
Specification and Verification of a Linear-Time
Temporal Logic for Graph Transformation

Andrea Laretto1, Fabio Gadducci2, Davide Trotta2

1: Tallinn University of Technology, 2: University of Pisa

ICGT 2023, Leicester
July 19th, 2023

Andrea Laretto ICGT 2023 July 19th, 2023 1 / 20

Contribution and Outline

We present the semantics of a counterpart-based temporal logic
to reason on the evolution of graph-like structures, and formalize it

using the proof assistant Agda along with results on its PNF.

Andrea Laretto ICGT 2023 July 19th, 2023 1 / 20

Contribution and Outline

We present the semantics of a counterpart-based temporal logic
to reason on the evolution of graph-like structures, and formalize it

using the proof assistant Agda along with results on its PNF.

1 Temporal logics and counterpart paradigm

Andrea Laretto ICGT 2023 July 19th, 2023 1 / 20

Contribution and Outline

We present the semantics of a counterpart-based temporal logic
to reason on the evolution of graph-like structures, and formalize it

using the proof assistant Agda along with results on its PNF.

1 Temporal logics and counterpart paradigm
2 Classical and categorical semantics

Andrea Laretto ICGT 2023 July 19th, 2023 1 / 20

Contribution and Outline

We present the semantics of a counterpart-based temporal logic
to reason on the evolution of graph-like structures, and formalize it

using the proof assistant Agda along with results on its PNF.

1 Temporal logics and counterpart paradigm
2 Classical and categorical semantics
3 Examples and positive normal form

Andrea Laretto ICGT 2023 July 19th, 2023 1 / 20

Contribution and Outline

We present the semantics of a counterpart-based temporal logic
to reason on the evolution of graph-like structures, and formalize it

using the proof assistant Agda along with results on its PNF.

1 Temporal logics and counterpart paradigm
2 Classical and categorical semantics
3 Examples and positive normal form
4 Agda formalization

Andrea Laretto ICGT 2023 July 19th, 2023 1 / 20

Contribution and Outline

We present the semantics of a counterpart-based temporal logic
to reason on the evolution of graph-like structures, and formalize it

using the proof assistant Agda along with results on its PNF.

1 Temporal logics and counterpart paradigm
2 Classical and categorical semantics
3 Examples and positive normal form
4 Agda formalization
5 Conclusion and future work

Andrea Laretto ICGT 2023 July 19th, 2023 1 / 20

Temporal logics

Well-known formalism for specifying and verifying complex systems

1 Represent the system as a transition system, called model

paystart

select

tea coffee

Transition system for a
simple vending machine

2 Express desired properties as formulas in a temporal logic

Always(Eventually(pay)) ¬Eventually(tea)

3 Use a program to check that the model satisfies the formula

Andrea Laretto ICGT 2023 July 19th, 2023 2 / 20

Temporal logics

Well-known formalism for specifying and verifying complex systems
1 Represent the system as a transition system, called model

paystart

select

tea coffee

Transition system for a
simple vending machine

2 Express desired properties as formulas in a temporal logic

Always(Eventually(pay)) ¬Eventually(tea)

3 Use a program to check that the model satisfies the formula

Andrea Laretto ICGT 2023 July 19th, 2023 2 / 20

Temporal logics

Well-known formalism for specifying and verifying complex systems
1 Represent the system as a transition system, called model

paystart

select

tea coffee

Transition system for a
simple vending machine

2 Express desired properties as formulas in a temporal logic

Always(Eventually(pay)) ¬Eventually(tea)

3 Use a program to check that the model satisfies the formula

Andrea Laretto ICGT 2023 July 19th, 2023 2 / 20

Temporal logics

Well-known formalism for specifying and verifying complex systems
1 Represent the system as a transition system, called model

paystart

select

tea coffee

Transition system for a
simple vending machine

2 Express desired properties as formulas in a temporal logic

Always(Eventually(pay)) ¬Eventually(tea)

3 Use a program to check that the model satisfies the formula

Andrea Laretto ICGT 2023 July 19th, 2023 2 / 20

Temporal logics

Well-known formalism for specifying and verifying complex systems
1 Represent the system as a transition system, called model

paystart

select

tea coffee

Transition system for a
simple vending machine

2 Express desired properties as formulas in a temporal logic

Always(Eventually(pay))

¬Eventually(tea)

3 Use a program to check that the model satisfies the formula

Andrea Laretto ICGT 2023 July 19th, 2023 2 / 20

Temporal logics

Well-known formalism for specifying and verifying complex systems
1 Represent the system as a transition system, called model

paystart

select

tea coffee

Transition system for a
simple vending machine

2 Express desired properties as formulas in a temporal logic

Always(Eventually(pay)) ¬Eventually(tea)

3 Use a program to check that the model satisfies the formula

Andrea Laretto ICGT 2023 July 19th, 2023 2 / 20

Temporal logics

Well-known formalism for specifying and verifying complex systems
1 Represent the system as a transition system, called model

paystart

select

tea coffee

Transition system for a
simple vending machine

2 Express desired properties as formulas in a temporal logic

Always(Eventually(pay)) ¬Eventually(tea)

3 Use a program to check that the model satisfies the formula
Andrea Laretto ICGT 2023 July 19th, 2023 2 / 20

Motivation: Multi-component models

• States are simply atomic points

• In practice, states often have structure that can change in time:
• Time evolution of graph topologies: merging nodes, deletion of edges

• Managing processes in memory: forking, allocation and deallocation

• Dynamic behaviour of election algorithms: splitting and union of parties

• Objectives:

Can we enrich our models to express multi-component behaviour?
Can we define logics that can reason on the fate of individual elements?

• Yes! Using counterpart models and quantified temporal logics

Andrea Laretto ICGT 2023 July 19th, 2023 3 / 20

Motivation: Multi-component models

• States are simply atomic points
• In practice, states often have structure that can change in time:

• Time evolution of graph topologies: merging nodes, deletion of edges

• Managing processes in memory: forking, allocation and deallocation

• Dynamic behaviour of election algorithms: splitting and union of parties

• Objectives:

Can we enrich our models to express multi-component behaviour?
Can we define logics that can reason on the fate of individual elements?

• Yes! Using counterpart models and quantified temporal logics

Andrea Laretto ICGT 2023 July 19th, 2023 3 / 20

Motivation: Multi-component models

• States are simply atomic points
• In practice, states often have structure that can change in time:

• Time evolution of graph topologies: merging nodes, deletion of edges

• Managing processes in memory: forking, allocation and deallocation

• Dynamic behaviour of election algorithms: splitting and union of parties

• Objectives:

Can we enrich our models to express multi-component behaviour?
Can we define logics that can reason on the fate of individual elements?

• Yes! Using counterpart models and quantified temporal logics

Andrea Laretto ICGT 2023 July 19th, 2023 3 / 20

Motivation: Multi-component models

• States are simply atomic points
• In practice, states often have structure that can change in time:

• Time evolution of graph topologies: merging nodes, deletion of edges

• Managing processes in memory: forking, allocation and deallocation

• Dynamic behaviour of election algorithms: splitting and union of parties

• Objectives:

Can we enrich our models to express multi-component behaviour?
Can we define logics that can reason on the fate of individual elements?

• Yes! Using counterpart models and quantified temporal logics

Andrea Laretto ICGT 2023 July 19th, 2023 3 / 20

Motivation: Multi-component models

• States are simply atomic points
• In practice, states often have structure that can change in time:

• Time evolution of graph topologies: merging nodes, deletion of edges

• Managing processes in memory: forking, allocation and deallocation

• Dynamic behaviour of election algorithms: splitting and union of parties

• Objectives:

Can we enrich our models to express multi-component behaviour?
Can we define logics that can reason on the fate of individual elements?

• Yes! Using counterpart models and quantified temporal logics

Andrea Laretto ICGT 2023 July 19th, 2023 3 / 20

Motivation: Multi-component models

• States are simply atomic points
• In practice, states often have structure that can change in time:

• Time evolution of graph topologies: merging nodes, deletion of edges

• Managing processes in memory: forking, allocation and deallocation

• Dynamic behaviour of election algorithms: splitting and union of parties

• Objectives:

Can we enrich our models to express multi-component behaviour?

Can we define logics that can reason on the fate of individual elements?

• Yes! Using counterpart models and quantified temporal logics

Andrea Laretto ICGT 2023 July 19th, 2023 3 / 20

Motivation: Multi-component models

• States are simply atomic points
• In practice, states often have structure that can change in time:

• Time evolution of graph topologies: merging nodes, deletion of edges

• Managing processes in memory: forking, allocation and deallocation

• Dynamic behaviour of election algorithms: splitting and union of parties

• Objectives:

Can we enrich our models to express multi-component behaviour?
Can we define logics that can reason on the fate of individual elements?

