)
(J-eq)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ α[e] = β[e] : P (a, b)

Intuition: two dinaturals α, β are equal everywhere if they agree on refl.
• Semantics: dinaturality!

Andrea Laretto Di- is for Directed POPL 2026 19 / 23



Directed equality induction

• What if we want to prove unitality on the right, or associativity?
• A “dependent version of J” for equality of entailments:

[z : C, Γ] Φ(z, z) ⊢ α[reflz] = β[reflz] : P (z, z)
(J-eq)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ α[e] = β[e] : P (a, b)

Intuition: two dinaturals α, β are equal everywhere if they agree on refl.
• Semantics: dinaturality!

Andrea Laretto Di- is for Directed POPL 2026 19 / 23



Directed equality induction

• What if we want to prove unitality on the right, or associativity?
• A “dependent version of J” for equality of entailments:

[z : C, Γ] Φ(z, z) ⊢ α[reflz] = β[reflz] : P (z, z)
(J-eq)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ α[e] = β[e] : P (a, b)

Intuition: two dinaturals α, β are equal everywhere if they agree on refl.
• Semantics: dinaturality!

Andrea Laretto Di- is for Directed POPL 2026 19 / 23



Directed equality induction

• What if we want to prove unitality on the right, or associativity?
• A “dependent version of J” for equality of entailments:

[z : C, Γ] Φ(z, z) ⊢ α[reflz] = β[reflz] : P (z, z)
(J-eq)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ α[e] = β[e] : P (a, b)

Intuition: two dinaturals α, β are equal everywhere if they agree on refl.

• Semantics: dinaturality!

Andrea Laretto Di- is for Directed POPL 2026 19 / 23



Directed equality induction

• What if we want to prove unitality on the right, or associativity?
• A “dependent version of J” for equality of entailments:

[z : C, Γ] Φ(z, z) ⊢ α[reflz] = β[reflz] : P (z, z)
(J-eq)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ α[e] = β[e] : P (a, b)

Intuition: two dinaturals α, β are equal everywhere if they agree on refl.
• Semantics: dinaturality!

Andrea Laretto Di- is for Directed POPL 2026 19 / 23



Directed equality induction

• What if we want to prove unitality on the right, or associativity?
• A “dependent version of J” for equality of entailments:

[z : C, Γ] Φ(z, z) ⊢ α[reflz] = β[reflz] : P (z, z)
(J-eq)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ α[e] = β[e] : P (a, b)

Intuition: two dinaturals α, β are equal everywhere if they agree on refl.
• Semantics: dinaturality!

Example (Unitality on the right)

(J-comp)
[w : C] ⊢ reflw ; reflw = reflw : hom(w, w)

(J-eq)
[a : Cop, z : C] f : hom(a, z) ⊢ f ; reflz = f : hom(a, z)

Andrea Laretto Di- is for Directed POPL 2026 19 / 23



Directed equality induction

• What if we want to prove unitality on the right, or associativity?
• A “dependent version of J” for equality of entailments:

[z : C, Γ] Φ(z, z) ⊢ α[reflz] = β[reflz] : P (z, z)
(J-eq)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ α[e] = β[e] : P (a, b)

Intuition: two dinaturals α, β are equal everywhere if they agree on refl.
• Semantics: dinaturality!

Example (Associativity)
(=-refl)

[z, c, d : C] g : hom(z, c), h : hom(c, d) ⊢ g ; h = g ; h : hom(z, d)
(J-comp)

[z, c, d : C] g : hom(z, c), h : hom(c, d) ⊢ reflz ; (g ; h) = (reflz ; g) ; h : hom(z, d)
(J-eq)

[a, b, c, d : C] f : hom(a, b), g : hom(b, c), h : hom(c, d) ⊢ f ; (g ; h) = (f ; g) ; h : hom(a, d)

Andrea Laretto Di- is for Directed POPL 2026 19 / 23



Directed equality induction

• What if we want to prove unitality on the right, or associativity?
• A “dependent version of J” for equality of entailments:

