
Directed equality for (co)end calculus
Andrea Laretto #

Tallinn University of Technology, Estonia

Fosco Loregian #

Tallinn University of Technology, Estonia

Niccolò Veltri #

Tallinn University of Technology, Estonia

Abstract
We show how dinaturality plays a central role in the interpretation of directed type theory where
types are interpreted as (1-)categories and directed equality is represented by hom-functors. We
present a general elimination principle based on dinaturality for directed equality which very closely
resembles the J-rule used in Martin-Löf type theory, and we highlight the syntactic restrictions
needed to interpret this rule in the directed case. We argue that the quantifiers of such a directed
type theory should be interpreted as ends and coends, which dinaturality allows us to present in
adjoint-like correspondences to a weakening operation. We then combine these rules together to give
a logical interpretation to (co)end calculus and Yoneda reductions, and we use formal derivations to
prove the Fubini rule for quantifier exchange, the adjointness property of Kan extensions via (co)ends,
exponential objects of presheaves, and the (co)Yoneda lemma. We show transitivity (composition),
congruence (functoriality), and transport (coYoneda) for directed equality by closely following the
same approach of Martin-Löf type theory, with the notable exception of symmetry. Our main
theorems are formalized in Agda.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases directed type theory, coend calculus, dinaturality

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Funding Fosco Loregian: Loregian was supported by the Estonian Research Council grant PRG1210.
Niccolò Veltri: Veltri was supported by the Estonian Research Council grant PSG749.

1 Introduction

Equality is one of the most interesting aspects of Martin-Löf type theory: for any A : Type
and a, b : A there is a type of equalities a =A b : Type, and since this is itself a type, one
can talk about the type of equalities between equalities p =a=Ab q : Type for any p, q : a = b.
This is the fundamental idea behind homotopy type theory [14, 61], and it allows for types
to be interpreted as groupoids [32], where not all equalities are themselves equal, as well as
∞-groupoids [6], where such iterated equalities might never trivialize. In these settings, the
inherently symmetric nature of equality is what enables types to be given as (∞-)groupoids,
where equality is precisely interpreted by morphisms which are always invertible. A natural
question follows: can there be a variant of Martin-Löf type theory which enables types to be
interpreted as categories, where morphisms need not be invertible? Such a system should
take the name of directed type theory [1, 47, 39, 26], where the directed aspect comes from a
non-symmetric interpretation of “equality”, which now possesses both a source and a target
in the same way that morphisms do in a category.

Directed type theory has been a sought-after goal of recent type-theoretic research [26, 2],
with several attempts aimed at pinpointing precisely both its syntactic and semantic aspects.
A fundamental aspect of this (1-)category interpretation of type theory is the fact that with
each type/category C there is a naturally associated type Cop, where the objects are the same

© Andrea Laretto and Fosco Loregian and Niccolò Veltri;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrea.laretto@taltech.ee
https://orcid.org/0000-0002-6413-5794
mailto:fosco.loregian@taltech.ee
https://orcid.org/0000-0003-3052-465X
mailto:niccolo.veltri@taltech.ee
https://orcid.org/0000-0002-7230-3436
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Directed equality for (co)end calculus

but all directed equalities are reversed. This allows for a type of directed equalities homC(a, b)
to be given in terms of the functor homC : Cop × C → Set, which receives a “contravariant”
argument a : Cop and a “covariant” one b : C and provides a set homC(x, y) (i.e., a category
with only trivial directed equalities) of directed equalities between any two objects x, y of C.
A directed type theory should therefore have some notion of “polarity” or “variance” which
allows variables to appear only in certain positions, as treated in [39, 46, 47, 48].

The introduction rule for symmetric equality is typically given by the term refla : a = a.
In a directed type theory where types are categories, this should be motivated by the fact
that there is a directed equality ida ∈ homC(a, a) (i.e., the identity) for any a : C. However,
naïvely stating this typing rule as “refla : homC(a, a)” would involve both a contravariant
and a covariant occurrence of the variable a : C, and would not be given functorially with
respect to the variance of hom. One solution considered by North [47] is to use the maximal
subgroupoid Ccore to collapse the two variances, since (Ccore)op ∼=Ccore. The refl rule can then
be expressed as refla : hom(iop(a), i(a)) via the embeddings i : Ccore → C and iop : Ccore → Cop.
Another fundamental rule needed to work with equalities is a way to eliminate them; this is
classically done with the so-called J-rule [31],

C : Type, P :
∏

a,b:C(a =C b → Type), t :
∏

x:C P (x, x, reflx)
(J-rule)

J(t) :
∏

a,b:C
∏

e:a=C b P (a, b, e)

where the computation rule J(x, x, reflx) ≡ t(x) holds definitionally. Intuitively, to prove a
proposition P (a, b, e) for terms a, b : C with an equality e : a = b, it is sufficient to consider
the case where a and b are the same term x, and the equality e is exactly reflx. This fact
that “it is enough to consider the case where the equality is refl” bears a striking similarity
to the fundamental idea underlying the Yoneda lemma, one of the most central and praised
results in category theory [41]. Viewing the Yoneda lemma as a sort of (directed) J-rule is
applied in practice by [56, 25] in simplicial type theory, and is investigated in HoTT in [20].
Quantifiers and (co)ends. A central yet unexplored question is how quantifiers should
be interpreted in the types-as-categories semantics of directed type theory. A well-known
rephrasing of the Yoneda lemma (called “ninja” Yoneda lemma [37]) provides inspiration
for a possible answer, described in detail in Section 3 and introduced here intuitively. The
set of natural transformations appearing in the Yoneda lemma can be characterized in
terms of a universal object called the end of a functor of a specific type [41, IX.5], [40].
Given a functor P : Cop × C → D, the end of P , denoted as

∫
x:C P (x, x), is an object of

D with a certain terminal universal property. Notationally, the integral sign of ends binds
covariant and contravariant occurrences of variables for the rest of the expression, and we
indicate with x : Cop the contravariant occurrences of variables x : C. Ends of certain
functors into Set characterize natural transformations: for any two functors F,G : C → D
there is an isomorphism Nat(F,G) ∼=

∫
x:C homD(F (x), G(x)) natural in F,G. Note the

resemblance between the end of the above functor and the universal quantification expressed
in the elementary definition of natural transformation. This allows the Yoneda lemma to
be rephrased as an isomorphism (natural in a : C and P : C → Set) between P (a) and a
certain set of naturals computed as an end; we show this isomorphism in Figure 1a above its
“decategorification”1, where ends are viewed as a sort of universal quantifier, presheaves as
(proof-relevant) predicates, and directed equality is turned back into symmetric equality.

1 We use double lines in this section to suggest a correspondence between the connectives of both formulas,
without giving it here a formal meaning.

A. Laretto and F. Loregian and N. Veltri 23:3

(a)
P (a) ∼=

∫
x:C homC(a, x) ⇒ P (x)

P (a) ⇔ ∀(x : C). a =C x ⇒ P (x)
(b)

P (a) ∼=
∫ x:C homC(x, a) × P (x)

P (a) ⇔ ∃(x : C). x =C a ∧ P (x)

Figure 1 Yoneda and coYoneda lemma using (co)ends and their corresponding logical statements.

There is a similar logical correspondence using existential rather than universal quantifiers,
shown in Figure 1b: existentials are now interpreted by the dual notion of ends, coends [40],
denoted as

∫ x:C
P (x, x). Since (co)ends are (co)limits, this result also takes the well-known

slogan of “presheaves are colimits of representables” [38] or “coYoneda lemma” [40]. This
correspondence with first order logic allows us to reframe these celebrated results of category
theory as simple logical equivalences of formulas, which one can validate with a formal system
such as sequent calculus or type theory. However, there is currently no formal system for the
directed case where one can modularly use rules for quantifiers and equality as done in logic,
e.g., with suitable introduction/elimination rules specific to directed equality and (co)ends.
(Co)end calculus. There is a formal aspect to the manipulation of ends and coends,
outlined in [40], which is common knowledge among theoreticians, that allows non-trivial
theorems to be proven using simple formal rules reminiscent of a deductive system. Apart
from its applications in pure category theory [40, 60, 16, 33], such “(co)end calculus” has
proven to be particularly useful in theoretical computer science, for example in the context
of profunctor optics [13, 11] and their string diagrams [57, 10], strong monads and functional
programming [3, 4, 30, 63], quantum circuits [27], and logic [52, 54, 23]. Leveraging this
abundance of practical applications, [40] hints at the existence of such deductive system, but
falls short of precisely pinpointing its rules. This particular application to coend calculus,
which as we will see can be interpreted logically as a first-order version of directed type
theory, is what motivates our focus on a non-dependent presentation of directed type theory.
Dinaturality. The notion of (co)end, first introduced by Yoneda [67], is intimately connected
to dinaturality: dinatural transformations are a generalization of natural transformations
which considers families of morphisms between functors with two variances F : Cop × C → D,
and were first introduced by Dubuc and Street [18] as an extension to the extranatural
transformations by Eilenberg and Kelly [19]. Famously, however, such generalized natural
transformations do not always compose: a well-known sufficient condition for the composabil-
ity of extranaturals is the absence of loops in a suitably associated graph [19], an idea recently
revived for dinaturals in [44]. Despite the apparent lack of composition, there are various
examples of settings in which all dinaturals compose: the fundamental idea is to single out a
class of “definable” dinaturals where composition follows because their formation rules are
precisely defined, and given syntactically. This point of view finds its most natural application
in the logical setting, where composition corresponds to cut elimination [50, 7, 8, 9, 24]. There
is a particularly deep connection between dinaturality and parametricity in programming
languages [51, 53, 64], as well as realizable models for System F [5, 21] where all dinaturals
compose. An in-depth review on dinaturality and its importance for both computer science
and category theory can be found in [58] and [59, Sec. 3].

