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Category theory is hard.
We all love logic.

The claim of this talk: category theory = logic.
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An innocuous equivalence...

Pla) &V(z:C). a=czx = P(x)
P(a) = /x . home(a,2) = P(a)

This is the Yoneda lemmal!

We want to prove things like the Yoneda lemma
just as easily as the equivalence above.
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Proof of Yoneda in dinatural directed type theory

The previous equivalence in first-order logic:
[a:C] ®FVY(x:C). a=cz= P(x)
[a:C,z:C] @+ a=cz= P(x)
[a:C,2:C|l a=cxN®F P(x)
[a:C] @+ P(a)

(¥)

=)
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Proof of Yoneda in dinatural directed type theory

The previous equivalence in first-order logic:
[a:C] ®FVY(x:C). a=cz= P(x)

(V)
[a:C,z:C] @+ a=cz= P(x)
(=)
[a:C,2:C|l a=cxN®F P(x) B
a:C] @ F P(a)
Our formal proof for the Yoneda lemma Nat(hom¢(a, —), P) = P(a):
[a:C] @ /x-C home(a,Z) = P(x)
: ()

[a:C,z:C] &+ homc¢(a,T) = P(x)
[a:C,z:C] home(a,z) x & + P(x)
[a:C] ® + P(a)

=)
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Symmetric equality in first-order logic

Recall the rules of equality:

[z:A] Pz ==z (refl)
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Symmetric equality in first-order logic

Recall the rules of equality:

[2: A] O(z,2) - P(z,2)
ref
[x:A]in:x( ! [a:A,b:A] a = b, ®(a,b) - P(a,b) (7)
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Symmetric equality in first-order logic

Recall the rules of equality:

[2: A] O(z,2) - P(z,2)
ref
[x:A]in:x( ! [a:A,b:A] a = b, ®(a,b) - P(a,b) (7)

Equality is transitive:
(id)
(/)

[z:A,c: A z=ckz=c
[a:Ab:Ajc:Ala=b, b=ckFa=c
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Symmetric equality in first-order logic

Recall the rules of equality:

[2: A] O(z,2) - P(z,2)

(refl) (J)
[z:A] @z =2z [a:A,b:A] a = b, ®(a,b) F P(a,b)
Equality is transitive: Equality is symmetric:
id refl
[z:A,c: A z:cl—z:cij)) [2: 4] Fz=z2 EJ))
[a:A,b:A,c:Ala=b, b=cka=c [a:A,b:Ala=bFb=a
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Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
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Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements...

Types as sets,
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Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

Types as groupoids,
with equalities as morphisms:
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Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

N a category where
all morphisms are invertible
Types as groupoids,
with equalities as morphisms:
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Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

N a category where
all morphisms are invertible
Types as groupoids,
with equalities as morphisms:

Whenever you're proving something about equality,
you're secretly proving something about groupoids and groupoid theory.
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® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

N a category where
all morphisms are invertible
Types as groupoids,
with equalities as morphisms:

Whenever you're proving something about equality,
you're secretly proving something about groupoids and groupoid theory.

...what about categories?!
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Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as groupoids:

N a category where
i Iy . b
Types as groupoids,
with equalities as morphisms:

Whenever you're proving something about equality,
you're secretly proving something about groupoids and groupoid theory.

...what about categories?!

Andrea Laretto Di- is for Directed POPL 2026



Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as categories:

Types as categories,
with "equalities” as morphisms:
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Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as categories:

Types as categories,
with "equalities” as morphisms:

Whenever you're proving something about "equality”,
you're secretly proving something about categories and category theory.
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Sets — groupoids — categories

® How many proofs of an equality a = b can there be?
Idea: interpret types not as sets of elements... but as categories:

Types as categories,
with "equalities” as morphisms:

Whenever you're proving something about "equality”,
you're secretly proving something about categories and category theory.

— Type theory as a unifying framework for rewriting, processes, transitions, etc.
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Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.
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Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Types ~~ Categories
Terms ~- Functors
Equalities e : a = b ~» Morphisms e : hom(a, b)
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Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Types ~ Categories
Terms ~- Functors
Equalities e : a = b ~» Morphisms e : hom(a, b)

=c: CxC — Type ~» homgc : C®PxC — Type

— Now types have a polarity: if C type then C°P type (the opposite category).
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Motivation: Directed type theory

Type theories with refl and J <= symmetric equality,
Directed type theory <— “directed equality’.