[z : C, Γ] Φ(z, z) ⊢ α[reflz] = β[reflz] : P (z, z)
(J-eq)

[a : Cop, b : C, Γ] e : homC(a, b), Φ(a, b) ⊢ α[e] = β[e] : P (a, b)

Intuition: two dinaturals α, β are equal everywhere if they agree on refl.
• Semantics: dinaturality!
Example (Functoriality)

(=-refl)
[z, c : C] g : hom(z, c) ⊢ mapF [g] = mapF [g] : hom(F (z), F (c))

(J-comp)
[z, c : C] g : hom(z, c) ⊢ mapF [reflz ; g] = reflF (z) ; mapF [g] : hom(F (z), F (c))

(J-eq)
[a, b, c : C] f : hom(a, b), g : hom(b, c) ⊢ mapF [f ; g] = mapF [f ] ; mapF [g] : hom(F (a), F (c))

Andrea Laretto Di- is for Directed POPL 2026 19 / 23



Naturality for free!

Example (Naturality for terms)
Given a natural transformation α from F to G,

[x : C] ⊢ α : homD(F (x), G(x))

we prove naturality by contracting f : hom(a, b):
(=-refl)

[z : C] ⊢ α = α : hom(F (z), G(z))
(J-comp)

[z : C] ⊢ reflF (z) ; α = α ; reflG(z) : hom(F (z), G(z))
(J-comp)

[z : C] ⊢ mapF [reflz] ; α = α ; mapG[reflz] : hom(F (z), G(z))
(J-eq)

[a : Cop, b : C] f : hom(a, b) ⊢ mapF [f ] ; α = α ; mapG[f ] : hom(F (a), G(b))

Andrea Laretto Di- is for Directed POPL 2026 19 / 23



Naturality for free!

Example (Naturality for terms)
Given a natural transformation α from F to G,

[x : C] ⊢ α : homD(F (x), G(x))

we prove naturality by contracting f : hom(a, b):
(=-refl)

[z : C] ⊢ α = α : hom(F (z), G(z))
(J-comp)

[z : C] ⊢ reflF (z) ; α = α ; reflG(z) : hom(F (z), G(z))
(J-comp)

[z : C] ⊢ mapF [reflz] ; α = α ; mapG[reflz] : hom(F (z), G(z))
(J-eq)

[a : Cop, b : C] f : hom(a, b) ⊢ mapF [f ] ; α = α ; mapG[f ] : hom(F (a), G(b))

Andrea Laretto Di- is for Directed POPL 2026 19 / 23



Naturality for free!

Example (Naturality of entailments)
Given a natural entailment α from P to Q,

[x : C] p : P (x) ⊢ α[p] : Q(x)

we prove naturality by contracting f : hom(a, b):

(=-refl)
[z : C] p : P (z) ⊢ α[p] = α[p] : Q(z)

(J-comp)
[z : C] p : P (z) ⊢ transpQ[reflz, α[p]] = α[transpP [reflz, p]] : Q(z)

(J-eq)
[a : Cop, b : C] f : hom(a, b), p : P (a) ⊢ transpQ[f, α[p]] = α[transpP [f, p]] : Q(b)

Andrea Laretto Di- is for Directed POPL 2026 20 / 23



Naturality for free!

Example (Naturality of entailments)
Given a natural entailment α from P to Q,

[x : C] p : P (x) ⊢ α[p] : Q(x)

we prove naturality by contracting f : hom(a, b):

(=-refl)
[z : C] p : P (z) ⊢ α[p] = α[p] : Q(z)

(J-comp)
[z : C] p : P (z) ⊢ transpQ[reflz, α[p]] = α[transpP [reflz, p]] : Q(z)

(J-eq)
[a : Cop, b : C] f : hom(a, b), p : P (a) ⊢ transpQ[f, α[p]] = α[transpP [f, p]] : Q(b)

Andrea Laretto Di- is for Directed POPL 2026 20 / 23



Directed type theory: logical rules

• Logical rules are given in ”adjoint form”, i.e., as bijections:

[Γ] Φ ⊢ P × Q
(prod)

