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Contribution and Outline

We present the semantics of a counterpart-based temporal logic
to reason on the evolution of graph-like structures, and formalize it

using the proof assistant Agda along with results on its PNF.
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Temporal logics

Well-known formalism for specifying and verifying complex systems

1 Represent the system as a transition system, called model

paystart

select

tea coffee

Transition system for a
simple vending machine

2 Express desired properties as formulas in a temporal logic

Always(Eventually(pay)) ¬Eventually(tea)

3 Use a program to check that the model satisfies the formula
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Motivation: Multi-component models

• States are simply atomic points

• In practice, states often have structure that can change in time:
• Time evolution of graph topologies: merging nodes, deletion of edges

• Managing processes in memory: forking, allocation and deallocation

• Dynamic behaviour of election algorithms: splitting and union of parties

• Objectives:

Can we enrich our models to express multi-component behaviour?
Can we define logics that can reason on the fate of individual elements?

• Yes! Using counterpart models and quantified temporal logics
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Counterpart paradigm

• Standard LTL traces: sequences of states

ω0 ω1 ω2 ω3

• Associate to each state a set of individuals, called worlds
• Our traces: sequences of worlds

ω0 ω1 ω2 ω3

a0

b1

a1

c1

a2

c2

a3
b2

b3

b0
c0

d0

How do we represent transitions?
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b2

b3

b0
c0
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ω0 ω1 ω2

C0
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• Intuition: individuals connected by a relation are the same after one step
• We call these sequences of worlds and relations counterpart traces
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Counterpart traces with algebras

• Counterpart trace: function ω : N → Set and {Ri ⊆ ω(i)× ω(i+ 1)}i∈N

• Worlds-as-algebras: generalize sets to algebras over a signature Σ
• Idea: take Σ-algebras and structure-preserving relations between them
• Examples: (multi)graphs, undirected graphs, trees, lists, etc.
• A counterpart trace on the signature of directed graphs:

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2
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Categorical semantics

• Counterpart model: a transition system enriched with worlds and
counterpart relations between them

• Counterpart models can be understood within the unifying perspective of
category theory and categorical logic:

Counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure
+ a presheaf D : Wop → Rel︸ ︷︷ ︸

Relational presheaf

• Objects of W are the states of the underlying transition system
• Morphisms of W represent transitions between states
• The temporal structure identifies the one-step transitions of the model
• The relational presheaf assign worlds and counterpart relations to states
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Example – Counterpart model

Wop, Tgf

h

g ;h

h′

kω0 ω1 ω2 ω3

idω0

D(ω0) D(ω1) D(ω3)

D

D(ω2)

D(f) D(g) D(h) D(k)

Rel

a0

b1

a1
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c2

a3
b2

b3

b0
c0

d0

Andrea Laretto ICGT 2023 July 19th, 2023 7 / 20



Example – Counterpart model

Wop, Tgf

h

g ;h

h′

kω0 ω1 ω2 ω3

idω0

D(ω0) D(ω1) D(ω3)

D

D(ω2)

D(f) D(g) D(h) D(k)

Rel

a0

b1

a1

c1

a2

c2

a3
b2

b3

b0
c0

d0

Andrea Laretto ICGT 2023 July 19th, 2023 7 / 20



Categorical semantics

• For the signature of directed graphs:

Graph counterpart model ≈ a category W
+ a class T of selected morphisms of W︸ ︷︷ ︸

Temporal structure

+ relational presheaves N,E : Wop → Rel︸ ︷︷ ︸
Sorts of the signature

+ relational morphisms s, t : E ⇒ N︸ ︷︷ ︸
Function symbols
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Example – Graph counterpart model

ω2ω1ω0 f2
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JEdgeK JNodeK

n5n4

n3

n2
n1
n0

I(t)I(s)
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QLTL

• QLTL: (first-order) quantified linear temporal logic using traces

• Syntax of QLTL formulas:

ϕ := true | ¬ϕ | ϕ ∧ ϕ | Next(ϕ) | ϕUntilϕ | ∃Nx.ϕ | ∃Ex.ϕ | P (x) | ψ
ψ := n =N n | e =E e, with n := x | s(e) | t(e), and e := x.

• Semantics: given a trace σ, define a satisfiability relation on (tuples of)
nodes and edges satisfying ϕ, i.e., assignments µ for the fv(ϕ).

• σ, µ ⊨ true;
• σ, µ ⊨ ϕ1 ∧ ϕ2 iff σ, µ ⊨ ϕ1 and σ, µ ⊨ ϕ2;
• σ, µ ⊨ e1 =E e2 iff µ∗

E(e1) = µ∗
E(e2);

• σ, µ ⊨ ∃Nx.ϕ iff there is a node n ∈ D(ω0)N such that σ, µ[x 7→ n] ⊨ ϕ;
• σ, µ ⊨ Oϕ iff there is an assignment µ1 s.t. ⟨µ, µ1⟩ ∈ C0 and σ1, µ1 ⊨ ϕ;
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Example – QLTL
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• n1 ⊨ω0 Next(Blue(x))
• n0 ⊨ω0 ¬Next(Red(x))
• n2 ⊨ω0 Red(x)Until Blue(x)

• (n3, n4) ⊨ω1 Next(x = y)

• () ⊨w0 ∃x.Next(Blue(x))
• (n1, n2) ⊨ω0 (¬(x = y))Until (x = y)
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Graph formulae