Types ~ Categories
Terms ~» Functors
Equalities e : a = b ~» Morphisms e : hom(a, b)
contravariant \

=c: CxC — Type ~» homgc : C®PxC — Type

covariant

— Now types have a polarity: if C type then C°P type (the opposite category).

Andrea Laretto Di- is for Directed POPL 2026



Category theory = logic

refl, : z== Reflexivity of equality
id; € hom(z,z) Categories have identities
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Category theory = logic

refl, : z== Reflexivity of equality
id; € hom(z,z) Categories have identities
r=y N y==z Fox==z Transitivity of equality
homc(z,y) x home(y, z) — home(z,z) | Composition in a category
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Category theory = logic

refl, : z== Reflexivity of equality
id; € hom(z,z) Categories have identities
r=y N y=z F xz=z Transitivity of equality

homc(z,y) x home(y, z) — home(z,z) | Composition in a category

r=y F f(z) = f(y) Congruence / functions respect equality
home (z,y) — homp(F(x), F(y)) Action on morphisms of functors
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Category theory = logic

refl, : z== Reflexivity of equality
id; € hom(z,z) Categories have identities
r=y N y=z F xz=z Transitivity of equality

homc(z,y) x home(y, z) — home(z,z) | Composition in a category

r=y F f(z) = f(y) Congruence / functions respect equality
homc(z,y) — homp(F(x), F(y)) Action on morphisms of functors
x=y A P(x) - P(y) Substitution / transport along equality
homce(z,y) x P(z) — P(y) Action on morphisms of (co)presheaves
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Category theory = logic

refl, : z== Reflexivity of equality
id; € hom(z,z) Categories have identities
r=y N y==z Fox==z Transitivity of equality

homc(z,y) x home(y, z) — home(z,z) | Composition in a category

r=y F f(z) = f(y) Congruence / functions respect equality
homc(z,y) — homp(F(x), F(y)) Action on morphisms of functors
x=y A P(x) - P(y) Substitution / transport along equality
homce(z,y) x P(z) — P(y) Action on morphisms of (co)presheaves
V(z:C). f(x) =p g(x) Pointwise equality of functions
homp (F(z), G(x)) Natural transformations
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Directed type theory is not so easy...

® Polarity problems:

(refl?)

[z :C] ® F hom(z,x)
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Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refl?)
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!
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Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant
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Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!
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\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!
— A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]
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\

covariant
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Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!

— A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]
® How do we avoid symmetry?

What should J look like? | want to derive transitivity for free,
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Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!
— A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

® How do we avoid symmetry?
What should J look like? | want to derive transitivity for free,

(id)
(/)

[z:CP ¢:(C] hom(z, ¢) F hom(z, c)
[a:C°,b:C,c: C] hom(a,b), hom(b,c) F hom(a,c)
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Directed type theory is not so easy...

® Polarity problems:

but, in the semantics...

(refi?) contravariant \’
refl?
[z :C] ® F hom(z,x) hom¢ : C°? x C — Set!

\

covariant

— Problem: what's the type of 7 Is it x:C°P or x:C? Both?!
— A solution: resort back to groupoids [North 2018, Altenkirch & Neumann 2024]

® How do we avoid symmetry?
What should J look like? | want to derive transitivity for free, but somehow not symmetry?

(id)
(/)

[z:CP c:C] hom(z, ¢) F hom(z, c)
[a:C°.b:C,c: C] hom(a,b), hom(b,c) - hom(a,c)
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We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.
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We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
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® Dinaturality solves the polarity problem without groupoids,
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We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,
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We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.
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We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,

® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.
— a simple description of directed type theory,
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® tells us what directed quantifiers of DTT should be.

— a simple description of directed type theory,

— simple logical proofs of theorems in category theory.
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We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.

— a simple description of directed type theory,

— simple logical proofs of theorems in category theory.

Sorts | Categories
Functions | Functors F': C — D
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We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.

— a simple description of directed type theory,

— simple logical proofs of theorems in category theory.

Sorts | Categories
Functions | Functors F': C — D
Predicates | Dipresheaves: functors P : C°P x C — Set

Equality predicates | hom : C°P x C — Set
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We present a first-order (i.e., non-dependent) directed type theory (i.e. proof-relevant),
and solve these two problems using dinaturality.