• Yes! Using counterpart models and quantified temporal logics

Andrea Laretto ICGT 2023 July 19th, 2023 3 / 20

Motivation: Multi-component models

• States are simply atomic points
• In practice, states often have structure that can change in time:

• Time evolution of graph topologies: merging nodes, deletion of edges

• Managing processes in memory: forking, allocation and deallocation

• Dynamic behaviour of election algorithms: splitting and union of parties

• Objectives:

Can we enrich our models to express multi-component behaviour?
Can we define logics that can reason on the fate of individual elements?

• Yes! Using counterpart models and quantified temporal logics

Andrea Laretto ICGT 2023 July 19th, 2023 3 / 20

Counterpart paradigm

• Standard LTL traces: sequences of states

ω0 ω1 ω2 ω3

• Associate to each state a set of individuals, called worlds
• Our traces: sequences of worlds

ω0 ω1 ω2 ω3

a0

b1

a1

c1

a2

c2

a3
b2

b3

b0
c0

d0

How do we represent transitions?

Andrea Laretto ICGT 2023 July 19th, 2023 4 / 20

Counterpart paradigm

• Standard LTL traces: sequences of states

ω0 ω1 ω2 ω3

• Associate to each state a set of individuals, called worlds

• Our traces: sequences of worlds

ω0 ω1 ω2 ω3

a0

b1

a1

c1

a2

c2

a3
b2

b3

b0
c0

d0

How do we represent transitions?

Andrea Laretto ICGT 2023 July 19th, 2023 4 / 20

Counterpart paradigm

• Standard LTL traces: sequences of states

ω0 ω1 ω2 ω3

• Associate to each state a set of individuals, called worlds
• Our traces: sequences of worlds

ω0 ω1 ω2 ω3

a0

b1

a1

c1

a2

c2

a3
b2

b3

b0
c0

d0

How do we represent transitions?

Andrea Laretto ICGT 2023 July 19th, 2023 4 / 20

Counterpart paradigm

• Standard LTL traces: sequences of states

ω0 ω1 ω2 ω3

• Associate to each state a set of individuals, called worlds
• Our traces: sequences of worlds

ω0 ω1 ω2 ω3

a0

b1

a1

c1

a2

c2

a3
b2

b3

b0
c0

d0

How do we represent transitions?

Andrea Laretto ICGT 2023 July 19th, 2023 4 / 20

Counterpart paradigm

• Standard LTL traces: sequences of states

ω0 ω1 ω2 ω3

• Associate to each state a set of individuals, called worlds
• Our traces: sequences of worlds, connected with counterpart relations

b2

b3

b0
c0

d0

ω0 ω1 ω2

C0

ω3

C1 C2

C3

a0

b1

a1

c1

a2

c2

a3

• Intuition: individuals connected by a relation are the same after one step
• We call these sequences of worlds and relations counterpart traces

Andrea Laretto ICGT 2023 July 19th, 2023 4 / 20

Counterpart paradigm

• Standard LTL traces: sequences of states

ω0 ω1 ω2 ω3

• Associate to each state a set of individuals, called worlds
• Our traces: sequences of worlds, connected with counterpart relations

b2

b3

b0
c0

d0

ω0 ω1 ω2

C0

ω3

C1 C2

C3

a0

b1

a1

c1

a2

c2

a3

• Intuition: individuals connected by a relation are the same after one step

• We call these sequences of worlds and relations counterpart traces

Andrea Laretto ICGT 2023 July 19th, 2023 4 / 20

Counterpart paradigm

• Standard LTL traces: sequences of states

ω0 ω1 ω2 ω3

• Associate to each state a set of individuals, called worlds
• Our traces: sequences of worlds, connected with counterpart relations

b2

b3

b0
c0

d0

ω0 ω1 ω2

C0

ω3

C1 C2

C3

a0

b1

a1

c1

a2

c2

a3

• Intuition: individuals connected by a relation are the same after one step
• We call these sequences of worlds and relations counterpart traces

Andrea Laretto ICGT 2023 July 19th, 2023 4 / 20

Counterpart traces with algebras

• Counterpart trace: function ω : N → Set and {Ri ⊆ ω(i)× ω(i+ 1)}i∈N

• Worlds-as-algebras: generalize sets to algebras over a signature Σ
• Idea: take Σ-algebras and structure-preserving relations between them
• Examples: (multi)graphs, undirected graphs, trees, lists, etc.
• A counterpart trace on the signature of directed graphs:

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

Andrea Laretto ICGT 2023 July 19th, 2023 5 / 20

Counterpart traces with algebras

• Counterpart trace: function ω : N → Set and {Ri ⊆ ω(i)× ω(i+ 1)}i∈N
• Worlds-as-algebras: generalize sets to algebras over a signature Σ

• Idea: take Σ-algebras and structure-preserving relations between them
• Examples: (multi)graphs, undirected graphs, trees, lists, etc.
• A counterpart trace on the signature of directed graphs:

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

Andrea Laretto ICGT 2023 July 19th, 2023 5 / 20

Counterpart traces with algebras

• Counterpart trace: function ω : N → Set and {Ri ⊆ ω(i)× ω(i+ 1)}i∈N
• Worlds-as-algebras: generalize sets to algebras over a signature Σ
• Idea: take Σ-algebras and structure-preserving relations between them

• Examples: (multi)graphs, undirected graphs, trees, lists, etc.
• A counterpart trace on the signature of directed graphs:

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

Andrea Laretto ICGT 2023 July 19th, 2023 5 / 20

Counterpart traces with algebras

• Counterpart trace: function ω : N → Set and {Ri ⊆ ω(i)× ω(i+ 1)}i∈N
• Worlds-as-algebras: generalize sets to algebras over a signature Σ
• Idea: take Σ-algebras and structure-preserving relations between them
• Examples: (multi)graphs, undirected graphs, trees, lists, etc.

• A counterpart trace on the signature of directed graphs:

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

Andrea Laretto ICGT 2023 July 19th, 2023 5 / 20

Counterpart traces with algebras

• Counterpart trace: function ω : N → Set and {Ri ⊆ ω(i)× ω(i+ 1)}i∈N
• Worlds-as-algebras: generalize sets to algebras over a signature Σ
• Idea: take Σ-algebras and structure-preserving relations between them
• Examples: (multi)graphs, undirected graphs, trees, lists, etc.
• A counterpart trace on the signature of directed graphs:

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

Andrea Laretto ICGT 2023 July 19th, 2023 5 / 20

Counterpart traces with algebras

• Counterpart trace: function ω : N → Set and {Ri ⊆ ω(i)× ω(i+ 1)}i∈N
• Worlds-as-algebras: generalize sets to algebras over a signature Σ
• Idea: take Σ-algebras and structure-preserving relations between them
• Examples: (multi)graphs, undirected graphs, trees, lists, etc.
• A counterpart trace on the signature of directed graphs:

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

Andrea Laretto ICGT 2023 July 19th, 2023 5 / 20

Counterpart traces with algebras

• Counterpart trace: function ω : N → Set and {Ri ⊆ ω(i)× ω(i+ 1)}i∈N
• Worlds-as-algebras: generalize sets to algebras over a signature Σ
• Idea: take Σ-algebras and structure-preserving relations between them
• Examples: (multi)graphs, undirected graphs, trees, lists, etc.
• A counterpart trace on the signature of directed graphs:

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

Andrea Laretto ICGT 2023 July 19th, 2023 5 / 20

Categorical semantics

• Counterpart model: a transition system enriched with worlds and
counterpart relations between them

• Counterpart models can be understood within the unifying perspective of
category theory and categorical logic:

Counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure
+ a presheaf D : Wop → Rel︸ ︷︷ ︸

Relational presheaf

• Objects of W are the states of the underlying transition system
• Morphisms of W represent transitions between states
• The temporal structure identifies the one-step transitions of the model
• The relational presheaf assign worlds and counterpart relations to states

Andrea Laretto ICGT 2023 July 19th, 2023 6 / 20

Categorical semantics

• Counterpart model: a transition system enriched with worlds and
counterpart relations between them

• Counterpart models can be understood within the unifying perspective of
category theory and categorical logic:

Counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure
+ a presheaf D : Wop → Rel︸ ︷︷ ︸

Relational presheaf

• Objects of W are the states of the underlying transition system
• Morphisms of W represent transitions between states
• The temporal structure identifies the one-step transitions of the model
• The relational presheaf assign worlds and counterpart relations to states

Andrea Laretto ICGT 2023 July 19th, 2023 6 / 20

Categorical semantics

• Counterpart model: a transition system enriched with worlds and
counterpart relations between them

• Counterpart models can be understood within the unifying perspective of
category theory and categorical logic:

Counterpart model ≈ a category W

+ a class T of selected morphisms of W︸ ︷︷ ︸
Temporal structure

+ a presheaf D : Wop → Rel︸ ︷︷ ︸
Relational presheaf

• Objects of W are the states of the underlying transition system
• Morphisms of W represent transitions between states
• The temporal structure identifies the one-step transitions of the model
• The relational presheaf assign worlds and counterpart relations to states