1.1 Contribution

In this paper we describe how dinaturality allows us to semantically validate an introduction
and an elimination rule for directed equality exactly in the style of Martin-Löf type theory,
where directed equality is interpreted by hom-functors, types by (1-)categories. Motivated by

CVIT 2016

23:4 Directed equality for (co)end calculus

the application to (co)end calculus, we consider a (proof-relevant) non-dependent treatment
of directed type theory, using (co)presheaves as predicates and dinatural transformations as
entailments which are not required to compose. The intuition behind dinatural transforma-
tions is that they allow the same variable to appear both covariantly and contravariantly:
this is exactly what allows us to resolve the variance problems previously mentioned in the
directed refl rule, which we validate using identities in hom-sets. We present a directed
equality elimination rule which is syntactically reminiscent of the J-rule used in standard
Martin-Löf type theory, and dinaturality is again what permits the same variable x to
appear with both variances in the type P (x, x, reflx) in (J-rule). This elimination rule is
semantically motivated by the connection between dinaturality and naturality, and sheds
a light on the syntactic restrictions imposed in a full type theory where equality is now
directed rather than symmetric: in short, the syntactic requirement to contract a directed
equality in context homC(x, y) for x : Cop, y : C is that both x and y must appear only
positively (i.e., with the same variance) in the conclusion and only negatively (i.e., with the
opposite variance) in the assumptions in context. The rules for directed equality allow us to
recover the same type-theoretic definitions about symmetric equality that one expects in
standard Martin-Löf type theory, except for symmetry: e.g., transitivity of directed equality
(composition in a category), congruences of terms along directed equalities (the action of a
functor on morphisms), transport along directed equalities (i.e., the coYoneda lemma). We
highlight how the syntactic restrictions imposed by this rule for directed equality elimination
do not allow us to obtain that directed equalities are symmetric.
Moreover, we show how dinaturality allows us to more precisely view (co)ends as the “directed
quantifiers” of directed type theory, which we present in a correspondence reminiscent of
the quantifiers-as-adjoints paradigm of Lawvere [36]. The semantic setting in which we
validate our rules is by considering a categorification (both proof-relevant and directed) of
non-dependent first-order logic: types are (small) categories (possibly with −op), contexts
are lists of categories, terms are functors Cop × C → D, propositions are functors of type
Cop × C → Set, and entailments are dinatural transformations. We do not provide an account
of these rules using categorical semantics precisely because dinaturals do not compose in
general; despite this lack of general composition, the rules for directed equality and coends-
as-quantifiers can be jointly used to give concise proofs of central theorems in category theory
using a distinctly logical flavour via a series of isomorphisms: e.g., the (co)Yoneda lemma,
Kan extensions computed via (co)ends are adjoint to precomposition, presheaves form a
closed category, hom-functors preserve (co)limits, and the Fubini rules; each of these easily
follows by modularly using the logical properties of each connective used. Our treatment of
(co)ends as quantifiers, combined with a formal view of hom in terms of directed equality rules,
is a concrete step towards formally understanding the so-called “(co)end calculus” [40] from
a logical perspective. We formalize the main theorems given in this paper about dinaturality
using the Agda proof assistant and the agda-categories library. Whenever present, the
symbol () next to theorems links to the formal proof, for which we report here just the core
idea. The full formalization is accessible at https://github.com/iwilare/dinaturality.

1.2 Related work
Directed type theory with groupoids. North [47] describes a dependent directed type
theory with semantics in the category of (small) categories Cat, but uses groupoidal structure
to deal with the problem of variance in both introduction and elimination rules for directed
equality. This line of research has been recently expanded in [12] by extending judgements
with variance annotations. We focus on non-dependent semantics, and tackle the variance

https://github.com/agda/agda-categories
https://github.com/iwilare/dinaturality/blob/main/
https://github.com/iwilare/dinaturality

A. Laretto and F. Loregian and N. Veltri 23:5

issue precisely with the notion of dinatural transformation; this allows us to characterize
directed equality intrinsically, without using any of the groupoidal structure of categories.
Directed type theory, judgemental models. Another approach to modeling directed
equality is at the judgemental level. This line of research started with Licata and Harper
[39] who introduced a directed type theory with a model in Cat. Since directed equality is
treated judgementally, there are no rules governing its behaviour in terms of elimination and
introduction principles, although variances are present in the context as we similarly do in
our approach. Ahrens et al. [1] similarly identify a type theory with judgmental directed
equalities with sound semantics in comprehension bicategories, and extensively compare
previous works on both judgemental and propositional directed type theories.
Synthetic logics for category theory. New and Licata [46] give a sound and complete
presentation for the internal language of (hyperdoctrines of) certain virtual equipments.
These models capture enriched, internal, and fibered categories, and have an intrinsically
directed flavour. In these contexts, the type theory can give synthetic proofs of Fubini,
Yoneda, and Kan extensions as adjoints. This generality however comes at the cost of
a non-standard syntactic structure of the logic, for example when compared to standard
Martin-Löf type theory, along with some non-trivial syntactic judgements prescribed by the
structure of the models. Directed equality elimination here takes the shape of the (horizontal)
identity laws axiomatized in virtual equipments [15], which in Prof is essentially the coYoneda
lemma. Their quantifiers are given by the universal properties of tensor and (left/right)
internal homs, which in the Prof model are given by certain restricted (co)ends which always
come combined with the tensors and internal homs of Set. Our work is similar in spirit
in that we provide a formal setting for proving category theoretical theorems using logical
methods, but we only focus on the elementary 1-categorical model of categories and do not
yet capture enriched and internal settings. However, we treat ends and coends as quantifiers
directly, with adjoints-like correspondences to weakening functors which only act on the
variables of the context and without the need for quantifiers to include (restricted forms of)
conjunction and implication. Our rules for directed equality are more direct and reminiscent
of standard Martin-Löf type theory, and specifically focus on the semantic justification based
on dinaturality. Since we consider less general models, our contexts do not have any linear
nor ordered restriction, and the same variable can appear multiple times both in equalities
and contexts. This allows us to consider profunctors of many variables and different variances
as typically needed in coend calculus.
Geometric models of directed type theory. Riehl and Shulman [56] introduce a
simplicial type theory based on a synthetic description of (∞, 1)-categories. A directed
interval type is axiomatized in a style reminiscent of cubical type theory [14], which allows a
form of (dependent) Yoneda lemma to be proven using the structure of the identity type.
This type theory has been implemented in practice in the Rzk proof assistant [35]. On this
line of research, Weaver and Licata [65] present a bicubical type theory with a directed
interval and investigate a directed analogue of the univalence axiom; the same objective
was recently explored in Gratzer et al. [26] with triangulated type theory and modalities.
In comparison with the above works, we do not explore the geometrical interpretation of
directedness and focus on elementary 1-categorical semantics; moreover, our treatment of
directed equality is done intrinsically with elimination rules as in Martin-Löf type theory
rather than with synthetic intervals, with semantics directly provided by hom-functors.
Coend calculus, formally. Caccamo and Winskel [17] give a formal system in which
one can work with coends and establish non-trivial theorems with a few syntactical rules.
The flavour is explicitly that of an axiomatic system, and does not take inspiration from

CVIT 2016

23:6 Directed equality for (co)end calculus

type-theoretic rules: for instance, presheaves are postulated to be equivalent under the
swapping of quantifiers (Fubini), so this principle is not derived from structural rules as
typically done in a logical presentation.

2 Syntax and Semantics

We now present the syntactic judgements of a proof-relevant non-dependent first-order
directed type theory, with main semantics in 1-categories. We will consider the following
judgements along with their semantics:

C type types A,C,D are interpreted as small categories, possibly with −op; we axiomatize
these by modeling terminal ⊤, product C × D and functor categories [C,D]. We add a
base type Cop for each base type C in a fixed signature Σ, and then define an involution
−op on types by induction, following the semantics in Cat in the intuitive way. A similar
definition of op can be given for terms and predicates, which we detail in Figure 7.
Γ ctx contexts Γ,∆ are interpreted as finite products of categories;
Γ ⊢ F : C terms F,G as functors JΓK → JCK, which we axiomatize like terms in STLC;
[Γ] P prop predicates P,Q,R,A,B as dipresheaves, i.e., functors JP K :JΓKop ×JΓK→Set;

[Γ] Φ propctx propositional contexts Φ,Φ′ as pointwise products of dipresheaves;

[Γ] Φ ⊢ α : P entailments α, β, γ as dinatural transformations JΦK q q−→ JP K; we axioma-
tize composition/cut only with natural transformations, not requiring general composition;
[Γ] Φ ⊢ α = β : P equality of entailments as equality between dinaturals in Set.

For predicates/dipresheaves, we consider base predicates and the following logical connectives:
conjunction, interpreted as the pointwise product − × − of dipresheaves in Set;
implication, by postcomposing dipresheaves with the functor − ⇒ − : Setop × Set → Set;
propositional directed equality is interpreted by hom-functors homC : Cop × C → Set;
quantifiers ∀,∃ as ends and coends, logically representing universal and existential
quantifiers on predicates/dipresheaves respectively, which we consider in Section 3.