® Dinaturality solves the polarity problem without groupoids,
® tells us what syntactic restriction to put on J to avoid symmetry,
® tells us what directed quantifiers of DTT should be.

— a simple description of directed type theory,

— simple logical proofs of theorems in category theory.

Sorts
Functions

Categories
Functors F': C — D

Predicates
Equality predicates
Entailments

Quantifiers V, 3

Andrea Laretto

Dipresheaves: functors P : C°P x C — Set
hom : C°? x C — Set
Dinatural transformations (not required to compose)

z:C
Ends/ P(z,x), coends/ P(z,z).
z:C

Di- is for Directed POPL 2026 9/23



Syntax — simple types and terms

® Judgement for types:

Ctype Ctype D type Ctype D type
C°P type C x D type [C, D] type T type

® Semantics: a category [C].
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Syntax — simple types and terms

® Judgement for types:

Ctype Ctype D type Ctype D type
C°P type C x D type [C, D] type T type

® Semantics: a category [C].

e Judgement |I' -t : C| for simply-typed terms:
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Syntax — simple types and terms

® Judgement for types:

Ctype Ctype D type Ctype D type
C°P type C x D type [C, D] type T type

® Semantics: a category [C].

e Judgement |I' -t : C| for simply-typed terms:

I'sz:C 'Fs:C T'Ft:D

FFaz:C THI:T Tk(st):CxD
I'tp:CxD TI'kFp:CxD
F'Fm(p):C T Fma(p): D

¢ Semantics: functors [t] : [I'] — [C].
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Syntax — simple types and terms

® Judgement for types:

Ctype Ctype D type Ctype D type
C°P type C x D type [C, D] type T type

® Semantics: a category [C].

e Judgement |I' -t : C| for simply-typed terms:

I'sz:C '-s:C T'Ft:D
FFaz:C THI:T Tk(st):CxD r-t:C
I'kp:CxD T'kEp:CxD [oP | ¢op . C°P

F'Fm(p):C T Fma(p): D

¢ Semantics: functors [t] : [I'] — [C].
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Syntax — predicates

e A judgement | [I'] P prop | for predicates/formulas.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.
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Syntax — predicates

e A judgement | [I'] P prop | for predicates/formulas.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.

[T] P prop  [I'] Q prop
[['] P x Q prop

[C] T prop
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Syntax — predicates

e A judgement | [I'] P prop | for predicates/formulas.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.

[['] Pprop [I']Q prop [I'°P] P prop [I'] Q prop
[I] P x @Q prop [I] P = @ prop

[C] T prop
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Syntax — predicates

® A judgement m for predicates/formulas.

® Semantics: dipresheaves, i.e., functors [P] : [I']° x [I'] — Set.

[[] P prop [I] Q prop [I'®] P prop [I @ prop
[['] P x Q prop [['] P = Q prop

[I',z:C] P(x) prop [[,z:C] P(x) prop

[I] f%C P(x) prop  [I] fp.c P(x) prop

[C] T prop
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Syntax — predicates

e A judgement | [I'] P prop | for predicates/formulas.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.
[[] P prop [I] Q prop [I'®] P prop [I @ prop
[['] P x Q prop [['] P = Q prop
[I',z:C] P(x) prop [[,z:C] P(x) prop
[I] f%C P(x) prop  [I] fp.c P(x) prop
Fs:C . it C
[['] homc(s,t) prop

[C] T prop

hom-predicates:
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Syntax — predicates

® A judgement m for predicates/formulas.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.
[[] P prop  [I'] Q prop [I'’] P prop  [I'] Q prop
[['] P x Q prop [['] P = Q prop
[I',z:C] P(x) prop [[,z:C] P(x) prop
[T] [“C P(z) prop  [I] [p.c P(x) prop
Fs:C°P . FE:C
[['] homc(s,t) prop

[C] T prop

hom-predicates:

e Keyideal: s: C°° andt:C.
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Syntax — predicates

® A judgement | [I'] P prop | for predicates/formulas.
e Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.
[[] P prop  [I'] Q prop [I°P] P prop  [I] @ prop
[T] P x Q prop [T] P = Q prop
[[,z:C] P(x) prop [, z:C] P(x) prop
[I] [“C P(z) prop (] [p.c P(x) prop
[P Ths:C% TP TH¢:C
[['] home(s,t) prop