Andrea Laretto ICGT 2023 July 19th, 2023 6 / 20

Categorical semantics

• Counterpart model: a transition system enriched with worlds and
counterpart relations between them

• Counterpart models can be understood within the unifying perspective of
category theory and categorical logic:

Counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure

+ a presheaf D : Wop → Rel︸ ︷︷ ︸
Relational presheaf

• Objects of W are the states of the underlying transition system
• Morphisms of W represent transitions between states
• The temporal structure identifies the one-step transitions of the model
• The relational presheaf assign worlds and counterpart relations to states

Andrea Laretto ICGT 2023 July 19th, 2023 6 / 20

Categorical semantics

• Counterpart model: a transition system enriched with worlds and
counterpart relations between them

• Counterpart models can be understood within the unifying perspective of
category theory and categorical logic:

Counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure
+ a presheaf D : Wop → Rel︸ ︷︷ ︸

Relational presheaf

• Objects of W are the states of the underlying transition system
• Morphisms of W represent transitions between states
• The temporal structure identifies the one-step transitions of the model
• The relational presheaf assign worlds and counterpart relations to states

Andrea Laretto ICGT 2023 July 19th, 2023 6 / 20

Categorical semantics

• Counterpart model: a transition system enriched with worlds and
counterpart relations between them

• Counterpart models can be understood within the unifying perspective of
category theory and categorical logic:

Counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure
+ a presheaf D : Wop → Rel︸ ︷︷ ︸

Relational presheaf

• Objects of W are the states of the underlying transition system

• Morphisms of W represent transitions between states
• The temporal structure identifies the one-step transitions of the model
• The relational presheaf assign worlds and counterpart relations to states

Andrea Laretto ICGT 2023 July 19th, 2023 6 / 20

Categorical semantics

• Counterpart model: a transition system enriched with worlds and
counterpart relations between them

• Counterpart models can be understood within the unifying perspective of
category theory and categorical logic:

Counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure
+ a presheaf D : Wop → Rel︸ ︷︷ ︸

Relational presheaf

• Objects of W are the states of the underlying transition system
• Morphisms of W represent transitions between states

• The temporal structure identifies the one-step transitions of the model
• The relational presheaf assign worlds and counterpart relations to states

Andrea Laretto ICGT 2023 July 19th, 2023 6 / 20

Categorical semantics

• Counterpart model: a transition system enriched with worlds and
counterpart relations between them

• Counterpart models can be understood within the unifying perspective of
category theory and categorical logic:

Counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure
+ a presheaf D : Wop → Rel︸ ︷︷ ︸

Relational presheaf

• Objects of W are the states of the underlying transition system
• Morphisms of W represent transitions between states
• The temporal structure identifies the one-step transitions of the model

• The relational presheaf assign worlds and counterpart relations to states

Andrea Laretto ICGT 2023 July 19th, 2023 6 / 20

Categorical semantics

• Counterpart model: a transition system enriched with worlds and
counterpart relations between them

• Counterpart models can be understood within the unifying perspective of
category theory and categorical logic:

Counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure
+ a presheaf D : Wop → Rel︸ ︷︷ ︸

Relational presheaf

• Objects of W are the states of the underlying transition system
• Morphisms of W represent transitions between states
• The temporal structure identifies the one-step transitions of the model
• The relational presheaf assign worlds and counterpart relations to states

Andrea Laretto ICGT 2023 July 19th, 2023 6 / 20

Example – Counterpart model

Wop, Tgf

h

g ;h

h′

kω0 ω1 ω2 ω3

idω0

D(ω0) D(ω1) D(ω3)

D

D(ω2)

D(f) D(g) D(h) D(k)

Rel

a0

b1

a1

c1

a2

c2

a3
b2

b3

b0
c0

d0

Andrea Laretto ICGT 2023 July 19th, 2023 7 / 20

Example – Counterpart model

Wop, Tgf

h

g ;h

h′

kω0 ω1 ω2 ω3

idω0

D(ω0) D(ω1) D(ω3)

D

D(ω2)

D(f) D(g) D(h) D(k)

Rel

a0

b1

a1

c1

a2

c2

a3
b2

b3

b0
c0

d0

Andrea Laretto ICGT 2023 July 19th, 2023 7 / 20

Categorical semantics

• For the signature of directed graphs:

Graph counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure

+ relational presheaves N,E : Wop → Rel︸ ︷︷ ︸
Sorts of the signature

+ relational morphisms s, t : E ⇒ N︸ ︷︷ ︸
Function symbols

Andrea Laretto ICGT 2023 July 19th, 2023 8 / 20

Categorical semantics

• For the signature of directed graphs:

Graph counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure
+ relational presheaves N,E : Wop → Rel︸ ︷︷ ︸

Sorts of the signature

+ relational morphisms s, t : E ⇒ N︸ ︷︷ ︸
Function symbols

Andrea Laretto ICGT 2023 July 19th, 2023 8 / 20

Categorical semantics

• For the signature of directed graphs:

Graph counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure
+ relational presheaves N,E : Wop → Rel︸ ︷︷ ︸

Sorts of the signature
+ relational morphisms s, t : E ⇒ N︸ ︷︷ ︸

Function symbols

Andrea Laretto ICGT 2023 July 19th, 2023 8 / 20

Example – Graph counterpart model

ω2ω1ω0 f2
f1f0

Wop, T

e5

e4

e3e2
e1
e0

Rel

JEdgeK JNodeK

n5n4

n3

n2
n1
n0

I(t)I(s)

Andrea Laretto ICGT 2023 July 19th, 2023 9 / 20

Example – Graph counterpart model

ω2ω1ω0 f2
f1f0

Wop, T

e5

e4

e3e2
e1
e0

Rel

JEdgeK

JNodeK

n5n4

n3

n2
n1
n0

I(t)I(s)

Andrea Laretto ICGT 2023 July 19th, 2023 9 / 20

Example – Graph counterpart model

ω2ω1ω0 f2
f1f0

Wop, T

e5

e4

e3e2
e1
e0

Rel

JEdgeK JNodeK

n5n4

n3

n2
n1
n0

I(t)I(s)

Andrea Laretto ICGT 2023 July 19th, 2023 9 / 20

Example – Graph counterpart model

ω2ω1ω0 f2
f1f0

Wop, T

e5

e4

e3e2
e1
e0

Rel

JEdgeK JNodeK

n5n4

n3

n2
n1
n0

I(t)I(s)

Andrea Laretto ICGT 2023 July 19th, 2023 9 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces

• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ

| Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ

| ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x)

| ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;

• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;

• σ, µ ⊨ e1 =E e2 iff µ∗
E(e1) = µ∗

E(e2);
• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;

• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;

• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that
1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;

2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces
• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
• σ, µ ⊨ ϕ1Uϕ2 iff there is an n̄ ≥ 0 such that

1 for any i < n̄, there is a µi such that ⟨µ, µi⟩ ∈ σ≤i and σi, µi ⊨ ϕ1;
2 there is a µn̄ such that ⟨µ, µn̄⟩ ∈ σ≤n̄ and σn̄, µn̄ ⊨ ϕ2;

Andrea Laretto ICGT 2023 July 19th, 2023 10 / 20

Example – QLTL

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

Andrea Laretto ICGT 2023 July 19th, 2023 11 / 20

Example – QLTL

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• n1 ⊨ω0 Next(Blue(x))
• n0 ⊨ω0 ¬Next(Red(x))
• n2 ⊨ω0 Red(x)Until Blue(x)

• (n3, n4) ⊨ω1 Next(x = y)

• () ⊨w0 ∃x.Next(Blue(x))
• (n1, n2) ⊨ω0 (¬(x = y))Until (x = y)

Andrea Laretto ICGT 2023 July 19th, 2023 11 / 20

Example – QLTL

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• n1 ⊨ω0 Next(Blue(x))

• n0 ⊨ω0 ¬Next(Red(x))
• n2 ⊨ω0 Red(x)Until Blue(x)

• (n3, n4) ⊨ω1 Next(x = y)

• () ⊨w0 ∃x.Next(Blue(x))
• (n1, n2) ⊨ω0 (¬(x = y))Until (x = y)

Andrea Laretto ICGT 2023 July 19th, 2023 11 / 20

Example – QLTL

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• n1 ⊨ω0 Next(Blue(x))
• n0 ⊨ω0 ¬Next(Red(x))

• n2 ⊨ω0 Red(x)Until Blue(x)

• (n3, n4) ⊨ω1 Next(x = y)

• () ⊨w0 ∃x.Next(Blue(x))
• (n1, n2) ⊨ω0 (¬(x = y))Until (x = y)

Andrea Laretto ICGT 2023 July 19th, 2023 11 / 20

Example – QLTL

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• n1 ⊨ω0 Next(Blue(x))
• n0 ⊨ω0 ¬Next(Red(x))
• n2 ⊨ω0 Red(x)Until Blue(x)