The full set of types, terms, and predicate formation rules is given in Appendix A. We show
in Figure 2 only the main rules for entailments, for which we describe the semantics in
Section 2.3. The rules for entailments implicitly use the notion of polarity for variables,
introduced in Remark 12; these are formally captured by the predicates in Figures 5 and 6.
▶ Remark 1. Because of the lack of composition of dinatural transformations, we do not
consider a categorical semantics of this syntactic system using standard categorical models,
e.g., fibrations [34], since most of them ask for full composition, which cannot be guaranteed
in our semantics. We discuss other possible models in Section 4. Hence, our approach is to
simply consider the main rules described in Figure 2 (which are equipped with restricted rules
for composition of entailments) and validate them using categories, dipresheaves, dinatural
transformations, and, e.g., introduction and elimination rules for hom-types. We then put
these rules into practice by showing (in Section 3.1) how we can prove standard theorems in
category theory using a distinctly logical flavour, as well as showing (in Section 2.4) how
the rules for directed equality can be used to construct maps and prove properties about
directed equality precisely as it can be done in Martin-Löf type theory for the symmetric
case. The reader fluent in categorical logic [34, 42] can imagine our logic to capture the
behaviour of a specific doctrine Dinat : Catop → PARACAT given by sending a small category
C to the large paracategory [Cop × C,Set]dinat (a variation of category where the composition
operation is partial, see [28, 29]), where such paracategory is defined by having dipresheaves
Cop × C → Set as objects and dinatural transformations as between them as morphisms.

A. Laretto and F. Loregian and N. Veltri 23:7

2.1 Dinaturality
The fundamental idea behind the logic is that variables in the term context can appear
in predicate symbols both covariantly and contravariantly. This is what allows us to
resolve the variance problems in the introduction and elimination rules for directed equality,
and is precisely what dinatural transformations capture. We recall basic notions about
dinatural transformations, which we abbreviate simply as “dinaturals”, and ordinary natural
transformations as “naturals”.

▶ Definition 2 (Dipresheaves). Consider the (strict) comonad −⋄ : Cat → Cat defined by
C 7→ Cop × C, where the counit is given by projecting and comultiplication by duplicating and
swapping. A dipresheaf is simply a functor C⋄ → Set (i.e. a functor Cop × C → Set).

We always denote composition diagrammatically, i.e., f ; g : a → c for f : a → b, g : b → c.

▶ Definition 3 (Dinatural transformation [18]). Given functors F,G : C⋄ → D, a dinatural
transformation α : F q q−→ G is a family of arrows αx : F (x, x) −→ G(x, x) indexed by objects
x : C such that for any a, b : C and f : a → b the following equation holds:
F (idb, f) ; αb ;G(f, idb) = F (f, ida) ; αa ;G(idb, f).

▶ Lemma 4 (Dinaturals generalize naturals [18]). A natural transformation α : F → G for
F,G : C → D equivalently corresponds with a dinatural α : (π2 ; F) q q−→ (π2 ;G) : C⋄ → D.

▶ Lemma 5 (Naturality to dinaturality). () Naturality in two variables with different
variance can be “collapsed” to dinaturality in a single one: given F,G : Cop × C → D and a
natural α : F → G, there is a dinatural ∆(α) := αxx : F q q−→ G.

The pointwise composition of two dinatural transformations is not necessarily dinatural (see
[44, 22]), but dinaturals always compose with naturals on both the left and right side:

▶ Lemma 6 (Dinaturals compose with naturals [18]). Given a dinatural transformation γ :
F

q q−→ G and natural transformations α : F ′ → F, β : G → G′ for F, F ′, G,G′ : Cop×C → Set,
the map α ; γ ; β : F ′ q q−→ G′ defined by (α ; γ ; β)x := αxx ; γx ; βxx is dinatural.

2.2 Notation
We now introduce the concepts of position, variance, and polarity, and then describe the
notation for variables, predicates and entailments used in the type theory.

▶ Definition 7 (Positions in a predicate). The name position to indicates a point in which a
variable can appear in a predicate, e.g., there are four possible positions x, y, z, w for variables
to appear in the predicate hom(x, y) × P (z, f(w)).

▶ Definition 8 (Variance of a position). Positions have a variance, which can either be
positive or negative: intuitively, a position starts out as positive, and flips between being
positive and negative precisely in the following cases:
1. when it occurs on the left side of hom(x, y), e.g., x is negative in hom(x, c), hom(f(x), y);
2. when it occurs on the left of implication P ⇒ Q, e.g., x is negative in P (f(x)) ⇒ Q(y);
3. when it occurs on the left side ·1 of a base predicate symbol P (·1, ·2) : Cop × C → Set.
Moreover, variance can be inverted twice in the intuitive way: for example, x occurs positively
in the predicate hom(x, y) ⇒ P and (hom(y, x) ⇒ P) ⇒ P .

Semantically, this flipping of variance corresponds with the presence of the opposite category
Cop on the left side of the functors homC : Cop × C → Set, and − ⇒ − := homSet. The fact
that (Cop)op ≡ C justifies the fact that inverting a negative variable makes it positive again.

CVIT 2016

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Delta.agda

23:8 Directed equality for (co)end calculus

▶ Definition 9 (Polarity of a variable). Variables can occur in multiple positions at the same
time: we say that the polarity of variable x is positive iff every position in which it occurs
is positive; similarly for negative. A variable is natural iff it is either positive or negative.
Polarity in terms and predicates is captured formally using the judgements in Figures 5 and 6.

▶ Remark 10 (Notation for variance of variables). We introduce notation to highlight the con-
travariance of variables in predicates. We indicate with “x” the negative (or “contravariant”)
occurrences of variables x : C, and simply “x” for the positive (or “covariant”) ones. We use
the same terminology even when C := (C′)op is the opposite of some C′.
▶ Remark 11 (Notation for entailments). The type-theoretic notation for entailments [x : C, y :
D, ...] a : P (x, x, y, y, ...), b : Q(x, x, y, y, ...), ... ⊢ α[a, b, ...] : R(x, x, y, y, ...) is interpreted
semantically as the statement “α is a dinatural from the functor JP K × JQK × ... to JRK :
(JCK × JDK × ...)⋄ → Set”, where the former functor is interpreted by the pointwise product
of the dipresheaves in the list of assumptions Φ := P,Q, ..., which are given names and freely
permuted whenever needed. The term context [x : C, y : D, ...] indicates the indices of the
dinatural, which is to be thought as the context over which the entailments of a fiber live in
a fibration [34]. We use square brackets α[a, b, ...] both to indicate assumptions and for fun-
ctional application in Set, e.g., αc[a, b] ∈ P (c, c) whenever c ∈ C and a ∈ P (c, c), b ∈ Q(c, c).
We will often omit in P the (unrestricted) presence of variables coming from a context Γ.
▶ Remark 12 (Variables in entailments). We indicate with P (x, x, y, y) the fact that the
predicate P can depend on x, y both negatively and positively; when either variance is
omitted, e.g., in P (x, y), the predicate must depend only on x and y, i.e., naturally. These
restrictions are formally captured using the predicates for polarity of Definition 9 in the
intuitive way, which we omit their explicit use in the rules for entailments. Naturality for
entire contexts is given by [y : Γ] P (y), i.e., all variables in Γ are used only positively in P .
▶ Remark 13 (Notation for inference rules of dinaturals). Following the interpretation of
dinaturals as entailments, we use trees of inference rules to indicate that, given certain
dinatural(s) as in the rule premise, one obtains a dinatural as in the rule conclusion. Seman-
tically, inference rules are interpreted by functions between sets of dinaturals (natural in
all dipresheaves involved). We use double lines to indicate natural isomorphisms of sets of
dinaturals, and often omit the name of such isomorphisms in rules, especially in Section 3.1.

2.3 Rules
We now validate and describe the intuition behind each rule for predicates and entailments.
Whenever present, the symbol () links to the Agda formalization of its semantics.

▶ Theorem 14 (Dinatural semantics). Each rule presented in Figure 2 is validated using
the semantics in categories, functors, dipresheaves, dinatural transformations. Sequents are
interpreted by functions between sets of dinaturals; these are isomorphisms when double-lines
appear. Moreover, every function is natural in all the dipresheaves that appear in the rule.

We unpack this theorem by validating and describing the intuition behind each rule.
Products. () Dinaturals validate the interpretation of conjunction in (prod) via the
pointwise product of dipresheaves in Set; the bottom sequent indicates the product of sets of
dinaturals. Moreover, (wk) states that dinaturals always compose on the left with projections.
Op-types. The entailments [x : C] F (x) ⊢ α : G(x, x) and [x : Cop] F (x) ⊢ α′ : G(x, x)
clearly denote the same dinatural in the semantics, for F : Cop → D, G : Cop × C → D. We
capture this idea with the rule (op), stating precisely that positive positions of type Cop are
the same as negative positions of type C, and viceversa.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Products.agda

A. Laretto and F. Loregian and N. Veltri 23:9

[Γ] Φ ⊢ α : P (var)
[Γ] Φ, a : P,Φ′ ⊢ a : P

[Γ] Φ ⊢ α : P
(wk)

[Γ] A,Φ ⊢ wk(α) : P
(⊤)

[Γ] Φ ⊢ ! : ⊤

[x : C,Γ] Φ(x, x) ⊢ α : P (x, x)
(op)

[x : Cop,Γ] Φ(x, x) ⊢ α : P (x, x)

Γ ⊢ F : C [x : C,Γ] Φ(x, x) ⊢ α : Q(x, x)
(idx)

[Γ] Φ(F op(x), F (x)) ⊢ F ∗(α) : Q(F op(x), F (x))
[Γ] Φ ⊢ P ×Q

(prod)
[Γ] Φ ⊢ P, [Γ] Φ ⊢ Q

[x : Γ] A(x, x),Φ(x, x) ⊢ B(x, x)
(exp)

[x : Γ] Φ(x, x) ⊢ Aop(x, x) ⇒ B(x, x)

[a : ∆op, b : ∆, x : Γ] Φ(x, x, a, b) ⊢ α : P (a, b)
[z : ∆, x : Γ] k : P (z, z),Φ(x, x, z, z) ⊢ γ[k] : Q(z, z)

(cut-din)
[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ γ[α] : Q(z, z)

[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ γ : P (z, z)
[a : ∆op, b : ∆, x : Γ] k : P (a, b),Φ(x, x, a, b) ⊢ α[k] : Q(a, b)

(cut-nat)
[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ α[γ] : Q(z, z)

(refl)
[x : C,Γ] Φ ⊢ reflC : homC(x, x)

[z : C,Γ] Φ(z, z) ⊢ h : P (z, z)
(J)

[a : Cop, b : C,Γ] e : homC(a, b),Φ(b, a) ⊢ J(h)[e] : P (a, b)

[Γ] Φ ⊢ α = β : P (J-comp)
[z : C,Γ] k : Φ(z, z) ⊢ J(h)[reflC] = h : P (z, z)

[z : C,Γ] Φ(z, z) ⊢ α[reflC] = β[reflC] : P (z, z)
(J-eq)

[a : Cop, b : C,Γ] e : homC(a, b),Φ(b, a) ⊢ α[e] = β[e] : P (a, b)

Figure 2 Main rules for entailments of first-order dinatural directed type theory.