[T} T prop

hom-predicates:

e Keyideal: s:C°° and t:C.
e Key idea 2: | have two copies I'°P, I" to choose from in s, t.
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Syntax — predicates

® A judgement | [I'] P prop | for predicates/formulas.
e Semantics: dipresheaves, i.e., functors [P] : [I']°P x [I'] — Set.
[[] P prop  [I'] Q prop [I°P] P prop  [I] @ prop
[T] P x Q prop [T] P = Q prop
[[,z:C] P(x) prop [, z:C] P(x) prop
[I] [“C P(z) prop (] [p.c P(x) prop
[P Ths:C% TP TH¢:C
[['] home(s,t) prop

[T} T prop

hom-predicates:

e Keyideal: s:C°° and t:C.
e Key idea 2: | have two copies I'°P, I" to choose from in s, t.
Notation: ifx:C in T, then T:C°P in I'°P,
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Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[:C] Frefl :hom(z,x)
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Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
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Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
[a:C°P. b:C] hom(a, b) Fsym : hom(b, @)
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Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
[a:C°P. b:C] hom(a, b) Fsym : hom(b, @)

® We say that a variable is:
1. natural when it is used always correctly,
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Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
[a:C°P. b:C] hom(a, b) Fsym : hom(b, @)

® We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

Andrea Laretto Di- is for Directed POPL 2026



Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
[a:C°P. b:C] hom(a, b) Fsym : hom(b, @)

® We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x:C and T:C°P are in principle different variables...
we must give them the same value in the semantics!
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Syntax — polarity and variance

® | can use variables “incorrectly”, regardless of the outermost op: z:C, T:C°P:

[z:C] Frefl :hom(w,x)
[a:C° b:C, c:C] hom(a,b), hom(b, c) Ftrans: hom(a, c)
[a:C°P. b:C] hom(a, b) Fsym : hom(b, @)

® We say that a variable is:
1. natural when it is used always correctly,
2. dinatural when it is used sometimes correctly, sometimes incorrectly.

x:C and T:C°P are in principle different variables...
we must give them the same value in the semantics!

~ dinatural transformations!
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Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)
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Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)

Ve € [C],y € [D], agy : [®](z, z,y,y) — [P](x,z,y,y) (+ one equation)
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Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)
Vo € [C],y € [D], oy : [®](x, 2,y,y) — [Pl(z,z,y,y) (4 one equation)

¢ Dinaturals do not always compose! ~~ sometimes you cannot do substitution!
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Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)
Vo € [C],y € [D], oy : [®](x, 2,y,y) — [Pl(z,z,y,y) (4 one equation)

¢ Dinaturals do not always compose! ~~ sometimes you cannot do substitution!
® Takeaway: in practice, they always do when we need them to.
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Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)
Vo € [C],y € [D], oy : [®](x, 2,y,y) — [Pl(z,z,y,y) (4 one equation)

¢ Dinaturals do not always compose! ~~ sometimes you cannot do substitution!
® Takeaway: in practice, they always do when we need them to.
¢ Dinaturals compose with natural transformations (both left and right):
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Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)
Vo € [C],y € [D], oy : [®](x, 2,y,y) — [Pl(z,z,y,y) (4 one equation)

¢ Dinaturals do not always compose! ~~ sometimes you cannot do substitution!
® Takeaway: in practice, they always do when we need them to.
¢ Dinaturals compose with natural transformations (both left and right):

pdt ) — R
P @y R
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Syntax — entailments

e Entailments |[['] @+ «: P| (P is a list of predicates):
e Semantics: dinatural transformations ([®], [P] : [T']°P x [T'] — Set):

[x:C,y:D,...] (7, x,7,y,...) Fa: P(Z,2,7,y,...)

Ve € [C],y € [D], agy : [®](z, z,y,y) — [P](x,z,y,y) (+ one equation)

Dinaturals do not always compose! ~~ sometimes you cannot do substitution!
® Takeaway: in practice, they always do when we need them to.