• (n3, n4) ⊨ω1 Next(x = y)

• () ⊨w0 ∃x.Next(Blue(x))
• (n1, n2) ⊨ω0 (¬(x = y))Until (x = y)

Andrea Laretto ICGT 2023 July 19th, 2023 11 / 20

Example – QLTL

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• n1 ⊨ω0 Next(Blue(x))
• n0 ⊨ω0 ¬Next(Red(x))
• n2 ⊨ω0 Red(x)Until Blue(x)

• (n3, n4) ⊨ω1 Next(x = y)

• () ⊨w0 ∃x.Next(Blue(x))
• (n1, n2) ⊨ω0 (¬(x = y))Until (x = y)

Andrea Laretto ICGT 2023 July 19th, 2023 11 / 20

Example – QLTL

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• n1 ⊨ω0 Next(Blue(x))
• n0 ⊨ω0 ¬Next(Red(x))
• n2 ⊨ω0 Red(x)Until Blue(x)

• (n3, n4) ⊨ω1 Next(x = y)

• () ⊨w0 ∃x.Next(Blue(x))

• (n1, n2) ⊨ω0 (¬(x = y))Until (x = y)

Andrea Laretto ICGT 2023 July 19th, 2023 11 / 20

Example – QLTL

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• n1 ⊨ω0 Next(Blue(x))
• n0 ⊨ω0 ¬Next(Red(x))
• n2 ⊨ω0 Red(x)Until Blue(x)

• (n3, n4) ⊨ω1 Next(x = y)

• () ⊨w0 ∃x.Next(Blue(x))
• (n1, n2) ⊨ω0 (¬(x = y))Until (x = y)

Andrea Laretto ICGT 2023 July 19th, 2023 11 / 20

Graph formulae

• We can define formulae that capture structural aspects of the graph:

loop(e) := s(e) =N t(e),

hasLoop(n) := ∃Ee.s(e) =N n ∧ loop(e),
composable(x, y) := t(x) =N s(y)

haveComposition(x, y) := composable(x, y)
∧ ∃Ee.(s(x) =N s(e) ∧ t(e) =N t(y))

adjacent(x, y) := ∃Ee.((s(e) =N x ∧ t(e) =N y)
∨ (t(e) =N x ∧ s(e) =N y))

Andrea Laretto ICGT 2023 July 19th, 2023 12 / 20

Graph formulae

• We can define formulae that capture structural aspects of the graph:

loop(e) := s(e) =N t(e),
hasLoop(n) := ∃Ee.s(e) =N n ∧ loop(e),

composable(x, y) := t(x) =N s(y)
haveComposition(x, y) := composable(x, y)

∧ ∃Ee.(s(x) =N s(e) ∧ t(e) =N t(y))
adjacent(x, y) := ∃Ee.((s(e) =N x ∧ t(e) =N y)

∨ (t(e) =N x ∧ s(e) =N y))

Andrea Laretto ICGT 2023 July 19th, 2023 12 / 20

Graph formulae

• We can define formulae that capture structural aspects of the graph:

loop(e) := s(e) =N t(e),
hasLoop(n) := ∃Ee.s(e) =N n ∧ loop(e),

composable(x, y) := t(x) =N s(y)

haveComposition(x, y) := composable(x, y)
∧ ∃Ee.(s(x) =N s(e) ∧ t(e) =N t(y))

adjacent(x, y) := ∃Ee.((s(e) =N x ∧ t(e) =N y)
∨ (t(e) =N x ∧ s(e) =N y))

Andrea Laretto ICGT 2023 July 19th, 2023 12 / 20

Graph formulae

• We can define formulae that capture structural aspects of the graph:

loop(e) := s(e) =N t(e),
hasLoop(n) := ∃Ee.s(e) =N n ∧ loop(e),

composable(x, y) := t(x) =N s(y)
haveComposition(x, y) := composable(x, y)

∧ ∃Ee.(s(x) =N s(e) ∧ t(e) =N t(y))
adjacent(x, y) := ∃Ee.((s(e) =N x ∧ t(e) =N y)

∨ (t(e) =N x ∧ s(e) =N y))

Andrea Laretto ICGT 2023 July 19th, 2023 12 / 20

Graph formulae

• We can define formulae that capture structural aspects of the graph:

loop(e) := s(e) =N t(e),
hasLoop(n) := ∃Ee.s(e) =N n ∧ loop(e),

composable(x, y) := t(x) =N s(y)
haveComposition(x, y) := composable(x, y)

∧ ∃Ee.(s(x) =N s(e) ∧ t(e) =N t(y))

adjacent(x, y) := ∃Ee.((s(e) =N x ∧ t(e) =N y)
∨ (t(e) =N x ∧ s(e) =N y))

Andrea Laretto ICGT 2023 July 19th, 2023 12 / 20

Graph formulae

• We can define formulae that capture structural aspects of the graph:

loop(e) := s(e) =N t(e),
hasLoop(n) := ∃Ee.s(e) =N n ∧ loop(e),

composable(x, y) := t(x) =N s(y)
haveComposition(x, y) := composable(x, y)

∧ ∃Ee.(s(x) =N s(e) ∧ t(e) =N t(y))
adjacent(x, y) := ∃Ee.((s(e) =N x ∧ t(e) =N y)

∨ (t(e) =N x ∧ s(e) =N y))

Andrea Laretto ICGT 2023 July 19th, 2023 12 / 20

Example – QLTL on graphs

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• e4 ⊨ω1 Next(loop(x))
• e3 ⊨ω1 ¬Next(loop(x))
• (e3, e4) ⊨ω0 composable(x, y)

• (n0, n2) ⊨ω0 adjacent(x, y)
• (n0, n2) ̸⊨ω0 Oadjacent(x, y)
• e0 ⊨ω0 ♢loop(x)

Andrea Laretto ICGT 2023 July 19th, 2023 13 / 20

Example – QLTL on graphs

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• e4 ⊨ω1 Next(loop(x))

• e3 ⊨ω1 ¬Next(loop(x))
• (e3, e4) ⊨ω0 composable(x, y)

• (n0, n2) ⊨ω0 adjacent(x, y)
• (n0, n2) ̸⊨ω0 Oadjacent(x, y)
• e0 ⊨ω0 ♢loop(x)

Andrea Laretto ICGT 2023 July 19th, 2023 13 / 20

Example – QLTL on graphs

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• e4 ⊨ω1 Next(loop(x))
• e3 ⊨ω1 ¬Next(loop(x))

• (e3, e4) ⊨ω0 composable(x, y)

• (n0, n2) ⊨ω0 adjacent(x, y)
• (n0, n2) ̸⊨ω0 Oadjacent(x, y)
• e0 ⊨ω0 ♢loop(x)

Andrea Laretto ICGT 2023 July 19th, 2023 13 / 20

Example – QLTL on graphs

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• e4 ⊨ω1 Next(loop(x))
• e3 ⊨ω1 ¬Next(loop(x))
• (e3, e4) ⊨ω0 composable(x, y)

• (n0, n2) ⊨ω0 adjacent(x, y)
• (n0, n2) ̸⊨ω0 Oadjacent(x, y)
• e0 ⊨ω0 ♢loop(x)

Andrea Laretto ICGT 2023 July 19th, 2023 13 / 20

Example – QLTL on graphs

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• e4 ⊨ω1 Next(loop(x))
• e3 ⊨ω1 ¬Next(loop(x))
• (e3, e4) ⊨ω0 composable(x, y)

• (n0, n2) ⊨ω0 adjacent(x, y)

• (n0, n2) ̸⊨ω0 Oadjacent(x, y)
• e0 ⊨ω0 ♢loop(x)

Andrea Laretto ICGT 2023 July 19th, 2023 13 / 20

Example – QLTL on graphs

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• e4 ⊨ω1 Next(loop(x))
• e3 ⊨ω1 ¬Next(loop(x))
• (e3, e4) ⊨ω0 composable(x, y)

• (n0, n2) ⊨ω0 adjacent(x, y)
• (n0, n2) ̸⊨ω0 Oadjacent(x, y)

• e0 ⊨ω0 ♢loop(x)

Andrea Laretto ICGT 2023 July 19th, 2023 13 / 20

Example – QLTL on graphs

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• e4 ⊨ω1 Next(loop(x))
• e3 ⊨ω1 ¬Next(loop(x))
• (e3, e4) ⊨ω0 composable(x, y)

• (n0, n2) ⊨ω0 adjacent(x, y)
• (n0, n2) ̸⊨ω0 Oadjacent(x, y)
• e0 ⊨ω0 ♢loop(x)

Andrea Laretto ICGT 2023 July 19th, 2023 13 / 20

Positive normal forms for QLTL

• PNF: a standard presentation for temporal logics

• Usually given to simplify model checking and for fixpoint semantics
• PNFs are essential to work in a constructive proof assistant
• PNF for QLTL:

ϕ := ψ | ¬ψ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃Ex.ϕ | ∃Nx.ϕ | ∀Ex.ϕ | ∀Nx.ϕ

| Next(ϕ) | ϕ1Untilϕ2 | ϕ1WUntilϕ2 | NextF(ϕ) | ϕ1UntilFϕ2 | ϕ1WUntilFϕ2

• Intuition: universal counterparts to the previous operators

¬Next(ϕ) ≡ NextF(¬ϕ)
¬(ϕ1Untilϕ2) ≡ (¬ϕ2)WUntilF(¬ϕ1 ∧ ¬ϕ2)

¬(ϕ1WUntilϕ2) ≡ (¬ϕ2)UntilF(¬ϕ1 ∧ ¬ϕ2)

• Become particularly useful to treat duplicating relations

Andrea Laretto ICGT 2023 July 19th, 2023 14 / 20

Positive normal forms for QLTL

• PNF: a standard presentation for temporal logics
• Usually given to simplify model checking and for fixpoint semantics

• PNFs are essential to work in a constructive proof assistant
• PNF for QLTL:

ϕ := ψ | ¬ψ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃Ex.ϕ | ∃Nx.ϕ | ∀Ex.ϕ | ∀Nx.ϕ

| Next(ϕ) | ϕ1Untilϕ2 | ϕ1WUntilϕ2 | NextF(ϕ) | ϕ1UntilFϕ2 | ϕ1WUntilFϕ2

• Intuition: universal counterparts to the previous operators

¬Next(ϕ) ≡ NextF(¬ϕ)
¬(ϕ1Untilϕ2) ≡ (¬ϕ2)WUntilF(¬ϕ1 ∧ ¬ϕ2)

¬(ϕ1WUntilϕ2) ≡ (¬ϕ2)UntilF(¬ϕ1 ∧ ¬ϕ2)

• Become particularly useful to treat duplicating relations

Andrea Laretto ICGT 2023 July 19th, 2023 14 / 20

Positive normal forms for QLTL

• PNF: a standard presentation for temporal logics
• Usually given to simplify model checking and for fixpoint semantics
• PNFs are essential to work in a constructive proof assistant

• PNF for QLTL:

ϕ := ψ | ¬ψ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃Ex.ϕ | ∃Nx.ϕ | ∀Ex.ϕ | ∀Nx.ϕ

| Next(ϕ) | ϕ1Untilϕ2 | ϕ1WUntilϕ2 | NextF(ϕ) | ϕ1UntilFϕ2 | ϕ1WUntilFϕ2

• Intuition: universal counterparts to the previous operators

¬Next(ϕ) ≡ NextF(¬ϕ)
¬(ϕ1Untilϕ2) ≡ (¬ϕ2)WUntilF(¬ϕ1 ∧ ¬ϕ2)

¬(ϕ1WUntilϕ2) ≡ (¬ϕ2)UntilF(¬ϕ1 ∧ ¬ϕ2)

• Become particularly useful to treat duplicating relations

Andrea Laretto ICGT 2023 July 19th, 2023 14 / 20

Positive normal forms for QLTL

• PNF: a standard presentation for temporal logics
• Usually given to simplify model checking and for fixpoint semantics
• PNFs are essential to work in a constructive proof assistant
• PNF for QLTL:

ϕ := ψ | ¬ψ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃Ex.ϕ | ∃Nx.ϕ | ∀Ex.ϕ | ∀Nx.ϕ

| Next(ϕ) | ϕ1Untilϕ2 | ϕ1WUntilϕ2 | NextF(ϕ) | ϕ1UntilFϕ2 | ϕ1WUntilFϕ2

• Intuition: universal counterparts to the previous operators

¬Next(ϕ) ≡ NextF(¬ϕ)
¬(ϕ1Untilϕ2) ≡ (¬ϕ2)WUntilF(¬ϕ1 ∧ ¬ϕ2)

¬(ϕ1WUntilϕ2) ≡ (¬ϕ2)UntilF(¬ϕ1 ∧ ¬ϕ2)

• Become particularly useful to treat duplicating relations

Andrea Laretto ICGT 2023 July 19th, 2023 14 / 20

Positive normal forms for QLTL

• PNF: a standard presentation for temporal logics
• Usually given to simplify model checking and for fixpoint semantics
• PNFs are essential to work in a constructive proof assistant
• PNF for QLTL:

ϕ := ψ | ¬ψ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃Ex.ϕ | ∃Nx.ϕ | ∀Ex.ϕ | ∀Nx.ϕ

| Next(ϕ) | ϕ1Untilϕ2 | ϕ1WUntilϕ2

| NextF(ϕ) | ϕ1UntilFϕ2 | ϕ1WUntilFϕ2

• Intuition: universal counterparts to the previous operators

¬Next(ϕ) ≡ NextF(¬ϕ)
¬(ϕ1Untilϕ2) ≡ (¬ϕ2)WUntilF(¬ϕ1 ∧ ¬ϕ2)

¬(ϕ1WUntilϕ2) ≡ (¬ϕ2)UntilF(¬ϕ1 ∧ ¬ϕ2)

• Become particularly useful to treat duplicating relations

Andrea Laretto ICGT 2023 July 19th, 2023 14 / 20

Positive normal forms for QLTL

• PNF: a standard presentation for temporal logics
• Usually given to simplify model checking and for fixpoint semantics
• PNFs are essential to work in a constructive proof assistant
• PNF for QLTL:

ϕ := ψ | ¬ψ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃Ex.ϕ | ∃Nx.ϕ | ∀Ex.ϕ | ∀Nx.ϕ

| Next(ϕ) | ϕ1Untilϕ2 | ϕ1WUntilϕ2 | NextF(ϕ) | ϕ1UntilFϕ2 | ϕ1WUntilFϕ2

• Intuition: universal counterparts to the previous operators

¬Next(ϕ) ≡ NextF(¬ϕ)
¬(ϕ1Untilϕ2) ≡ (¬ϕ2)WUntilF(¬ϕ1 ∧ ¬ϕ2)

¬(ϕ1WUntilϕ2) ≡ (¬ϕ2)UntilF(¬ϕ1 ∧ ¬ϕ2)

• Become particularly useful to treat duplicating relations

Andrea Laretto ICGT 2023 July 19th, 2023 14 / 20

Positive normal forms for QLTL

• PNF: a standard presentation for temporal logics
• Usually given to simplify model checking and for fixpoint semantics
• PNFs are essential to work in a constructive proof assistant
• PNF for QLTL:

ϕ := ψ | ¬ψ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃Ex.ϕ | ∃Nx.ϕ | ∀Ex.ϕ | ∀Nx.ϕ

| Next(ϕ) | ϕ1Untilϕ2 | ϕ1WUntilϕ2 | NextF(ϕ) | ϕ1UntilFϕ2 | ϕ1WUntilFϕ2

• Intuition: universal counterparts to the previous operators

¬Next(ϕ) ≡ NextF(¬ϕ)
¬(ϕ1Untilϕ2) ≡ (¬ϕ2)WUntilF(¬ϕ1 ∧ ¬ϕ2)

¬(ϕ1WUntilϕ2) ≡ (¬ϕ2)UntilF(¬ϕ1 ∧ ¬ϕ2)

• Become particularly useful to treat duplicating relations

Andrea Laretto ICGT 2023 July 19th, 2023 14 / 20

Positive normal forms for QLTL

• PNF: a standard presentation for temporal logics
• Usually given to simplify model checking and for fixpoint semantics
• PNFs are essential to work in a constructive proof assistant
• PNF for QLTL:

ϕ := ψ | ¬ψ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃Ex.ϕ | ∃Nx.ϕ | ∀Ex.ϕ | ∀Nx.ϕ

| Next(ϕ) | ϕ1Untilϕ2 | ϕ1WUntilϕ2 | NextF(ϕ) | ϕ1UntilFϕ2 | ϕ1WUntilFϕ2

• Intuition: universal counterparts to the previous operators

¬Next(ϕ) ≡ NextF(¬ϕ)
¬(ϕ1Untilϕ2) ≡ (¬ϕ2)WUntilF(¬ϕ1 ∧ ¬ϕ2)

¬(ϕ1WUntilϕ2) ≡ (¬ϕ2)UntilF(¬ϕ1 ∧ ¬ϕ2)

• Become particularly useful to treat duplicating relations

Andrea Laretto ICGT 2023 July 19th, 2023 14 / 20

Example – Duplicating relations

n1

n2

n0

n3

n4

n5

n6

e1

e4

e5

e7

Andrea Laretto ICGT 2023 July 19th, 2023 15 / 20

Example – Duplicating relations

n1

n2

n0

n3

n4

n5

n6

e1

e4

e5

e7

Andrea Laretto ICGT 2023 July 19th, 2023 15 / 20

Example – Duplicating relations

n1

n2

n0

n3

n4

n5

n6

e1

e4

e5

e7

Andrea Laretto ICGT 2023 July 19th, 2023 15 / 20

Example – Duplicating relations

n1

n2

n0

n3

n4

n5

n6

e1

e4

e5

e7

• n0 ⊨ω0 NextF(Blue(x))