Polarized exponentials. () Contrary to naturals and presheaves [38], dinaturals can be
curried directly via the (exp) rule by currying each component of α in Set. This construction
is similarly given in [24, 5] and called twisted exponential. The intuition is that dipresheaves
move between the two sides of the turnstile by inverting the variance of all their positions.
Reindexing with functors as terms. () Following the doctrinal presentation of logic
(see [34, 55] for standard accounts), dinaturals can be “reindexed” by functors via the rule
(idx), i.e., variables in entailments can be substituted with concrete functors, viewed as terms.
Cut naturals-dinaturals. We present two restricted cut rules (cut-din), (cut-nat) between
naturals and dinaturals, corresponding to Lemma 6. Associativity is captured in Figure 8.
The occurrences a, b in Φ in (cut-nat) are needed to make α natural in a, b when the domain
is just P , i.e., by using (exp) to move Φ and invert a, b. Note that P must not depend on Γ.
Directed equality introduction. () The rule (refl) states reflexivity of directed equality,
and is validated semantically by αx(h) := idx. Dinaturality holds by ∀f : a → b, f ;idb = ida ;f .
Directed equality elimination. () The rule (J) is the directed version of the J rule
in Martin-Löf type theory. Note the syntactic restrictions: P cannot have contravariant
occurrences a, b, and Φ cannot have covariant occurrences a, b. A computation rule (J-comp)
holds, using (cut-nat) on J(h) to compose with (refl). Semantically, J(h) is defined by
J(h)abx[e, k] := (JΦK(idb, e, idx, idx) ;hbx ;JP K(e, idb, idx, idx))[k]. The computation rule clearly
holds when a = b = z and e = idz, without using dinaturality.

The operational meaning behind (J) is the following: having identified two covariant
positions a : Cop and b : C in the predicate P , if there is a directed equality homC(a, b) in

CVIT 2016

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Exponential.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Reindex.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Refl.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J.agda

23:10 Directed equality for (co)end calculus

context then it is enough to prove that P holds “on the diagonal”, where the two positions
have been identified with the same dinatural variable z : C; moreover, a, b can be identified
in the context Φ only if they appear contravariantly, i.e., as a and b. One can use (op) to
equivalently state (J) to have a, b : C to have the same type: the formulation above with
a :Cop, b :C emphasizes how the two variables play different asymmetric roles.
Dependent hom elimination. () A dependent version of directed J , rule (J-eq), is
needed in Section 2.4 to prove equational properties of maps definable with (J); this is done
by allowing hom(a, b) to be contracted inside equality judgements. Intuitively, given α[e] and
β[e] with an equality in context e : homC(a, b) which can be contracted using (J), α and β

are equal everywhere as soon as they are equal on e = reflC,z for all z :C. This is validated in
the model, crucially, using the fact that α, β are dinatural, as in the Yoneda lemma [38, 4.2].
▶ Remark 15 (Exponentials for naturals). The following derivation using (exp) elucidates why
the exponential object in the category of presheaves and naturals is non-trivial, and is not
the pointwise hom in Set; by directly applying (exp) for (co)presheaves F,G,H : C → Set,

[x : C] F (x) ×G(x) ⊢ H(x)
(exp)

[x : C] G(x) ⊢ F op(x) ⇒ H(x)
but the bottom family of arrows is dinatural in x, since it appears both co- and contravariantly.
We show in Theorem 32 how (exp) and the rules for directed equality can be used to give a
logical proof that the usual definition of exponential for presheaves [38, 6.3.20] is correct.
▶ Remark 16 (Failure of symmetry for directed equality). The restrictions in (J) illustrate
why one cannot derive that directed equality is symmetric, i.e., obtain a general map
[a : Cop, b : C] e : hom(a, b) ⊢ sym : hom(b, a). The equality e : hom(a, b) cannot be
contracted because a appears in the conclusion negatively (similarly with b), whereas (J)
requires that the conclusion only has positive occurrences of the variables being contracted.
As in the symmetric case, (J) and hom can be characterized via an isomorphism [34, 3.2.3]:
▶ Theorem 17 (Directed J as isomorphism). () Rule (J) is an isomorphism, and the
inverse map is given by J−1(h) := h[reflC] using (cut-nat) and (refl). We refer to the whole
isomorphism as the rule (hom). Moreover, J−1 ; J = id is logically equivalent to (J-eq).
Proof. The computation rule states precisely that J ;J−1 = id. To show J−1 ;J= id, we instan-
tiate (J-eq) with α :=J(β[reflC]) and use (J-comp) in the hypothesis, i.e., J(β[reflC])[reflC]=
β[reflC], to obtain J(β[reflC])=β as desired. We show that J−1 ;J = id implies (J-eq): the
hypothesis in (J-eq) is exactly J−1(α)=J−1(β), hence α=β by applying J on both sides. ◀

▶ Theorem 18 (hom⇒ refl). Rules (refl) and (J) are logically equivalent to (hom).
Proof. Clearly (J) is the top-to-bottom direction of (hom). The rule (refl) follows from J−1

in Theorem 17 by picking P := hom and using the projection (var) as the bottom side map
h. Semantically, the map obtained must coincide with refl: J−1(h) := h[reflC], and since we
picked h to be the projection π1, we have that h = π1[reflC, k] = reflC as desired. ◀

▶ Remark 19 (Groupoidal case). When C ∼= Cop is a groupoid, (hom) simply becomes the
characterization of symmetric equality as left adjoint to reindexing on diagonals [34, 3.2.4].
Moreover, the non-compositionality of dinaturals is an intrinsic property of directed proof-
relevant type theory, since in the groupoidal case they all compose (in the proof-irrelevant
case, where Set is replaced by the preorder I := {0 → 1}, dinaturals compose trivially since
there is no hexagon to check):
▶ Theorem 20 (Dinaturals in groupoids). () Given a groupoid C ∼= Cop and any D, all
dinaturals α : F q q−→ G, β : G q q−→ H for F,G,H : C⋄ → D compose.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J-Iso.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J-Iso.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/GroupoidCompose.agda

A. Laretto and F. Loregian and N. Veltri 23:11

2.4 Examples for directed equality
We show how the rules for directed equality can be used to obtain the same terms definable
with symmetric equality in Martin-Löf type theory, and proving properties about them
follows precisely the steps of the usual proofs [61, 31]. All examples in this section satisfy the
constraints for (cut-nat) to be applied: this kind of composition essentially corresponds to
vertical composition in Prof as a virtual equipment [46, 15]. We start by showing transitivity
of directed equality, i.e., the fact that every category is equipped with composition maps.

▶ Example 21 (Composition in a category). The following derivation constructs the composi-
tion map for C, which is natural in a : Cop, c : C and dinatural in b : C:

(var)
[z : C, c : C] hom(z, c) ⊢ id : hom(z, c)

(J)
[a : Cop, b : C, c : C] f : hom(a, b), g : hom(b, c) ⊢ J(id) : hom(a, c)

We contracted the first equality f : hom(a, b). Rule (J) can be applied since a, b appear only
negatively in context (a does not appear) and positively in the conclusion (b does not). We
now prove that comp[f, g] := J(id), denoted as “f ; g”, is unital on identities (i.e., reflC) and
associative. Since we chose to contract f , the computation rule ensures unitality on the left:

(J-comp)
[z : C, c : C] g : hom(z, c) ⊢ reflz ; g = g : hom(z, c)

essentially because J−1(J(id)=comp)= id. On the other hand, to show that composition is
right-unital we must use directed equality induction for equalities (J-eq), where now it is
enough to just consider the case in which a = z = w and f = reflw,

(J-comp)
[w : C] ⊤ ⊢ reflw ; reflw = reflw : hom(w,w)

(J-eq)
[a : Cop, z : C] f : hom(a, z) ⊢ f ; reflz = f : hom(a, z)

which follows by the computation rule for comp since reflw is on the left. Similarly, to show
associativity we just need to consider the case a = b = z and f = reflz,

(J-comp)
[z : C, c : C, d : C] g : hom(z, c), h : hom(c, d) ⊢ reflz ; (g ; h) = (reflz ; g) ; h : hom(z, d)

(J-eq)
[a : C, b : C, c : C, d : C] f : hom(a, b), g : hom(b, c), h : hom(c, d) ⊢ f ; (g ; h) = (f ; g) ; h : hom(a, d)

where the top sequent equals g ; h by the computation rules for comp := J(id).