[Γ] Φ ⊢ P, [Γ] Φ ⊢ Q

• Dinaturals can be curried (all positions invert polarity):

[x : Γ] A(x, x), Φ(x, x) ⊢ B(x, x)
(⇒)

[x : Γ] Φ(x, x) ⊢ A(x, x) ⇒ B(x, x)

• Rules for (co)ends as ”adjoints”:

[a : C, Γ] Φ ⊢ Q(a, a)
(∫ )

[Γ] Φ ⊢
∫

a:C Q(a, a)

[Γ]
(∫ a:C Q(a, a)

)
, Φ ⊢ P

(co∫ )
[a : C, Γ] Q(a, a), Φ ⊢ P

Andrea Laretto Di- is for Directed POPL 2026 21 / 23



Directed type theory: logical rules

• Logical rules are given in ”adjoint form”, i.e., as bijections:

[Γ] Φ ⊢ P × Q
(prod)

[Γ] Φ ⊢ P, [Γ] Φ ⊢ Q

• Dinaturals can be curried (all positions invert polarity):

[x : Γ] A(x, x), Φ(x, x) ⊢ B(x, x)
(⇒)

[x : Γ] Φ(x, x) ⊢ A(x, x) ⇒ B(x, x)

• Rules for (co)ends as ”adjoints”:

[a : C, Γ] Φ ⊢ Q(a, a)
(∫ )

[Γ] Φ ⊢
∫

a:C Q(a, a)

[Γ]
(∫ a:C Q(a, a)

)
, Φ ⊢ P

(co∫ )
[a : C, Γ] Q(a, a), Φ ⊢ P

Andrea Laretto Di- is for Directed POPL 2026 21 / 23



Directed type theory: logical rules

• Logical rules are given in ”adjoint form”, i.e., as bijections:

[Γ] Φ ⊢ P × Q
(prod)

[Γ] Φ ⊢ P, [Γ] Φ ⊢ Q

• Dinaturals can be curried (all positions invert polarity):

[x : Γ] A(x, x), Φ(x, x) ⊢ B(x, x)
(⇒)

[x : Γ] Φ(x, x) ⊢ A(x, x) ⇒ B(x, x)

• Rules for (co)ends as ”adjoints”:

[a : C, Γ] Φ ⊢ Q(a, a)
(∫ )

[Γ] Φ ⊢
∫

a:C Q(a, a)

[Γ]
(∫ a:C Q(a, a)

)
, Φ ⊢ P

(co∫ )
[a : C, Γ] Q(a, a), Φ ⊢ P

Andrea Laretto Di- is for Directed POPL 2026 21 / 23



(Co)end calculus

• We can prove theorems in category theory logically.

• Rules for (co)ends as quantifiers + directed equality:
1 (Co)Yoneda,
2 Adjointess of Kan extensions via (co)ends,
3 Presheaves are closed under exponentials,
4 Associativity of composition of profunctors,
5 Right lifts in profunctors,
6 (Co)ends preserve limits,
7 Adjointness of (co)ends in natural transformations,
8 Characterization of (di)naturals as ends,
9 Frobenius property of (co)ends using exponentials,
10 Contractibility of singletons: lim

x
colim

y
hom(x, y) ∼= 1.

Andrea Laretto Di- is for Directed POPL 2026 22 / 23



(Co)end calculus

• We can prove theorems in category theory logically.
• Rules for (co)ends as quantifiers + directed equality:

1 (Co)Yoneda,
2 Adjointess of Kan extensions via (co)ends,
3 Presheaves are closed under exponentials,
4 Associativity of composition of profunctors,
5 Right lifts in profunctors,
6 (Co)ends preserve limits,
7 Adjointness of (co)ends in natural transformations,
8 Characterization of (di)naturals as ends,
9 Frobenius property of (co)ends using exponentials,
10 Contractibility of singletons: lim

x
colim

y
hom(x, y) ∼= 1.