Dinaturals compose with natural transformations (both left and right):
@, R do not depend on I

[x:C, T P(ZT,z)F~v :Q(T,x)

Pt ) 5 R [a:C°" b:C,T] Qa,b) Fa : R(a,b)

e 4 (cut-nat)
p dn2ty R [ : C, T P(Z,z)F alv] : R(T,x)
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)

® Directed equality elimination:

[z:C,T] ®(z,Z)Fh: Pz, 2)

[a:C° b:C,T] e:homg(a,b), ®(@,b) - J(h): P(a,b)
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)

® Directed equality elimination:

[z:C,T] ®(z,Z)Fh: Pz, 2)

[a:C° b:C,T] e:homg(a,b), ®(@,b) - J(h): P(a,b)

If | have a directed equality e : hom¢(a, b) in context,
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)

® Directed equality elimination:

[z:C,T] ®(z,Z)Fh: Pz, 2)

[a:C° b:C,T] e:homg(a,b), ®(@,b) - J(h): P(a,b)

If | have a directed equality e : hom¢(a, b) in context,

» | can contract it only if a, b appear correctly in the conclusion P,
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)

® Directed equality elimination:

[z:C,T] ®(z,Z)Fh: Pz, 2)

[a:C° b:C,T] e:homg(a,b), ®(@,b) - J(h): P(a,b)

If | have a directed equality e : hom¢(a, b) in context,

» | can contract it only if a, b appear correctly in the conclusion P,
» and a, b appear incorrectly in the context ®.
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T] @ refl, : home(T, x)
® Directed equality elimination:
[z:C,T] ®(z,Z)Fh: Pz, 2)

[a:C° b:C,T] e:homg(a,b), ®(@,b) - J(h): P(a,b)

If | have a directed equality e : hom¢(a, b) in context,
» | can contract it only if a, b appear correctly in the conclusion P,
» and a, b appear incorrectly in the context ®.

» Then, it is enough to prove that P holds “on the diagonal” z : C.
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Dinatural directed type theory — examples

Example (Transitivity of directed equality)

[a:C%®.b:C,c:C] f:hom(a,b), g:hom(b,c)F? hom(a, c)
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Dinatural directed type theory — examples

Example (Transitivity of directed equality)

[a:C%®.b:C,c:C] f:hom(a,b), g:hom(b,c)F? hom(a, c)
We contract f : hom(a, b).
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Dinatural directed type theory — examples

Example (Transitivity of directed equality)

[a:C%®.b:C,c:C] f:hom(a,b), g:hom(b,c)F? hom(a, c)

We contract f : hom(a, b).
Rule (J) can be applied: a,b appear correctly in conclusion (b does not)
and incorrectly in context (a does not).
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Dinatural directed type theory — examples

Example (Transitivity of directed equality)

[z:C,c: C] g :hom(z,¢c) F g : hom(z, c¢) (id)
[a:C% b:C,c:C] f:hom(a,b), g:hom(b,c)F J(g) : hom(a,c)

We contract f : hom(a, b).
Rule (J) can be applied: a,b appear correctly in conclusion (b does not)
and incorrectly in context (a does not).

(/)
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Dinatural directed type theory — examples

Example (Congruence / terms are functors)
Given a term C'= F' : D:

[z:D] F refl, : homp(Z, z) (refl) (reidx)
reidx
[2:C] F  reflpg : homp(F(Z), F(z)) )
[a: C%®,b:C] e: homcg(a,b) - J(reflp,)) : homp(F(a), F(b)) ]
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Dinatural directed type theory — examples

Example (Congruence / terms are functors)
Given a term C'= F' : D:

[z:D] F refl, : homp(
[2:C] F  reflpg : homp(F( )
[a: C%®,b:C] e: homcg(a,b) - J(reflp,)) : homp(F(a), F(b))

=l
8

"

Example (Transport / predicates are functors)

Given a predicate [z : C| P(x) prop:

[2:Clp: P(z2)F  p:P(2) )
[a:C° b:C]e:hom(a,b),p: P(@)k J(p): P(b)

Andrea Laretto Di- is for Directed POPL 2026 16 /23



Dinatural directed type theory — non-examples

Failure of symmetry for directed equality

The restrictions do not allow us to obtain directed equality is symmetric:
[a:C°?.b:C] e: hom(a,b) t/sym : hom(b,a)

hom(a, b) cannot be contracted: a,b must appear correctly in conclusion.
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Dinatural directed type theory — non-examples

Failure of symmetry for directed equality

The restrictions do not allow us to obtain directed equality is symmetric:
[a:C°?.b:C] e: hom(a,b) t/sym : hom(b,a)

hom(a, b) cannot be contracted: a,b must appear correctly in conclusion.