▶ Example 22 (Functorial action on morphisms). For any functor C ⊢ F : D, the functorial
action on morphisms of F corresponds with the fact that any term/functor F respects
directed equality, i.e., directed equality is a congruence:

(idx)+(refl)
[z : C] ⊤ ⊢ F ∗(reflC) : homD(F op(z), F (z))

(J)
[x : C, y : C] homC(x, y) ⊢ J(F ∗(reflC)) : homD(F op(x), F (y))

and thus we define mapF [f] := J(F ∗(reflC)), using (idx) with F in the top sequent.
The computation rule gives that F maps identities to identities:

(J-comp)
[z : C] ⊤ ⊢ mapF [reflC] = F ∗(reflC) : homD(F op(x), F (x))

Functoriality holds, since both top sides equal mapF [g] using computation rules:

(J-comp)
[z : C, c : C] g : hom(z, c) ⊢ mapF [reflz ; g] = reflF (z) ; mapF [g] : hom(z, d)

(J-eq)
[a : C, b : C, c : C] f : hom(a, b), g : hom(b, c) ⊢ mapF [f ; g] = mapF [f] ; mapF [g] : hom(a, d)

CVIT 2016

23:12 Directed equality for (co)end calculus

▶ Example 23 (Transport). Transporting points of predicates along directed equalities [61,
2.3.1] is the functorial action of copresheaves P :C→Set, i.e., [x :C]P prop, for x only positive:

(var)
[z : C] P (z) ⊢ P (z)

(J)
[a : Cop, b : C] hom(a, b), P (a) ⊢ P (b)

(J-comp)
[z : C] k : P (z) ⊢ subst[reflC, k] = k : P (z)

The computation rule simply states that transporting a point of P (a) along the identity
morphism with subst[f, k] := J(id) is the same as giving the point itself, i.e., subst[reflC] = id.

▶ Example 24 (Internal dinaturality for entailments). For any [x : C] P (x, x) ⊢ α : Q(x, x), an
internal version of (di)naturality for entailments, as in Theorem 3, holds via (J-comp):

(J-comp)
[z : C] k : P (z, z) ⊢ substQ[(refl, refl), [α[substP [(refl, refl), k]]]]

= substQ[(refl, refl), [α[substP [(refl, refl), k]]]] : Q(z, z)
(J-eq)

[a : Cop, b : C] f : homC(a, b), k : P (b, a) ⊢ substQ[(refl, f), [α[substP [(f, refl), k]]]]
= substQ[(f, refl), [α[substP [(refl, f), k]]]] : Q(a, b)

3 (Co)ends as quantifiers

In this section we describe how dinaturality allows us to give an interpretation of ends
and coends as the “directed quantifiers” for the (1-)category interpretation of directed type
theory. We provide rules for ends and coends which are reminiscent of the quantifiers-as-
adjoints paradigm by Lawvere [36]; we show in Theorem 27 that ends and coends can be
captured as “right and left adjoint” operations to a common weakening operation which only
operates on the context of entailments [34, 1.9.1]: this adjointness relation should be only
interpreted suggestively, since (co)ends are functorial operations for naturals but in general
not dinaturals [40, 1.1.7]. Despite this, the rules for (co)ends can be combined with the ones
given for directed equality (hom) to provide concise proofs of theorems in category theory
using sequences of natural isomorphisms, following an approach similar to that described as
“(co)end calculus” [40] but emphasizing the role of (co)ends as quantifiers and hom as directed
equality. This approach has the advantage that several properties of quantifiers, e.g., that
they can be exchanged and permuted whenever possible, follow automatically from certain
structural properties of contexts, which we omit here since they are standard. For example,
in first order logic the formulas ∀x.∀y.P ⇔∀y.∀x.P ⇔∀(x, y).P are logically equivalent for
any predicate P (x, y): this is indeed also verified for ends (and coends with existentials) and
takes the name of “Fubini rule” [41, IX.8], [40, 1.3.1], which we prove in Theorem 34. More
details on (co)ends and their calculus can be found in [41, IX.5-6], [40, Ch. 1].

▶ Definition 25 ((Co)wedges for P [40, 1.1.4]). Given P : Cop × C → D, a wedge for P is
a pair object/dinatural (X : D, α : KX

q q−→ P), where KX is the constant functor in X. A
wedge morphism (X,α) → (Y, α′) is an f :X → Y of D such that ∀c : C, αc = f ; α′

c. A
cowedge is a wedge in Dop, denoting the categories of (co)wedges as Wedge(P),Cowedge(P).

▶ Definition 26 ((Co)ends [40, 1.1.6]). Given a functor P : Cop × C → D, the end of P is
defined to be the terminal object of Wedge(P), whose object in D is denoted as

∫
x:C P (x, x).

Dually, the coend of P is the initial object of Cowedge(P), denoted similarly as
∫ x:D

P (x, x).
The integral symbol acts as a binder, in the sense that “

∫
c:C P (c, c)” and “

∫
x:C P (x, x)” are (α-

)equivalent; moreover, P can depend on many parameters, e.g., if P : (Aop×A)×(Bop×B) → D
then

∫
b:B P (a, a, b, b) : Aop × A → D. (Co)ends exist when D is (co)complete [40].

A. Laretto and F. Loregian and N. Veltri 23:13

▶ Theorem 27 (Ends and coends as quantifiers). () The following rules are validated by
isomorphisms of sets of dinaturals, natural in P :C⋄ →Set, Q :A⋄ × C⋄ →Set, where C := JΓK:

[a : A,Γ] Φ ⊢ Q(a, a)
(end)

[Γ] Φ ⊢
∫

a:A Q(a, a)

[Γ]
(∫ a:A

Q(a, a)
)
,Φ ⊢ P

(coend+frob.)
[a : A,Γ] Q(a, a),Φ ⊢ P

Theorem 27 expresses an adjoint-like (up to the non-composition of dinaturals) correspondence∫ A[C] ⊣ π∗
A[C] ⊣

∫
A[C] between the weakening functor π∗

A[C] : [C⋄,Set]→ [A⋄ × C⋄,Set] and the
functors

∫ A[C]
,
∫

A[C] : [A⋄ × C⋄,Set]→ [C⋄,Set] sending dipresheaves to their (co)end in A.

We leave the weakening operations of the above rules implicit for the rest of the paper.
Quantifiers in categorical logic typically have to satisfy additional requirements in order
to faithfully model logical operations: the Beck-Chevalley condition [34, 1.9.4] states that
“quantifiers commute with substitution”, and the Frobenius condition [34, 1.9.12] logically
corresponds to having an additional context Φ in rules for colimit-like connectives [34, 3.4.4].
The rule given in Theorem 27 is already stated with such additional context.

▶ Theorem 28 (Beck-Chevalley and Frobenius condition for (co)ends). (Co)ends satisfy a
Beck-Chevalley condition, in the sense that for all F : C⋄ → D there is a strict isomorphism∫

A[D] ;F ∗ ∼= (idA⋄ × F)∗ ;
∫

A[C] in the (large) functor category [[A⋄ × D⋄,Set],[D⋄,Set]], where∫
A[C],

∫ A[C] : [A⋄ × C⋄,Set] → [C⋄,Set] are the functors sending dipresheaves to their (co)end
in A and F ∗ : [D⋄,Set] → [C⋄,Set] is precomposition with F ⋄.

Moreover, a Frobenius condition for coends is satisfied, in the sense that there is an
isomorphism

∫ A[C](π∗
A[C](P) ∧ Γ) ∼= π∗

A[C](P) ∧
∫ A[C](Γ), natural in Γ : A⋄ × C⋄ → Set, P :

C⋄ → Set, where − ∧ − : [C,Set] × [C,Set]→ [C,Set] for any C is the product of (di)presheaves.

Proof. Beck-Chevalley is immediate. For Frobenius, our logical rules can be used to apply
exactly the argument given in [34, 1.9.12(i)], detailed in Appendix C. ◀

3.1 Coend calculus via dinaturality
We show how the rules for directed equality and (co)ends can be used to give concise proofs
with a distinctly logical flavour to several central theorems of category theory. The technique
we use mirrors the way coend calculus is applied in practical settings (e.g., [11, 30, 57]) via
a “Yoneda-like” series of natural isomorphisms of sets: to prove that two objects A,B : C
are isomorphic, one can assume to have a generic object Φ and then apply a series of
isomorphisms of sets natural in Φ to establish that C(Φ, A) ∼= C(Φ, B), from which A ∼= B

follows the fully faithfulness of the Yoneda embedding [11, 38]. The same technique can be
used to show that functors are naturally isomorphic, as well as adjunctions, e.g., Theorems 32
and 33. Our proofs follow a different approach to that taken in [40, 17], since we use sets of
dinaturals and explicitly view hom(a, b) in terms of directed equality and (co)ends via their
characterization in terms of contextual operations, rather than applying arbitrary semantic
rules. We now show our main examples, with additional derivations in Appendix B.
▶ Remark 29 (Internalizing Yoneda). The above technique is not captured as part of the type
theory, and is just a semantic result in the meta-theory; our logic makes this easier since it
constructs the required natural isos. This could be internalized in the type theory by adding
a universe Set and a univalence-like statement homSet(A,B) ∼= A ⇒ B (as in [2, 26]), which
allows for implication to be represented as a directed equality and then contracted with
(J); then, using a similar argument as in Theorem 24, one can interalize naturality and the
standard proof of the Yoneda lemma, e.g., [38]. We show internal naturality in Theorem 42.