• n1 ̸⊨ω1 NextF(Blue(x))
• e5 ⊨ω1 NextF(loop(x))

• e1 ⊨ω1 Blue(s(x))Until (loop(x))
• e1 ̸⊨ω1 Blue(s(x))UntilF (loop(x))
• e4 ⊨ω1 Blue(s(x))WUntilF (false)

Andrea Laretto ICGT 2023 July 19th, 2023 15 / 20

Example – Duplicating relations

n1

n2

n0

n3

n4

n5

n6

e1

e4

e5

e7

• n0 ⊨ω0 NextF(Blue(x))
• n1 ̸⊨ω1 NextF(Blue(x))

• e5 ⊨ω1 NextF(loop(x))

• e1 ⊨ω1 Blue(s(x))Until (loop(x))
• e1 ̸⊨ω1 Blue(s(x))UntilF (loop(x))
• e4 ⊨ω1 Blue(s(x))WUntilF (false)

Andrea Laretto ICGT 2023 July 19th, 2023 15 / 20

Example – Duplicating relations

n1

n2

n0

n3

n4

n5

n6

e1

e4

e5

e7

• n0 ⊨ω0 NextF(Blue(x))
• n1 ̸⊨ω1 NextF(Blue(x))
• e5 ⊨ω1 NextF(loop(x))

• e1 ⊨ω1 Blue(s(x))Until (loop(x))
• e1 ̸⊨ω1 Blue(s(x))UntilF (loop(x))
• e4 ⊨ω1 Blue(s(x))WUntilF (false)

Andrea Laretto ICGT 2023 July 19th, 2023 15 / 20

Example – Duplicating relations

n1

n2

n0

n3

n4

n5

n6

e1

e4

e5

e7

• n0 ⊨ω0 NextF(Blue(x))
• n1 ̸⊨ω1 NextF(Blue(x))
• e5 ⊨ω1 NextF(loop(x))

• e1 ⊨ω1 Blue(s(x))Until (loop(x))

• e1 ̸⊨ω1 Blue(s(x))UntilF (loop(x))
• e4 ⊨ω1 Blue(s(x))WUntilF (false)

Andrea Laretto ICGT 2023 July 19th, 2023 15 / 20

Example – Duplicating relations

n1

n2

n0

n3

n4

n5

n6

e1

e4

e5

e7

• n0 ⊨ω0 NextF(Blue(x))
• n1 ̸⊨ω1 NextF(Blue(x))
• e5 ⊨ω1 NextF(loop(x))

• e1 ⊨ω1 Blue(s(x))Until (loop(x))
• e1 ̸⊨ω1 Blue(s(x))UntilF (loop(x))

• e4 ⊨ω1 Blue(s(x))WUntilF (false)

Andrea Laretto ICGT 2023 July 19th, 2023 15 / 20

Example – Duplicating relations

n1

n2

n0

n3

n4

n5

n6

e1

e4

e5

e7

• n0 ⊨ω0 NextF(Blue(x))
• n1 ̸⊨ω1 NextF(Blue(x))
• e5 ⊨ω1 NextF(loop(x))

• e1 ⊨ω1 Blue(s(x))Until (loop(x))
• e1 ̸⊨ω1 Blue(s(x))UntilF (loop(x))
• e4 ⊨ω1 Blue(s(x))WUntilF (false)

Andrea Laretto ICGT 2023 July 19th, 2023 15 / 20

Agda formalization

• Agda: dependently typed programming language and proof assistant

• Can be used in practice to formalize mathematical constructions
• Mechanization work:

1 A formalization of categorical QLTL and its models in Agda
2 Categorical semantics formalized using the agda-categories library
3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature
4 A classical set-based semantics without the use of categorical logic
5 Presentation of the positive normal forms of QLTL, also in Agda

Andrea Laretto ICGT 2023 July 19th, 2023 16 / 20

Agda formalization

• Agda: dependently typed programming language and proof assistant
• Can be used in practice to formalize mathematical constructions

• Mechanization work:

1 A formalization of categorical QLTL and its models in Agda
2 Categorical semantics formalized using the agda-categories library
3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature
4 A classical set-based semantics without the use of categorical logic
5 Presentation of the positive normal forms of QLTL, also in Agda

Andrea Laretto ICGT 2023 July 19th, 2023 16 / 20

Agda formalization

• Agda: dependently typed programming language and proof assistant
• Can be used in practice to formalize mathematical constructions
• Mechanization work:

1 A formalization of categorical QLTL and its models in Agda
2 Categorical semantics formalized using the agda-categories library
3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature
4 A classical set-based semantics without the use of categorical logic
5 Presentation of the positive normal forms of QLTL, also in Agda

Andrea Laretto ICGT 2023 July 19th, 2023 16 / 20

Agda formalization

• Agda: dependently typed programming language and proof assistant
• Can be used in practice to formalize mathematical constructions
• Mechanization work:

1 A formalization of categorical QLTL and its models in Agda

2 Categorical semantics formalized using the agda-categories library
3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature
4 A classical set-based semantics without the use of categorical logic
5 Presentation of the positive normal forms of QLTL, also in Agda

Andrea Laretto ICGT 2023 July 19th, 2023 16 / 20

Agda formalization

• Agda: dependently typed programming language and proof assistant
• Can be used in practice to formalize mathematical constructions
• Mechanization work:

1 A formalization of categorical QLTL and its models in Agda
2 Categorical semantics formalized using the agda-categories library

3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature
4 A classical set-based semantics without the use of categorical logic
5 Presentation of the positive normal forms of QLTL, also in Agda

Andrea Laretto ICGT 2023 July 19th, 2023 16 / 20

Agda formalization

• Agda: dependently typed programming language and proof assistant
• Can be used in practice to formalize mathematical constructions
• Mechanization work:

1 A formalization of categorical QLTL and its models in Agda
2 Categorical semantics formalized using the agda-categories library
3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature

4 A classical set-based semantics without the use of categorical logic
5 Presentation of the positive normal forms of QLTL, also in Agda

Andrea Laretto ICGT 2023 July 19th, 2023 16 / 20

Agda formalization

• Agda: dependently typed programming language and proof assistant
• Can be used in practice to formalize mathematical constructions
• Mechanization work:

1 A formalization of categorical QLTL and its models in Agda
2 Categorical semantics formalized using the agda-categories library
3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature
4 A classical set-based semantics without the use of categorical logic

5 Presentation of the positive normal forms of QLTL, also in Agda

Andrea Laretto ICGT 2023 July 19th, 2023 16 / 20

Agda formalization

• Agda: dependently typed programming language and proof assistant
• Can be used in practice to formalize mathematical constructions
• Mechanization work:

1 A formalization of categorical QLTL and its models in Agda
2 Categorical semantics formalized using the agda-categories library
3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature
4 A classical set-based semantics without the use of categorical logic
5 Presentation of the positive normal forms of QLTL, also in Agda

Andrea Laretto ICGT 2023 July 19th, 2023 16 / 20

Agda formalization

• Categorical semantics: 1388 lines of Agda code
• Positive normal form: 1740 lines of Agda code

• Why is a formal presentation of our logic useful?
Formalizing constructions and semantics establishes their correctness
Provides a formal setting to test and experiment with temporal logics
Establishes a foundation to build verified model checkers for QTL
Gives a program to convert standard models into categorical ones:

1 Define the semantics of the logic with categorical notions and models
2 Provide a standard non-categorical transition system as model
3 Use the procedure ClassicalToCategorical to construct the

categorical model so that the logic can be applied

Andrea Laretto ICGT 2023 July 19th, 2023 17 / 20

Agda formalization

• Categorical semantics: 1388 lines of Agda code
• Positive normal form: 1740 lines of Agda code
• Why is a formal presentation of our logic useful?

Formalizing constructions and semantics establishes their correctness
Provides a formal setting to test and experiment with temporal logics
Establishes a foundation to build verified model checkers for QTL
Gives a program to convert standard models into categorical ones:

1 Define the semantics of the logic with categorical notions and models
2 Provide a standard non-categorical transition system as model
3 Use the procedure ClassicalToCategorical to construct the

categorical model so that the logic can be applied

Andrea Laretto ICGT 2023 July 19th, 2023 17 / 20

Agda formalization

• Categorical semantics: 1388 lines of Agda code
• Positive normal form: 1740 lines of Agda code
• Why is a formal presentation of our logic useful?