• We can define formulae that capture structural aspects of the graph:

loop(e) := s(e) =N t(e),

hasLoop(n) := ∃Ee.s(e) =N n ∧ loop(e),
composable(x, y) := t(x) =N s(y)

haveComposition(x, y) := composable(x, y)
∧ ∃Ee.(s(x) =N s(e) ∧ t(e) =N t(y))

adjacent(x, y) := ∃Ee.((s(e) =N x ∧ t(e) =N y)
∨ (t(e) =N x ∧ s(e) =N y))
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Example – QLTL on graphs

n0

n1

n2 n4

n3

e4e3

e0

e1

e2

n5e5

ω1ω0 ω2

• e4 ⊨ω1 Next(loop(x))
• e3 ⊨ω1 ¬Next(loop(x))
• (e3, e4) ⊨ω0 composable(x, y)

• (n0, n2) ⊨ω0 adjacent(x, y)
• (n0, n2) ̸⊨ω0 Oadjacent(x, y)
• e0 ⊨ω0 ♢loop(x)
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Positive normal forms for QLTL

• PNF: a standard presentation for temporal logics

• Usually given to simplify model checking and for fixpoint semantics
• PNFs are essential to work in a constructive proof assistant
• PNF for QLTL:

ϕ := ψ | ¬ψ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃Ex.ϕ | ∃Nx.ϕ | ∀Ex.ϕ | ∀Nx.ϕ

| Next(ϕ) | ϕ1Untilϕ2 | ϕ1WUntilϕ2 | NextF(ϕ) | ϕ1UntilFϕ2 | ϕ1WUntilFϕ2

• Intuition: universal counterparts to the previous operators

¬Next(ϕ) ≡ NextF(¬ϕ)
¬(ϕ1Untilϕ2) ≡ (¬ϕ2)WUntilF(¬ϕ1 ∧ ¬ϕ2)

¬(ϕ1WUntilϕ2) ≡ (¬ϕ2)UntilF(¬ϕ1 ∧ ¬ϕ2)

• Become particularly useful to treat duplicating relations
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Example – Duplicating relations
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n1

n2

n0

n3

n4

n5

n6

e1

e4

e5

e7

• n0 ⊨ω0 NextF(Blue(x))

• n1 ̸⊨ω1 NextF(Blue(x))
• e5 ⊨ω1 NextF(loop(x))

• e1 ⊨ω1 Blue(s(x))Until (loop(x))
• e1 ̸⊨ω1 Blue(s(x))UntilF (loop(x))
• e4 ⊨ω1 Blue(s(x))WUntilF (false)
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Agda formalization

• Agda: dependently typed programming language and proof assistant

• Can be used in practice to formalize mathematical constructions
• Mechanization work:

1 A formalization of categorical QLTL and its models in Agda
2 Categorical semantics formalized using the agda-categories library
3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature
4 A classical set-based semantics without the use of categorical logic
5 Presentation of the positive normal forms of QLTL, also in Agda
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Agda formalization

• Categorical semantics: 1388 lines of Agda code
• Positive normal form: 1740 lines of Agda code

• Why is a formal presentation of our logic useful?
Formalizing constructions and semantics establishes their correctness
Provides a formal setting to test and experiment with temporal logics
Establishes a foundation to build verified model checkers for QTL
Gives a program to convert standard models into categorical ones:

1 Define the semantics of the logic with categorical notions and models
2 Provide a standard non-categorical transition system as model
3 Use the procedure ClassicalToCategorical to construct the

categorical model so that the logic can be applied
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Experience with agda-categories

https://github.com/agda/agda-categories

• The de-facto (non-univalent) standard category theory library in Agda

Extremely practical and flexible, no magic involved
Design choices do not necessarily get in the way of practical applications

• Main definitions used:
• Categories, functors, natural transformations
• Rel: category of sets and relations
• Free categories generated from a quiver (PathCategory)
• Presheaves, the category of (relational) presheaves is complete
• Relational presheaves and morphisms between them

Functoriality and setoid-equality preservation can be annoying to prove
Relatively limited use of the theorems/properties given by the library
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PNF in Agda

• Formalized in Agda: PNF equivalence (using classical reasoning)

• Two cases, using non-categorical semantics:
• PNF with partial functions as counterpart relations
• PNF with general relations (i.e. allow duplication of entities)

• Expansion laws and equivalences in QLTL in both settings
⇒ LTL-like expansion laws break down in the case of relations!
⇒ (But they can be mostly recovered in the case of partial functions.)
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Conclusion and Future Work

In this work we present a counterpart-based temporal logic
that can reason on the temporal evolution of algebraic structures
and formalize its semantics in Agda along with results on its PNF.

• Many possible extensions of this work:

• formalization of second-order QLTL to express set quantification
• extending counterpart semantics to CTL, CTL∗ and their models
• interfacing Agda with SMT solvers and model checkers for QLTL
• formalize syntax and models of the logic with indexed categories and

morphisms between them, as in categorical logic [Jacobs, 2001]

• A study of formally-presented temporal logics is absent in the literature
• Other verified model checkers: LTL in Isabelle [Nipkow, 2013]

• Proof searching using reflection in Agda for CTL [O’Connor, 2016]
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Thank you for your attention!

Agda formalization:
https://github.com/iwilare/algebraic-temporal-logics
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