CVIT 2016

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Quantifiers.agda

23:14 Directed equality for (co)end calculus

▶ Remark 30 (Naturality of rules). () All rules given in previous sections are natural in
each of the dipresheaves involved. In the following series of examples no proof ever involves
a “dinatural isomorphism”, since Yoneda cannot be applied between sets which are not
hom-sets; natural isomorphisms between sets of dinaturals are only used as intermediate
steps. This technique allows us to sidestep the issue of the compositionality of dinaturals,
and motivates our approach omitting the underlying equational theory.
▶ Example 31 ((co)Yoneda lemma). For any presheaf P : C → Set, and a presheaf Φ : C → Set
acting as generic context, the following derivations capture the Yoneda lemma [40, Thm. 1]
(using the characterization of naturals as an end) and coYoneda lemma [41, III.7, Theorem
1] (i.e., presheaves are isomorphic to a weighted colimit of representables), respectively.
[a :C] Φ(a) ⊢

∫
x:C homop

C (a, x) ⇒ P (x)
(end)

[a :C, x :C] Φ(a) ⊢ homop
C (a, x) ⇒ P (x)

(exp)
[a :C, x :C] homC(a, x) × Φ(a) ⊢ P (x)

(hom)
[z : C] Φ(z) ⊢ P (z)

[a :C]
∫ x:C homC(x, a) × P (x) ⊢ Φ(a)

(coend)
[a :C, x :C] homC(a, x) × P (a) ⊢ Φ(x)

(hom)
[z : C] P (z) ⊢ Φ(z)

▶ Example 32 (Presheaves are cartesian closed). For any A,B,Φ : C → Set, the following
derivation expresses that the internal hom in the category of presheaves and naturals defined
by (A ⇒ B)(x) := Nat(hom(x,−) × A,B) is indeed the correct one, shown here via the
isomorphism of sets of the tensor/hom adjunction:

[x : C] Φ(x) ⊢ (A ⇒ B)(x) := Nat(homC(x, −) × A, B)
=

∫
y:C homop

C (x, y) × Aop(y) ⇒ B(y)
(end)

[x : C, y : C] Φ(x) ⊢ homop
C (x, y) × Aop(y) ⇒ B(y)

(exp)
[x : C, y : C] A(y) × homC(x, y) × Φ(x) ⊢ B(y)

(coend+frob.)
[y : C] A(y) ×

(∫ x:C homC(x, y) × Φ(x)
)

⊢ B(y)
(coYoneda)

[y : C] A(y) × Φ(y) ⊢ B(y)
Note that (hom) cannot be used in this derivation since y appears positively in context
in A(y), whereas it should be negative to identify it with x. Instead, we apply the rule
(coYoneda) given in Example 31 to show that copresheaf Φ : C → Set as a whole is isomorphic
to a certain functor C → Set computed as a coend, independently of the point on which it
is evaluated (in this case y). The above derivation is a simple application of our rules via
dinaturality, but it is unclear how it can be captured using the proarrow equipment approach
of [46, 66] as an abstract property of Prof, due to the repetition of the variables y, y.
▶ Example 33 (Pointwise formula for right Kan extensions). Using our rules, we give a
logical proof that the functor RanF : [C,Set] → [D,Set] sending (co)presheaves to their Kan
extensions along F : C → D computed via ends [40, 2.3.6] is right adjoint to precomposition
(F ; −) : [D,Set] → [C,Set]. Note the similarity between this derivation and the argument
given in [55, 5.6.6] to compute adjoints in a general doctrine. For any P : C → Set, a
functor/term F : C → D and a generic Φ : D → Set:

[y : D] Φ(y) ⊢ (RanF P)(y) :=
∫

x:C homop
D (y, F op(x)) ⇒ P (x)

(end)
[x : C, y : D] Φ(y) ⊢ homop

D (y, F op(x)) ⇒ P (x)
(exp)

[x : C, y : D] homD(y, F (x)) × Φ(y) ⊢ P (x)
(coend)

[x : C]
∫ y:D homD(y, F (x)) × Φ(y) ⊢ P (x)

(coYoneda)
[y : C] Φ(F (x)) ⊢ P (x)

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/NaturalityExample.agda

A. Laretto and F. Loregian and N. Veltri 23:15

▶ Example 34 (Fubini rule for ends). For convenience we only show the case for ends. For
any dipresheaf Φ : ⊤op × ⊤ → Set (a dipresheaf in the empty context, i.e., simply an object
Φ : Set) and P : (Cop × C) × (Dop × D) → Set the following are all equivalent,

[] Φ ⊢
∫

x:C

∫
y:D P (x, x, y, y)

(end)
[x : C] Φ ⊢

∫
y:D P (x, x, y, y)

(end)
[x : C, y : D] Φ ⊢ P (x, x, y, y)

(structural property)
[y : D, x : C] Φ ⊢ P (x, x, y, y)

· · ·
(structural property)

[p : C × D] Φ ⊢ P (p, p)
(end)

[y : D] Φ ⊢
∫

x:C P (x, x, y, y)
(end)

[] Φ ⊢
∫

y:D

∫
x:C P (x, x, y, y)

(end)
[] Φ ⊢

∫
p:C×D

P (x, x, y, y)

using the fact that certain structural properties of contexts hold by cartesianness of Cat.

4 Conclusions and future work

In this paper we showed how dinaturality plays a crucial role in the semantics of a directed
type theory where types are interpreted as (1-)categories and directed equality as hom-
functors, which we then applied to give a distinctly logical interpretation to (co)end calculus
by viewing it in terms of directed equality.

Our treatment of directed equality is a first step towards a formal understanding of
the role played by directedness and variance, and their relationship with the syntax of
standard Martin-Löf type theory. The most important aspect left out from our work is a
precise treatment of the compositionality of dinatural transformations, a famously difficult
problem [58] which would, as we argued, give insight on a satisfactory syntactic treatment of
(dependent) directed type theory with 1-categories. Strong dinaturals [45, 49] provide a hint
in this direction but lack in expressivity, e.g., they are not closed in general [62]. Following
Theorem 19, this non-compositionality seems to be an intrinsic characteristic of interpreting
dinaturals in the directed proof-relevant setting, i.e., non-groupoidal categories.

Organizing the syntax into a suitable initial object in a category of models requires a
more detailed (and possibly more general) notion of model that can axiomatize the behaviour
of variables in dinaturals and naturals (e.g., as in [58]): one possible approach could be
to abstractly consider two classes of maps (dinaturals, naturals) and requiring such maps
to interact as in (cut-nat), (cut-din) and (assoc-nat-din-nat). This would be particularly
important towards a fully dependent treatment of dinatural directed type theory, in order to
investigate how polarity of variables is influenced by their appearance inside types.

All of our results can be specialized in the category of posets Pos rather than Cat, where
dinaturals compose trivially and our work provides a “logic of posets”, captured via a bona
fide doctrine, at the cost of trivializing (co)ends with (co)products. This case could be
axiomatized in the style of the doctrinal approach [34, 43], by introducing a notion of directed
doctrine that captures the roles played by variance, the −op involution, and (di)naturality.

Aside from adding a Set-like universe to the type theory as mentioned in Remark 29,
there are useful examples of (higher) coend calculus which have not yet been interpreted in
terms of directed equality: for instance, one should be able to express that composition maps
exist for all categories C : Cat, where this quantification can be expressed via a suitable
pseudo-end in Cat [40, 7.1]; similarly, the category of elements of a functor, reminiscent
of a Σ-type, can be given as the pseudo-coend El(F) ∼=

∫ c:C
c/C × F (c), where c/C is the

coslice category and F (c) is seen as a discrete category [40, 4.2.2]. These examples could
be captured by considering the category of small categories Cat as a suitable universe of
types [31]. We leave investigating the relation between dinaturality and geometric models of
ω-categories in the spirit of [56, 26, 65] for future work.

CVIT 2016

23:16 Directed equality for (co)end calculus

References
1 Ahrens, B., North, P.R., van der Weide, N.: Bicategorical type theory: se-

mantics and syntax. Mathematical Structures in Computer Science pp. 1–
45 (Oct 2023). https://doi.org/10.1017/S0960129523000312, https://www.
cambridge.org/core/journals/mathematical-structures-in-computer-science/
article/bicategorical-type-theory-semantics-and-syntax/
725F2E17B25094145F9D037D9465A534

2 Altenkirch, T., Neumann, J.: Synthetic 1-Categories in Directed Type Theory (Oct 2024).
https://doi.org/10.48550/arXiv.2410.19520

3 Asada, K.: Arrows are strong monads. In: Proceedings of the third ACM SIG-
PLAN workshop on Mathematically structured functional programming. pp. 33–42.
MSFP ’10, Association for Computing Machinery, New York, NY, USA (Sep 2010).
https://doi.org/10.1145/1863597.1863607

4 Asada, K., Hasuo, I.: Categorifying Computations into Components via Arrows
as Profunctors. Electronic Notes in Theoretical Computer Science 264(2), 25–45
(Aug 2010). https://doi.org/10.1016/j.entcs.2010.07.012, https://www.sciencedirect.com/
science/article/pii/S157106611000071X

5 Bainbridge, E.S., Freyd, P.J., Scedrov, A., Scott, P.J.: Functorial polymorphism. Theoretical
Computer Science 70(1), 35–64 (Jan 1990). https://doi.org/10.1016/0304-3975(90)90151-7,
https://www.sciencedirect.com/science/article/pii/0304397590901517

6 van den Berg, B., Garner, R.: Types are weak ω-groupoids. Proceedings of the London
Mathematical Society 102(2), 370–394 (Oct 2010). https://doi.org/10.1112/plms/pdq026

7 Blute, R.F., Scott, P.J.: Linear Läuchli semantics. Annals of Pure and Applied Logic 77(2),
101–142 (Jan 1996). https://doi.org/10.1016/0168-0072(95)00017-8

8 Blute, R.F., Scott, P.J.: The Shuffle Hopf Algebra and Noncommutative Full Completeness.
Journal of Symbolic Logic 63(4), 1413–1436 (1998). https://doi.org/10.2307/2586659