Formalizing constructions and semantics establishes their correctness

Provides a formal setting to test and experiment with temporal logics
Establishes a foundation to build verified model checkers for QTL
Gives a program to convert standard models into categorical ones:

1 Define the semantics of the logic with categorical notions and models
2 Provide a standard non-categorical transition system as model
3 Use the procedure ClassicalToCategorical to construct the

categorical model so that the logic can be applied

Andrea Laretto ICGT 2023 July 19th, 2023 17 / 20

Agda formalization

• Categorical semantics: 1388 lines of Agda code
• Positive normal form: 1740 lines of Agda code
• Why is a formal presentation of our logic useful?

Formalizing constructions and semantics establishes their correctness
Provides a formal setting to test and experiment with temporal logics

Establishes a foundation to build verified model checkers for QTL
Gives a program to convert standard models into categorical ones:

1 Define the semantics of the logic with categorical notions and models
2 Provide a standard non-categorical transition system as model
3 Use the procedure ClassicalToCategorical to construct the

categorical model so that the logic can be applied

Andrea Laretto ICGT 2023 July 19th, 2023 17 / 20

Agda formalization

• Categorical semantics: 1388 lines of Agda code
• Positive normal form: 1740 lines of Agda code
• Why is a formal presentation of our logic useful?

Formalizing constructions and semantics establishes their correctness
Provides a formal setting to test and experiment with temporal logics
Establishes a foundation to build verified model checkers for QTL

Gives a program to convert standard models into categorical ones:
1 Define the semantics of the logic with categorical notions and models
2 Provide a standard non-categorical transition system as model
3 Use the procedure ClassicalToCategorical to construct the

categorical model so that the logic can be applied

Andrea Laretto ICGT 2023 July 19th, 2023 17 / 20

Agda formalization

• Categorical semantics: 1388 lines of Agda code
• Positive normal form: 1740 lines of Agda code
• Why is a formal presentation of our logic useful?

Formalizing constructions and semantics establishes their correctness
Provides a formal setting to test and experiment with temporal logics
Establishes a foundation to build verified model checkers for QTL
Gives a program to convert standard models into categorical ones:

1 Define the semantics of the logic with categorical notions and models
2 Provide a standard non-categorical transition system as model
3 Use the procedure ClassicalToCategorical to construct the

categorical model so that the logic can be applied

Andrea Laretto ICGT 2023 July 19th, 2023 17 / 20

Agda formalization

• Categorical semantics: 1388 lines of Agda code
• Positive normal form: 1740 lines of Agda code
• Why is a formal presentation of our logic useful?

Formalizing constructions and semantics establishes their correctness
Provides a formal setting to test and experiment with temporal logics
Establishes a foundation to build verified model checkers for QTL
Gives a program to convert standard models into categorical ones:

1 Define the semantics of the logic with categorical notions and models

2 Provide a standard non-categorical transition system as model
3 Use the procedure ClassicalToCategorical to construct the

categorical model so that the logic can be applied

Andrea Laretto ICGT 2023 July 19th, 2023 17 / 20

Agda formalization

• Categorical semantics: 1388 lines of Agda code
• Positive normal form: 1740 lines of Agda code
• Why is a formal presentation of our logic useful?

Formalizing constructions and semantics establishes their correctness
Provides a formal setting to test and experiment with temporal logics
Establishes a foundation to build verified model checkers for QTL
Gives a program to convert standard models into categorical ones:

1 Define the semantics of the logic with categorical notions and models
2 Provide a standard non-categorical transition system as model

3 Use the procedure ClassicalToCategorical to construct the
categorical model so that the logic can be applied

Andrea Laretto ICGT 2023 July 19th, 2023 17 / 20

Agda formalization

• Categorical semantics: 1388 lines of Agda code
• Positive normal form: 1740 lines of Agda code
• Why is a formal presentation of our logic useful?

Formalizing constructions and semantics establishes their correctness
Provides a formal setting to test and experiment with temporal logics
Establishes a foundation to build verified model checkers for QTL
Gives a program to convert standard models into categorical ones:

1 Define the semantics of the logic with categorical notions and models
2 Provide a standard non-categorical transition system as model
3 Use the procedure ClassicalToCategorical to construct the

categorical model so that the logic can be applied

Andrea Laretto ICGT 2023 July 19th, 2023 17 / 20

Experience with agda-categories

https://github.com/agda/agda-categories

• The de-facto (non-univalent) standard category theory library in Agda

Extremely practical and flexible, no magic involved
Design choices do not necessarily get in the way of practical applications

• Main definitions used:
• Categories, functors, natural transformations
• Rel: category of sets and relations
• Free categories generated from a quiver (PathCategory)
• Presheaves, the category of (relational) presheaves is complete
• Relational presheaves and morphisms between them

Functoriality and setoid-equality preservation can be annoying to prove
Relatively limited use of the theorems/properties given by the library

Andrea Laretto ICGT 2023 July 19th, 2023 18 / 20

https://github.com/agda/agda-categories

Experience with agda-categories

https://github.com/agda/agda-categories

• The de-facto (non-univalent) standard category theory library in Agda
Extremely practical and flexible, no magic involved

Design choices do not necessarily get in the way of practical applications
• Main definitions used:

• Categories, functors, natural transformations
• Rel: category of sets and relations
• Free categories generated from a quiver (PathCategory)
• Presheaves, the category of (relational) presheaves is complete
• Relational presheaves and morphisms between them

Functoriality and setoid-equality preservation can be annoying to prove
Relatively limited use of the theorems/properties given by the library

Andrea Laretto ICGT 2023 July 19th, 2023 18 / 20

https://github.com/agda/agda-categories

Experience with agda-categories

https://github.com/agda/agda-categories

• The de-facto (non-univalent) standard category theory library in Agda
Extremely practical and flexible, no magic involved
Design choices do not necessarily get in the way of practical applications

• Main definitions used:
• Categories, functors, natural transformations
• Rel: category of sets and relations
• Free categories generated from a quiver (PathCategory)
• Presheaves, the category of (relational) presheaves is complete
• Relational presheaves and morphisms between them

Functoriality and setoid-equality preservation can be annoying to prove
Relatively limited use of the theorems/properties given by the library

Andrea Laretto ICGT 2023 July 19th, 2023 18 / 20

https://github.com/agda/agda-categories

Experience with agda-categories

https://github.com/agda/agda-categories

• The de-facto (non-univalent) standard category theory library in Agda
Extremely practical and flexible, no magic involved
Design choices do not necessarily get in the way of practical applications

• Main definitions used:
• Categories, functors, natural transformations
• Rel: category of sets and relations
• Free categories generated from a quiver (PathCategory)
• Presheaves, the category of (relational) presheaves is complete
• Relational presheaves and morphisms between them

Functoriality and setoid-equality preservation can be annoying to prove
Relatively limited use of the theorems/properties given by the library

Andrea Laretto ICGT 2023 July 19th, 2023 18 / 20

https://github.com/agda/agda-categories

Experience with agda-categories

https://github.com/agda/agda-categories

• The de-facto (non-univalent) standard category theory library in Agda
Extremely practical and flexible, no magic involved
Design choices do not necessarily get in the way of practical applications

• Main definitions used:
• Categories, functors, natural transformations
• Rel: category of sets and relations
• Free categories generated from a quiver (PathCategory)
• Presheaves, the category of (relational) presheaves is complete
• Relational presheaves and morphisms between them

Functoriality and setoid-equality preservation can be annoying to prove

Relatively limited use of the theorems/properties given by the library

Andrea Laretto ICGT 2023 July 19th, 2023 18 / 20

https://github.com/agda/agda-categories

Experience with agda-categories

https://github.com/agda/agda-categories

• The de-facto (non-univalent) standard category theory library in Agda
Extremely practical and flexible, no magic involved
Design choices do not necessarily get in the way of practical applications

• Main definitions used:
• Categories, functors, natural transformations
• Rel: category of sets and relations
• Free categories generated from a quiver (PathCategory)
• Presheaves, the category of (relational) presheaves is complete
• Relational presheaves and morphisms between them

Functoriality and setoid-equality preservation can be annoying to prove
Relatively limited use of the theorems/properties given by the library

Andrea Laretto ICGT 2023 July 19th, 2023 18 / 20

https://github.com/agda/agda-categories

PNF in Agda

• Formalized in Agda: PNF equivalence (using classical reasoning)

• Two cases, using non-categorical semantics:
• PNF with partial functions as counterpart relations
• PNF with general relations (i.e. allow duplication of entities)

• Expansion laws and equivalences in QLTL in both settings
⇒ LTL-like expansion laws break down in the case of relations!
⇒ (But they can be mostly recovered in the case of partial functions.)

Andrea Laretto ICGT 2023 July 19th, 2023 19 / 20

PNF in Agda

• Formalized in Agda: PNF equivalence (using classical reasoning)
• Two cases, using non-categorical semantics:

• PNF with partial functions as counterpart relations
• PNF with general relations (i.e. allow duplication of entities)

• Expansion laws and equivalences in QLTL in both settings
⇒ LTL-like expansion laws break down in the case of relations!
⇒ (But they can be mostly recovered in the case of partial functions.)