Andrea Laretto Di- is for Directed POPL 2026 22 / 23



(Co)end calculus with dinaturality (1)

Yoneda lemma: (JP K, JΦK : C → Set)
[a : C] Φ(a) ⊢

∫
x:C

homC(a, x) ⇒ P (x)
(∫ )

[a : C, x : C] Φ(a) ⊢ homC(a, x) ⇒ P (x)
(⇒)

[a : C, x : C] homC(a, x) × Φ(a) ⊢ P (x)
(J)

[z : C] Φ(z) ⊢ P (z)

CoYoneda lemma: [a : C]
∫ x:C

homC(x, a) × P (x) ⊢ Φ(a)
(co∫ )

[a : C, x : C] homC(a, x) × P (a) ⊢ Φ(x)
(J)

[z : C] P (z) ⊢ Φ(z)

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



(Co)end calculus with dinaturality (1)

Yoneda lemma: (JP K, JΦK : C → Set)
[a : C] Φ(a) ⊢

∫
x:C

homC(a, x) ⇒ P (x)
(∫ )

[a : C, x : C] Φ(a) ⊢ homC(a, x) ⇒ P (x)
(⇒)

[a : C, x : C] homC(a, x) × Φ(a) ⊢ P (x)
(J)

[z : C] Φ(z) ⊢ P (z)

CoYoneda lemma: [a : C]
∫ x:C

homC(x, a) × P (x) ⊢ Φ(a)
(co∫ )

[a : C, x : C] homC(a, x) × P (a) ⊢ Φ(x)
(J)

[z : C] P (z) ⊢ Φ(z)

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



(Co)end calculus with dinaturality (2)

Presheaves are cartesian closed: (JΦK, JAK, JBK : C → Set)

[x : C] Φ(x) ⊢ (A ⇒ B)(x)
:= Nat(homC(x, −) × A, B)
∼=

∫
y:C

homC(x, y) × A(y) ⇒ B(y)
(∫ )

[x : C, y : C] Φ(x) ⊢ homC(x, y) × A(y) ⇒ B(y)
(⇒)

[x : C, y : C] A(y) × homC(x, y) × Φ(x) ⊢ B(y)
(J)

[y : C] A(y) × Φ(y) ⊢ B(y)

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



(Co)end calculus with dinaturality (3)

Right Kan extensions are right adjoint to precomposing with JF K : C → D:

[y : D] Q(y) ⊢ (RanF P )(y)

:=
∫

x:C
homD(y, F (x)) ⇒ P (x)

(∫ )
[x : C, y : D] Q(y) ⊢ homD(y, F (x)) ⇒ P (x)

(⇒)
[x : C, y : D] homD(y, F (x)) × Q(y) ⊢ P (x)

(J)
[x : C] Q(F (x)) ⊢ P (x)

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



(Co)end calculus with dinaturality (4)

Fubini for ends ([ ] Φ propctx, [C, D] P prop)

[ ] Φ ⊢
∫

x:C

∫
y:D

P (x, x, y, y)
(∫ )

[x : C] Φ ⊢
∫

y:D
P (x, x, y, y)

(∫ )
[x : C, y : D] Φ ⊢ P (x, x, y, y)

(structural property)
[y : D, x : C] Φ ⊢ P (x, x, y, y)

(∫ )
[y : D] Φ ⊢

∫
x:C

P (x, x, y, y)
(∫ )

[ ] Φ ⊢
∫

y:D

∫
x:C

P (x, x, y, y)

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:

1 What is the deeper reason why dinaturals do not compose?
▶ Non-compositionality is intrinsic to Cat,
▶ Directed homotopical reason, like failure of UIP.

2 Long-term vision:
▶ Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).
▶ Revisit more category theory, logically.

3 Immediate future: we have a notion of dinatural context extension
⇝ towards dependent dinatural directed type theory.

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:
1 What is the deeper reason why dinaturals do not compose?

▶ Non-compositionality is intrinsic to Cat,
▶ Directed homotopical reason, like failure of UIP.