9 Blute, R.: Linear logic, coherence and dinaturality. Theoretical Computer Science 115(1), 3–
41 (Jul 1993). https://doi.org/10.1016/0304-3975(93)90053-V, https://www.sciencedirect.
com/science/article/pii/030439759390053V

10 Boisseau, G.: String Diagrams for Optics. In: Ariola, Z.M. (ed.) 5th International Conference
on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 167, pp. 17:1–17:18. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.FSCD.2020.17,
https://drops.dagstuhl.de/opus/volltexte/2020/12339

11 Boisseau, G., Gibbons, J.: What you needa know about Yoneda: profunctor optics and
the Yoneda lemma (functional pearl). Proceedings of the ACM on Programming Languages
2(ICFP), 84:1–84:27 (Jul 2018). https://doi.org/10.1145/3236779

12 Chu, F., Mangel, E., North, P.R.: A directed type theory for 1-categories. In: 30th International
Conference on Types for Proofs and Programs TYPES 2024–Abstracts. p. 205 (2024), https:
//types2024.itu.dk/abstracts.pdf#page=215

13 Clarke, B., Elkins, D., Gibbons, J., Loregian, F., Milewski, B., Pillmore, E., Román, M.:
Profunctor optics, a categorical update (2022). https://doi.org/10.48550/arxiv.2001.07488

14 Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical Type Theory: A Constructive
Interpretation of the Univalence Axiom. In: Uustalu, T. (ed.) 21st International Conference
on Types for Proofs and Programs (TYPES 2015). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 69, pp. 5:1–5:34. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2015). https://doi.org/10.4230/LIPIcs.TYPES.2015.5

15 Cruttwell, G., Shulman, M.: A unified framework for generalized multicategories. Theory Appl.
Categ. 24, 580–655 (2010). https://doi.org/10.48550/arxiv.0907.2460

16 Curien, P.L.: Operads, Clones, and Distributive Laws, pp. 25–49 (Feb 2012).
https://doi.org/10.1142/9789814365123_0002

https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/bicategorical-type-theory-semantics-and-syntax/725F2E17B25094145F9D037D9465A534
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/bicategorical-type-theory-semantics-and-syntax/725F2E17B25094145F9D037D9465A534
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/bicategorical-type-theory-semantics-and-syntax/725F2E17B25094145F9D037D9465A534
https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/bicategorical-type-theory-semantics-and-syntax/725F2E17B25094145F9D037D9465A534
https://www.sciencedirect.com/science/article/pii/S157106611000071X
https://www.sciencedirect.com/science/article/pii/S157106611000071X
https://www.sciencedirect.com/science/article/pii/0304397590901517
https://www.sciencedirect.com/science/article/pii/030439759390053V
https://www.sciencedirect.com/science/article/pii/030439759390053V
https://drops.dagstuhl.de/opus/volltexte/2020/12339
https://types2024.itu.dk/abstracts.pdf#page=215
https://types2024.itu.dk/abstracts.pdf#page=215

A. Laretto and F. Loregian and N. Veltri 23:17

17 Cáccamo, M., Winskel, G.: A Higher-Order Calculus for Categories. In: Boulton, R.J., Jackson,
P.B. (eds.) Theorem Proving in Higher Order Logics. pp. 136–153. Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-44755-5_11

18 Dubuc, E., Street, R.: Dinatural transformations. In: MacLane, S., Applegate, H., Barr, M.,
Day, B., Dubuc, E., Phreilambud, Pultr, A., Street, R., Tierney, M., Swierczkowski, S. (eds.)
Reports of the Midwest Category Seminar IV. pp. 126–137. Lecture Notes in Mathematics,
Springer, Berlin, Heidelberg (1970). https://doi.org/10.1007/BFb0060443

19 Eilenberg, S., Kelly, G.M.: A generalization of the functorial calculus. Journal of Al-
gebra 3(3), 366–375 (May 1966). https://doi.org/10.1016/0021-8693(66)90006-8, https:
//www.sciencedirect.com/science/article/pii/0021869366900068

20 Escardó, M.: Using yoneda rather than j to present the identity type. https://www.cs.bham.
ac.uk/~mhe/yoneda/yoneda.html (2015), updated 2015, 2016, 2017

21 Freyd, P.J., Robinson, E.P., Rosolini, G.: Dinaturality for free. In: Pitts, A.M.,
Fourman, M.P., Johnstone, P.T. (eds.) Applications of Categories in Computer Sci-
ence: Proceedings of the London Mathematical Society Symposium, Durham 1991,
pp. 107–118. London Mathematical Society Lecture Note Series, Cambridge Univer-
sity Press, Cambridge (1992). https://doi.org/10.1017/CBO9780511525902.007, https:
//www.cambridge.org/core/books/applications-of-categories-in-computer-science/
dinaturality-for-free/E6E7F60E4A647D401B901BB936104359

22 Freyd, P.J., Robinson, E.P., Rosolini, G.: Functorial parametricity. In: Proceedings
of the Seventh Annual Symposium on Logic in Computer Science (LICS ’92), Santa
Cruz, California, USA, June 22-25, 1992. pp. 444–452. IEEE Computer Society (1992).
https://doi.org/10.1109/LICS.1992.185555

23 Galal, Z.: A Profunctorial Scott Semantics. In: Ariola, Z.M. (ed.) 5th International Conference
on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 167, pp. 16:1–16:18. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.FSCD.2020.16,
https://drops.dagstuhl.de/opus/volltexte/2020/12338

24 Girard, J.Y., Scedrov, A., Scott, P.J.: Normal Forms and Cut-Free Proofs as Natural Trans-
formations. In: Moschovakis, Y.N. (ed.) Logic from Computer Science. pp. 217–241. Springer,
New York, NY (1992). https://doi.org/10.1007/978-1-4612-2822-6_8

25 Gratzer, D., Weinberger, J., Buchholtz, U.: The yoneda embedding in simplicial type theory,
https://arxiv.org/abs/2501.13229

26 Gratzer, D., Weinberger, J., Buchholtz, U.: Directed univalence in simplicial homotopy type
theory (2024). https://doi.org/10.48550/arXiv.2407.09146, arXiv.2407.09146

27 Hefford, J., Comfort, C.: Coend Optics for Quantum Combs. Electronic Proceedings in
Theoretical Computer Science 380, 63–76 (Aug 2023). https://doi.org/10.4204/EPTCS.380.4

28 Hermida, C., Mateus, P.: Paracategories i: internal paracategories and saturated partial
algebras 309(1–3), 125–156. https://doi.org/10.1016/s0304-3975(03)00135-x

29 Hermida, C., Mateus, P.: Paracategories ii: adjunctions, fibrations and examples from
probabilistic automata theory 311(1–3), 71–103. https://doi.org/10.1016/s0304-3975(03)00317-
7

30 Hinze, R.: Kan Extensions for Program Optimisation Or: Art and Dan Explain an Old Trick. In:
Gibbons, J., Nogueira, P. (eds.) Mathematics of Program Construction. pp. 324–362. Lecture
Notes in Computer Science, Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31113-0_16

31 Hofmann, M.: Syntax and Semantics of Dependent Types. In: Pitts, A.M.,
Dybjer, P., Pitts, A.M., Dybjer, P. (eds.) Semantics and Logics of Compu-
tation, pp. 79–130. Publications of the Newton Institute, Cambridge Univer-
sity Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511526619.004,
https://www.cambridge.org/core/books/semantics-and-logics-of-computation/
syntax-and-semantics-of-dependent-types/119C8085C6A1A0CD7F24928EF866748F

CVIT 2016

https://www.sciencedirect.com/science/article/pii/0021869366900068
https://www.sciencedirect.com/science/article/pii/0021869366900068
https://www.cs.bham.ac.uk/~mhe/yoneda/yoneda.html
https://www.cs.bham.ac.uk/~mhe/yoneda/yoneda.html
https://www.cambridge.org/core/books/applications-of-categories-in-computer-science/dinaturality-for-free/E6E7F60E4A647D401B901BB936104359
https://www.cambridge.org/core/books/applications-of-categories-in-computer-science/dinaturality-for-free/E6E7F60E4A647D401B901BB936104359
https://www.cambridge.org/core/books/applications-of-categories-in-computer-science/dinaturality-for-free/E6E7F60E4A647D401B901BB936104359
https://drops.dagstuhl.de/opus/volltexte/2020/12338
https://arxiv.org/abs/2501.13229
https://www.cambridge.org/core/books/semantics-and-logics-of-computation/syntax-and-semantics-of-dependent-types/119C8085C6A1A0CD7F24928EF866748F
https://www.cambridge.org/core/books/semantics-and-logics-of-computation/syntax-and-semantics-of-dependent-types/119C8085C6A1A0CD7F24928EF866748F

23:18 Directed equality for (co)end calculus

32 Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In: Sambin, G.,
Smith, J.M. (eds.) Twenty-five years of constructive type theory (Venice, 1995), Oxford
Logic Guides, vol. 36, pp. 83–111. Oxford Univ. Press, New York, New York (Oct 1998).
https://doi.org/10.1093/oso/9780198501275.003.0008

33 Hyland, J.M.E.: Elements of a theory of algebraic theories 546, 132–144.
https://doi.org/10.1016/j.tcs.2014.03.005, models of Interaction: Essays in Honour of Glynn
Winskel

34 Jacobs, B.P.F.: Categorical Logic and Type Theory, Studies in Logic and the Foundations of
Mathematics, vol. 141. North-Holland (1999)

35 Kudasov, N., Riehl, E., Weinberger, J.: Formalizing the ∞-categorical yoneda lemma. In:
Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and
Proofs. pp. 274–290. CPP 2024, Association for Computing Machinery, New York, NY, USA
(2024). https://doi.org/10.1145/3636501.3636945