® By soundness, the interval I := {0 — 1} is a counterexample to derivability in the syntax.
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Directed type theory: equational theory

® A judgement ‘ oFa=p:P ‘ for equality of entailments.
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Directed type theory: equational theory

® A judgement ‘ oFa=p:P ‘ for equality of entailments.

e Computation rule for J:
(J-comp)

[2:C,T] ®F J(h)[refl,] =h: P
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Directed type theory: equational theory

® A judgement ‘ oFa=p:P ‘ for equality of entailments.

e Computation rule for J:

[2:C,T] ®F J(h)[refl,] = h: P (1/-comp)

Example (Left unitality for composition)

Recall that compose[f, g] := J(g)[f, g]:

(J-comp)
[2:C,c:C] g:hom(z,c)F compose[refl,, g] = g : hom(z, )
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Directed type theory: equational theory

® A judgement ‘ oFa=p:P ‘ for equality of entailments.

e Computation rule for J:

[2:C,T] ®F J(h)[refl,] = h: P (1/-comp)

Example (Left unitality for composition)

Recall that compose[f, g] := J(g)[f, g]:

(J-comp)
[2:C,c:C] g:hom(z,c)F compose[refl,, g] = g : hom(z, )

Example (Functors send identities to identities)

— (J-comp)
[z: C] F mapglrefl,] = reflp(,) : hom(F' (), F(z))
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Directed equality induction

e What if we want to prove unitality on the right, or associativity?
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Directed equality induction

e What if we want to prove unitality on the right, or associativity?

® A "dependent version of J" for equality of entailments:
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Directed equality induction

e What if we want to prove unitality on the right, or associativity?

® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%) F afrefl,] = Brefl,] : P(Z, 2)
[a:C° b:C,T] e:home(a,b),®(@,b) - ale] = Ble] : P(a,b)
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Directed equality induction

e What if we want to prove unitality on the right, or associativity?

® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%) F afrefl,] = Brefl,] : P(Z, 2)
[a:C° b:C,T] e:home(a,b),®(@,b) - ale] = Ble] : P(a,b)

(J-eq)

Intuition: two dinaturals o, 3 are equal everywhere if they agree on refl.
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Directed equality induction

e What if we want to prove unitality on the right, or associativity?
® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%2) F afrefl,] = B[refl,] : P(z, z) (J-eq)
- -€q
[a:C°P b: C,T] e: home(a,b), ®(a,b) - ale] = Sle] : Pla,b)

Intuition: two dinaturals o, 3 are equal everywhere if they agree on refl.
® Semantics: dinaturality!
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Directed equality induction

e What if we want to prove unitality on the right, or associativity?

® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%2) F afrefl,] = B[refl,] : P(z, z)
[a:C° b:C,T] e:home(a,b),®(@,b) - ale] = Ble] : P(a,b)

(J-eq)

Intuition: two dinaturals o, 3 are equal everywhere if they agree on refl.

® Semantics: dinaturality!

Example (Unitality on the right)

[w:C] t refly ;refl, = refl, : hom(w, w)

[a:C° z:C| f:hom(a,z)F f;refl, = f:hom(a,2)
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Directed equality induction

e What if we want to prove unitality on the right, or associativity?
® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%2) F afrefl,] = B[refl,] : P(z, z) (J-eq)
- -€q
[a:C°P b: C,T] e: home(a,b), ®(a,b) - ale] = Sle] : Pla,b)

Intuition: two dinaturals o, 3 are equal everywhere if they agree on refl.
® Semantics: dinaturality!

Example (Associativity)

[z,¢,d : C]
[z,¢,d : C]

g : hom(z, ¢), h : hom(c, d) gsh=g;h : hom(z, d)
(J-comp)

g : hom(z, ¢), h : hom(c,d) & refl, 5 (g3 h) = (refl, 5 g) 5 h : hom(Z, d)
d

[a,b,c,d: C] f:hom(a,b),g:hom(b,c),h:hom(c,d) - f3;(g;h)=(f;9);h
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Directed equality induction

e What if we want to prove unitality on the right, or associativity?