2 Long-term vision:
▶ Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).
▶ Revisit more category theory, logically.

3 Immediate future: we have a notion of dinatural context extension
⇝ towards dependent dinatural directed type theory.

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:
1 What is the deeper reason why dinaturals do not compose?
▶ Non-compositionality is intrinsic to Cat,

▶ Directed homotopical reason, like failure of UIP.
2 Long-term vision:
▶ Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).
▶ Revisit more category theory, logically.

3 Immediate future: we have a notion of dinatural context extension
⇝ towards dependent dinatural directed type theory.

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:
1 What is the deeper reason why dinaturals do not compose?
▶ Non-compositionality is intrinsic to Cat,
▶ Directed homotopical reason, like failure of UIP.

2 Long-term vision:
▶ Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).
▶ Revisit more category theory, logically.

3 Immediate future: we have a notion of dinatural context extension
⇝ towards dependent dinatural directed type theory.

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:
1 What is the deeper reason why dinaturals do not compose?
▶ Non-compositionality is intrinsic to Cat,
▶ Directed homotopical reason, like failure of UIP.

2 Long-term vision:
▶ Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).

▶ Revisit more category theory, logically.
3 Immediate future: we have a notion of dinatural context extension

⇝ towards dependent dinatural directed type theory.

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:
1 What is the deeper reason why dinaturals do not compose?
▶ Non-compositionality is intrinsic to Cat,
▶ Directed homotopical reason, like failure of UIP.

2 Long-term vision:
▶ Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).
▶ Revisit more category theory, logically.

3 Immediate future: we have a notion of dinatural context extension
⇝ towards dependent dinatural directed type theory.

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:
1 What is the deeper reason why dinaturals do not compose?
▶ Non-compositionality is intrinsic to Cat,
▶ Directed homotopical reason, like failure of UIP.

2 Long-term vision:
▶ Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).
▶ Revisit more category theory, logically.

3 Immediate future: we have a notion of dinatural context extension
⇝ towards dependent dinatural directed type theory.

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



The
∫

.

Paper: “Di- is for Directed: First-Order Directed Type Theory via Dinaturality”
(arXiv:2409.10237)

Website: iwilare.com

Thank you for the attention!

Andrea Laretto Di- is for Directed POPL 2026 23 / 23

https://arxiv.org/abs/2409.10237
https://iwilare.com/


Where J comes from

Theorem
There is a bijection (natural in P, Q : Cop × C → Set)
between sets of dinaturals and sets of naturals like this:

P dinat−→ Q

hom(a, b) −→ P op(b, a) ⇒ Q(a, b)

Proof. precisely by Yoneda: pick the identities, use (di)naturality.

[z : C] Φ(z, z) ⊢ P (z, z)

[a : Cop, b : C] homC(a, b) ⊢ Φ(b, a) ⇒ P (a, b)
(⇒)

[a : Cop, b : C] homC(a, b), Φ(b, a) ⊢ P (a, b)

 (J)

• Thm: all rules for hom are derivable ⇐⇒ (J) is a bijection.

Andrea Laretto Di- is for Directed POPL 2026 23 / 23



Where J comes from

Theorem
There is a bijection (natural in P, Q : Cop × C → Set)
between sets of dinaturals and sets of naturals like this:

P dinat−→ Q

hom(a, b) −→ P op(b, a) ⇒ Q(a, b)

Proof. precisely by Yoneda: pick the identities, use (di)naturality.

[z : C] Φ(z, z) ⊢ P (z, z)

[a : Cop, b : C] homC(a, b) ⊢ Φ(b, a) ⇒ P (a, b)
(⇒)

[a : Cop, b : C] homC(a, b), Φ(b, a) ⊢ P (a, b)

 (J)

• Thm: all rules for hom are derivable ⇐⇒ (J) is a bijection.
Andrea Laretto Di- is for Directed POPL 2026 23 / 23



Homotopical interpretation of dinaturality

We have maps both ways:

[ ] ⊤ ⊢ P

[x : C] x = x ⊢ P

but in MLTT they are not isomorphic.

In DTT, we do not even have both maps!

[ ] ⊤ ⊢ P

[x : C] hom(x, x) ⊢ P

We only have a map from top to bottom.

Andrea Laretto Di- is for Directed POPL 2026 23 / 23