Andrea Laretto ICGT 2023 July 19th, 2023 19 / 20

PNF in Agda

• Formalized in Agda: PNF equivalence (using classical reasoning)
• Two cases, using non-categorical semantics:
• PNF with partial functions as counterpart relations

• PNF with general relations (i.e. allow duplication of entities)
• Expansion laws and equivalences in QLTL in both settings
⇒ LTL-like expansion laws break down in the case of relations!
⇒ (But they can be mostly recovered in the case of partial functions.)

Andrea Laretto ICGT 2023 July 19th, 2023 19 / 20

PNF in Agda

• Formalized in Agda: PNF equivalence (using classical reasoning)
• Two cases, using non-categorical semantics:
• PNF with partial functions as counterpart relations
• PNF with general relations (i.e. allow duplication of entities)

• Expansion laws and equivalences in QLTL in both settings
⇒ LTL-like expansion laws break down in the case of relations!
⇒ (But they can be mostly recovered in the case of partial functions.)

Andrea Laretto ICGT 2023 July 19th, 2023 19 / 20

PNF in Agda

• Formalized in Agda: PNF equivalence (using classical reasoning)
• Two cases, using non-categorical semantics:
• PNF with partial functions as counterpart relations
• PNF with general relations (i.e. allow duplication of entities)

• Expansion laws and equivalences in QLTL in both settings

⇒ LTL-like expansion laws break down in the case of relations!
⇒ (But they can be mostly recovered in the case of partial functions.)

Andrea Laretto ICGT 2023 July 19th, 2023 19 / 20

PNF in Agda

• Formalized in Agda: PNF equivalence (using classical reasoning)
• Two cases, using non-categorical semantics:
• PNF with partial functions as counterpart relations
• PNF with general relations (i.e. allow duplication of entities)

• Expansion laws and equivalences in QLTL in both settings
⇒ LTL-like expansion laws break down in the case of relations!

⇒ (But they can be mostly recovered in the case of partial functions.)

Andrea Laretto ICGT 2023 July 19th, 2023 19 / 20

PNF in Agda

• Formalized in Agda: PNF equivalence (using classical reasoning)
• Two cases, using non-categorical semantics:
• PNF with partial functions as counterpart relations
• PNF with general relations (i.e. allow duplication of entities)

• Expansion laws and equivalences in QLTL in both settings
⇒ LTL-like expansion laws break down in the case of relations!
⇒ (But they can be mostly recovered in the case of partial functions.)

Andrea Laretto ICGT 2023 July 19th, 2023 19 / 20

Conclusion and Future Work

In this work we present a counterpart-based temporal logic
that can reason on the temporal evolution of algebraic structures
and formalize its semantics in Agda along with results on its PNF.

• Many possible extensions of this work:

• formalization of second-order QLTL to express set quantification
• extending counterpart semantics to CTL, CTL∗ and their models
• interfacing Agda with SMT solvers and model checkers for QLTL
• formalize syntax and models of the logic with indexed categories and

morphisms between them, as in categorical logic [Jacobs, 2001]

• A study of formally-presented temporal logics is absent in the literature
• Other verified model checkers: LTL in Isabelle [Nipkow, 2013]

• Proof searching using reflection in Agda for CTL [O’Connor, 2016]

Andrea Laretto ICGT 2023 July 19th, 2023 20 / 20

Conclusion and Future Work

In this work we present a counterpart-based temporal logic
that can reason on the temporal evolution of algebraic structures
and formalize its semantics in Agda along with results on its PNF.

• Many possible extensions of this work:
• formalization of second-order QLTL to express set quantification

• extending counterpart semantics to CTL, CTL∗ and their models
• interfacing Agda with SMT solvers and model checkers for QLTL
• formalize syntax and models of the logic with indexed categories and

morphisms between them, as in categorical logic [Jacobs, 2001]

• A study of formally-presented temporal logics is absent in the literature
• Other verified model checkers: LTL in Isabelle [Nipkow, 2013]

• Proof searching using reflection in Agda for CTL [O’Connor, 2016]

Andrea Laretto ICGT 2023 July 19th, 2023 20 / 20

Conclusion and Future Work

In this work we present a counterpart-based temporal logic
that can reason on the temporal evolution of algebraic structures
and formalize its semantics in Agda along with results on its PNF.

• Many possible extensions of this work:
• formalization of second-order QLTL to express set quantification
• extending counterpart semantics to CTL, CTL∗ and their models

• interfacing Agda with SMT solvers and model checkers for QLTL
• formalize syntax and models of the logic with indexed categories and

morphisms between them, as in categorical logic [Jacobs, 2001]

• A study of formally-presented temporal logics is absent in the literature
• Other verified model checkers: LTL in Isabelle [Nipkow, 2013]

• Proof searching using reflection in Agda for CTL [O’Connor, 2016]

Andrea Laretto ICGT 2023 July 19th, 2023 20 / 20

Conclusion and Future Work

In this work we present a counterpart-based temporal logic
that can reason on the temporal evolution of algebraic structures
and formalize its semantics in Agda along with results on its PNF.

• Many possible extensions of this work:
• formalization of second-order QLTL to express set quantification
• extending counterpart semantics to CTL, CTL∗ and their models
• interfacing Agda with SMT solvers and model checkers for QLTL

• formalize syntax and models of the logic with indexed categories and
morphisms between them, as in categorical logic [Jacobs, 2001]

• A study of formally-presented temporal logics is absent in the literature
• Other verified model checkers: LTL in Isabelle [Nipkow, 2013]

• Proof searching using reflection in Agda for CTL [O’Connor, 2016]

Andrea Laretto ICGT 2023 July 19th, 2023 20 / 20

Conclusion and Future Work

In this work we present a counterpart-based temporal logic
that can reason on the temporal evolution of algebraic structures
and formalize its semantics in Agda along with results on its PNF.

• Many possible extensions of this work:
• formalization of second-order QLTL to express set quantification
• extending counterpart semantics to CTL, CTL∗ and their models
• interfacing Agda with SMT solvers and model checkers for QLTL
• formalize syntax and models of the logic with indexed categories and

morphisms between them, as in categorical logic [Jacobs, 2001]

• A study of formally-presented temporal logics is absent in the literature
• Other verified model checkers: LTL in Isabelle [Nipkow, 2013]

• Proof searching using reflection in Agda for CTL [O’Connor, 2016]

Andrea Laretto ICGT 2023 July 19th, 2023 20 / 20

Conclusion and Future Work

In this work we present a counterpart-based temporal logic
that can reason on the temporal evolution of algebraic structures
and formalize its semantics in Agda along with results on its PNF.

• Many possible extensions of this work:
• formalization of second-order QLTL to express set quantification
• extending counterpart semantics to CTL, CTL∗ and their models
• interfacing Agda with SMT solvers and model checkers for QLTL
• formalize syntax and models of the logic with indexed categories and

morphisms between them, as in categorical logic [Jacobs, 2001]

• A study of formally-presented temporal logics is absent in the literature

• Other verified model checkers: LTL in Isabelle [Nipkow, 2013]

• Proof searching using reflection in Agda for CTL [O’Connor, 2016]

Andrea Laretto ICGT 2023 July 19th, 2023 20 / 20

Conclusion and Future Work

In this work we present a counterpart-based temporal logic
that can reason on the temporal evolution of algebraic structures
and formalize its semantics in Agda along with results on its PNF.

• Many possible extensions of this work:
• formalization of second-order QLTL to express set quantification
• extending counterpart semantics to CTL, CTL∗ and their models
• interfacing Agda with SMT solvers and model checkers for QLTL
• formalize syntax and models of the logic with indexed categories and

morphisms between them, as in categorical logic [Jacobs, 2001]

• A study of formally-presented temporal logics is absent in the literature
• Other verified model checkers: LTL in Isabelle [Nipkow, 2013]

• Proof searching using reflection in Agda for CTL [O’Connor, 2016]

Andrea Laretto ICGT 2023 July 19th, 2023 20 / 20

Conclusion and Future Work

In this work we present a counterpart-based temporal logic
that can reason on the temporal evolution of algebraic structures
and formalize its semantics in Agda along with results on its PNF.

• Many possible extensions of this work:
• formalization of second-order QLTL to express set quantification
• extending counterpart semantics to CTL, CTL∗ and their models
• interfacing Agda with SMT solvers and model checkers for QLTL
• formalize syntax and models of the logic with indexed categories and

morphisms between them, as in categorical logic [Jacobs, 2001]

• A study of formally-presented temporal logics is absent in the literature
• Other verified model checkers: LTL in Isabelle [Nipkow, 2013]

• Proof searching using reflection in Agda for CTL [O’Connor, 2016]

Andrea Laretto ICGT 2023 July 19th, 2023 20 / 20

Thank you for your attention!

Agda formalization:
https://github.com/iwilare/algebraic-temporal-logics

Andrea Laretto ICGT 2023 July 19th, 2023 20 / 20

https://github.com/iwilare/algebraic-temporal-logics