® A "dependent version of J" for equality of entailments:

[z:C,T] ®(z,%2) F afrefl,] = B[refl,] : P(z, z)
[a:C° b:C,T] e:home(a,b),®(@,b) - ale] = Ble] : P(a,b)

(J-eq)

Intuition: two dinaturals o, 3 are equal everywhere if they agree on refl.

® Semantics: dinaturality!

Example (Functoriality)

=-refl
[2,¢: C] g :hom(z,c) - mapp[g] = mapp|g] - Lol e EJ-com)p)
[z,c: C] g+ hom(z, ¢) - mapglrefl. 5 g] = reflp.,) 3 mapp[g] : hom(F(z), F(c)) (J-eq)

[a,b,c: C] f:hom(a,b), g : hom(b,c) = mapg|f;g] = mapg[f]; mapgg] : hom(F (@), F(c))
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Naturality for free!

Example (Naturality for terms)

Given a natural transformation o from F' to G,

[:C] Fa:homp(F(Z),G(z))
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Naturality for free!

Example (Naturality for terms)

Given a natural transformation o from F' to G,

[:C] Fa:homp(F(Z),G(z))

we prove naturality by contracting f : hom(a, b):

(=-refl)
[z:C] F a=a«a : hom(F(z),G(2)) (J-comp)
[z:C] F reflpoy 5 = a;reflg,) :hom(F(z),G(z)) (J-comp)
[2:C] F mapg[refl,] ; &« = a3 mapg[refl,] : hom(F(z), G(z)) (J-eq)
[@:C°Pb:C] f:hom(a,b) - mapp[f];a=a;mapg[f] :hom(F(a),G(b))
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Naturality for free!

Example (Naturality of entailments)

Given a natural entailment o from P to @,

[x:C]p: P(x)F alp] : Q(x)
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Naturality for free!

Example (Naturality of entailments)

Given a natural entailment o from P to @,

[z:Clp: P(x) Falp]: Qx)

we prove naturality by contracting f : hom(a, b):

(=-refl)
[2: C] p: P(z)Fapl = afp] : Q(2)

[z:C] p: P(z) I transpg|refl., a[p]] = aftranspp|refl., p]] : Q(2) (J-cq)
[a:CPb:C] f:hom(a,b),p: P(@) - transpglf, a[p]] = aftranspp[f,p]] : Q(d)

(J-comp)
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Directed type theory: logical rules

® |ogical rules are given in "adjoint form”, i.e., as bijections:
e+ PxQ
] @+ P, rekFQ

(prod)
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Directed type theory: logical rules

® |ogical rules are given in "adjoint form”, i.e., as bijections:
e+ PxQ
] @+ P, rekFQ

(prod)

¢ Dinaturals can be curried (all positions invert polarity):
[:T] A(Z,z),®(z,x) - B(T,x)
[ : T o(z,x) - A(x,T) = B(T,x)

(=)
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Directed type theory: logical rules

® |ogical rules are given in "adjoint form”, i.e., as bijections:

[]&FPxQ

(prod)
] @+ P, rekFQ
¢ Dinaturals can be curried (all positions invert polarity):
[:T] A(Z,z),®(z,x) - B(T,x)
- - — (=)
[ : T o(z,x) - A(x,T) = B(T,x)
® Rules for (co)ends as "adjoints":
[a:C,T] ®F+ Q(a,a) T (/“C Q(@,a)),®+ P
— (/) ( ) (cof)
] @ F oo Q@ a) [a:C.T] Q(@a),®+ P
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(Co)end calculus

® \We can prove theorems in category theory logically.
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(Co)end calculus

® \We can prove theorems in category theory logically.
® Rules for (co)ends as quantifiers + directed equality:
@ (Co)Yoneda,
@ Adjointess of Kan extensions via (co)ends,
© Presheaves are closed under exponentials,
@ Associativity of composition of profunctors,
@ Right lifts in profunctors,
® (Co)ends preserve limits,
@ Adjointness of (co)ends in natural transformations,
® Characterization of (di)naturals as ends,
© Frobenius property of (co)ends using exponentials,
@ Contractibility of singletons: lign coLim hom(z,y) = 1.
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(Co)end calculus with dinaturality (1)

Yoneda lemma: ([P],[®] : C — Set)

la: C) ®(a) F /x _home(a,7) = P(2)

(/)

[a:C,z:C] ®(a) Fhome(a,z) = P(x)
[a:C,z:C] home(a,z) x ®(a) - P(x)
[z:C] ®(2) F P(z)

=)

(/)
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(Co)end calculus with dinaturality (1)

Yoneda lemma: ([P],[®] : C — Set)

la: C) ®(a) F /x _home(a,7) = P(2)

(/)

[a:C,z:C] ®(a) Fhome(a,z) = P(x)
[a:C,z:C] home(a,z) x ®(a) - P(x)
[z:C] ®(2) F P(z)

=)

(/)

. x:C
CoYoneda lemma: la: C] / home (F, a) x P(z) - ®(a)

[a:C,x:C] homg(a,r) x P(a) - ®(z) (cof)
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(Co)end calculus with dinaturality (2)

Presheaves are cartesian closed: ([®], [A], [B] : C — Set)

[x:C] ®(z) F (A= B)(x)
:= Nat(hom¢(z,—) x A, B)

o /y:C home(z,7) x A(y) = B(y)

(/)

[:C,y:C] ®(x) F home(z,7) x A(y) = B(y)
[x:C,y:C] A(y) X home(Z,y) x ®(x) F B(y)
ly: C] A(y) x ©(y) - B(y)

=)

(/)
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(Co)end calculus with dinaturality (3)

Right Kan extensions are right adjoint to precomposing with [F] : C' — D:

ly: D] Q(y) - (RanpP)(y)

= / homp(y, F(%)) = P(x)
[ :C,y: D] Q(y) F homp(y, F(Z)) = P(x) (=) )
[z : C,y : D] homp(y, F(z)) x Q(y) - P(z)

[z : C] Q(F(z)) = P(x)

POPL 2026



(Co)end calculus with dinaturality (4)

Fubini for ends ([] ® propctx, [C, D] P prop)
ner [ [ p@egy
z:C Jy:D

[x:C] ® l—/. P(z,z,7,y)

(/)

()

(structural property)

(/)

[x:C,y: D] ®F P(Z,z,7,
ly:D,x:C| ®F P(Z,2,7,y)

y:D @k/ P(z,,7,y)

(I)I—//Pa:xyy

(/)
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Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:
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Conclusion and future work

We have seen how dinaturality gives us a first-order directed type theory,
which allows us to do category theory logically and in a simple way.

Future work:

@ What is the deeper reason why dinaturals do not compose?
» Non-compositionality is intrinsic to Cat,
» Directed homotopical reason, like failure of UIP.

® Long-term vision:
» Synthetic rewriting, synthetic models of type theory (e.g., dQIIT).
» Revisit more category theory, logically.

©® Immediate future: we have a notion of dinatural context extension
~ towards dependent dinatural directed type theory.
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The /

Paper: “Di- is for Directed: First-Order Directed Type Theory via Dinaturality”
(arXiv:2409.10237)
Website: iwilare.com

Thank you for the attention!
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https://arxiv.org/abs/2409.10237
https://iwilare.com/

Where J comes from

There is a bijection (natural in P,Q : C°° x C — Set)
between sets of dinaturals and sets of naturals like this:

P dmat,
hom(a, b) — P°P(b,a) = Q(a, b)

Proof. precisely by Yoneda: pick the identities, use (di)naturality.
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Where J comes from

There is a bijection (natural in P,Q : C°° x C — Set)
between sets of dinaturals and sets of naturals like this:

P dmat,
hom(a, b) — P°P(b,a) = Q(a, b)

Proof. precisely by Yoneda: pick the identities, use (di)naturality.

[a:C°Pb: C]| homg(a,b) b ®(b,a) = P(a,b) (J)
(=)

[a:C°P b: C| homg(a,b), ®(b,a) - P(a,b)

® Thm: all rules for hom are derivable <= (/J) is a bijection.
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Homotopical interpretation of dinaturality

We have maps both ways: In DTT, we do not even have both maps!
[ TEHP [] TEHP
[z:Clz=aFP [z : C] hom(Z,z) F P

but in MLTT they are not isomorphic. We only have a map from top to bottom.
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