36 Lawvere, F.W.: Adjointness in Foundations. Dialectica 23(3/4), 281–296 (1969), https:
//www.jstor.org/stable/42969800

37 Leinster, T.: Coend computation. MathOverflow (2010), https://mathoverflow.net/q/
20451, MO question (v2010-04-06)

38 Leinster, T.: Basic Category Theory. Cambridge Studies in Ad-
vanced Mathematics, Cambridge University Press, Cambridge (2014).
https://doi.org/10.1017/CBO9781107360068, https://www.cambridge.org/core/books/
basic-category-theory/A72533879BBC7BD956CC415777B7DA99

39 Licata, D.R., Harper, R.: 2-Dimensional Directed Type Theory. Electronic Notes in Theoretical
Computer Science 276, 263–289 (Sep 2011). https://doi.org/10.1016/j.entcs.2011.09.026,
https://www.sciencedirect.com/science/article/pii/S1571066111001174

40 Loregian, F.: (Co)end Calculus. London Mathematical Society Lecture Note Series, Cambridge
University Press, Cambridge (2021). https://doi.org/10.1017/9781108778657, https://www.
cambridge.org/core/books/coend-calculus/C662E90767358B336F17B606D19D8C43

41 Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Mathematics,
vol. 5. Springer-Verlag New York, 2nd edn. (1998). https://doi.org/10.1007/978-1-4757-4721-8

42 Maietti, M.E., Rosolini, G.: Quotient Completion for the Foundation of Constructive Mathe-
matics. Logica Universalis 7(3), 371–402 (Sep 2013). https://doi.org/10.1007/s11787-013-0080-
2

43 Maietti, M.E., Rosolini, G.: Unifying Exact Completions. Applied Categorical Structures
23(1), 43–52 (Feb 2015). https://doi.org/10.1007/s10485-013-9360-5

44 McCusker, G., Santamaria, A.: Composing dinatural transformations: Towards a calcu-
lus of substitution. Journal of Pure and Applied Algebra 225(10), 106689 (Oct 2021).
https://doi.org/10.1016/j.jpaa.2021.106689

45 Neumann, J.: Paranatural Category Theory. Tech. rep. (Jul 2023).
https://doi.org/10.48550/arXiv.2307.09289, arXiv:2307.09289 [math] type: article

46 New, M.S., Licata, D.R.: A Formal Logic for Formal Category Theory. In: Kupferman,
O., Sobocinski, P. (eds.) Foundations of Software Science and Computation Structures. pp.
113–134. Lecture Notes in Computer Science, Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-30829-1_6

47 North, P.R.: Towards a Directed Homotopy Type Theory. Electronic Notes in Theoretical
Computer Science 347, 223–239 (Nov 2019). https://doi.org/10.1016/j.entcs.2019.09.012,
https://www.sciencedirect.com/science/article/pii/S1571066119301288

48 Nuyts, A.: Towards a Directed Homotopy Type Theory based on 4 Kinds of Variance. Master’s
thesis, KU Leuven (2015)

49 Paré, R., Román, L.: Dinatural numbers. Journal of Pure and Applied Algebra 128(1), 33–92
(Jun 1998). https://doi.org/10.1016/S0022-4049(97)00036-4

https://www.jstor.org/stable/42969800
https://www.jstor.org/stable/42969800
https://mathoverflow.net/q/20451
https://mathoverflow.net/q/20451
https://mathoverflow.net/q/20451
https://www.cambridge.org/core/books/basic-category-theory/A72533879BBC7BD956CC415777B7DA99
https://www.cambridge.org/core/books/basic-category-theory/A72533879BBC7BD956CC415777B7DA99
https://www.sciencedirect.com/science/article/pii/S1571066111001174
https://www.cambridge.org/core/books/coend-calculus/C662E90767358B336F17B606D19D8C43
https://www.cambridge.org/core/books/coend-calculus/C662E90767358B336F17B606D19D8C43
https://www.sciencedirect.com/science/article/pii/S1571066119301288

A. Laretto and F. Loregian and N. Veltri 23:19

50 Petrić, Z.: G-dinaturality. Annals of Pure and Applied Logic 122(1), 131–173 (Aug 2003).
https://doi.org/10.1016/S0168-0072(03)00003-4, https://www.sciencedirect.com/science/
article/pii/S0168007203000034

51 Pistone, P.: On Dinaturality, Typability and beta-eta-Stable Models. In: Miller, D.
(ed.) 2nd International Conference on Formal Structures for Computation and Deduc-
tion (FSCD 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 84, pp.
29:1–29:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2017).
https://doi.org/10.4230/LIPIcs.FSCD.2017.29

52 Pistone, P.: Proof nets, coends and the yoneda isomorphism. In: Ehrhard, T., Fernández, M.,
de Paiva, V., de Falco, L.T. (eds.) Proceedings Joint International Workshop on Linearity &
Trends in Linear Logic and Applications, Linearity-TLLA@FLoC 2018, Oxford, UK, 7-8 July
2018. EPTCS, vol. 292, pp. 148–167 (2018). https://doi.org/10.4204/EPTCS.292.9

53 Pistone, P.: On completeness and parametricity in the realizability semantics of Sys-
tem F. Logical Methods in Computer Science Volume 15, Issue 4 (Oct 2019).
https://doi.org/10.23638/LMCS-15(4:6)2019, https://lmcs.episciences.org/5878

54 Pistone, P., Tranchini, L.: The Yoneda Reduction of Polymorphic Types. In: Baier,
C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual Conference on Computer Science
Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 183, pp.
35:1–35:22. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021).
https://doi.org/10.4230/LIPIcs.CSL.2021.35, https://drops.dagstuhl.de/opus/volltexte/
2021/13469

55 Pitts, A.M.: Categorical logic. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.)
Handbook of Logic in Computer Science: Volume 5: Logic and Algebraic Methods, pp. 39–123.
Oxford University Press (May 1995). https://doi.org/10.1093/oso/9780198537816.003.0002

56 Riehl, E., Shulman, M.: A type theory for synthetic ∞-categories (May 2017).
https://doi.org/10.48550/arXiv.1705.07442

57 Román, M.: Open Diagrams via Coend Calculus. In: Electronic Proceedings in Theoretical
Computer Science. vol. 333, pp. 65–78 (Feb 2020). https://doi.org/10.4204/EPTCS.333.5

58 Santamaria, A.: Towards a Godement calculus for dinatural transformations. Ph.D. thesis, Uni-
versity of Bath (2019), https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787523

59 Scott, P.J.: Some aspects of categories in computer science. Handbook of Algebra, vol. 2, pp.
3–77. North-Holland (Jan 2000). https://doi.org/10.1016/S1570-7954(00)80027-3

60 Street, R.: Conspectus of variable categories. Journal of Pure and Applied Algebra 21(3), 307–
338 (Jun 1981). https://doi.org/10.1016/0022-4049(81)90021-9, https://www.sciencedirect.
com/science/article/pii/0022404981900219

61 Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study (2013)

62 Uustalu, T.: A note on strong dinaturality, initial algebras and uniform parameterized fixpoint
operators. In: Santocanale, L. (ed.) 7th Workshop on Fixed Points in Computer Science, FICS
2010, Brno, Czech Republic, August 21-22, 2010. pp. 77–82. Laboratoire d’Informatique Fonda-
mentale de Marseille (2010), https://hal.archives-ouvertes.fr/hal-00512377/document#
page=78

63 Uustalu, T., Veltri, N., Zeilberger, N.: Eilenberg-Kelly Reloaded. Electronic Notes in Theoret-
ical Computer Science 352, 233–256 (Oct 2020). https://doi.org/10.1016/j.entcs.2020.09.012,
https://www.sciencedirect.com/science/article/pii/S1571066120300633

64 Voigtländer, J.: Free Theorems Simply, via Dinaturality. In: Hofstedt, P., Abreu, S., John,
U., Kuchen, H., Seipel, D. (eds.) Declarative Programming and Knowledge Management. pp.
247–267. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-
46714-2_16

65 Weaver, M.Z., Licata, D.R.: A Constructive Model of Directed Univalence in Bicubical Sets.
In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science.

CVIT 2016

https://www.sciencedirect.com/science/article/pii/S0168007203000034
https://www.sciencedirect.com/science/article/pii/S0168007203000034
https://lmcs.episciences.org/5878
https://drops.dagstuhl.de/opus/volltexte/2021/13469
https://drops.dagstuhl.de/opus/volltexte/2021/13469
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.787523
https://www.sciencedirect.com/science/article/pii/0022404981900219
https://www.sciencedirect.com/science/article/pii/0022404981900219
https://homotopytypetheory.org/book
https://hal.archives-ouvertes.fr/hal-00512377/document#page=78
https://hal.archives-ouvertes.fr/hal-00512377/document#page=78
https://www.sciencedirect.com/science/article/pii/S1571066120300633

23:20 Directed equality for (co)end calculus

pp. 915–928. LICS ’20, Association for Computing Machinery, New York, NY, USA (Jul 2020).
https://doi.org/10.1145/3373718.3394794

66 Wood, R.J.: Abstract proarrows I. Cahiers de topologie et géometrie différentielle categoriques
23(3), 279–290 (1982)

67 Yoneda, N.: On Ext and exact sequences. J. Fac. Sci. Univ. Tokyo Sect. I 8, 507–576 (1960)
(1960)

A Complete rules for first-order dinatural directed type theory

The complete rules for dinatural directed type theory are listed in Figures 3 to 6.
The rules to formally capture the positive and negative polarity of variables is given in

Figure 5 for terms, and Figure 6 for predicates. Note that in the condition for positiveness
for terms the case x : C ⊢ x : Cop for negative variables does not appear, viceversa in the
negative case the positive does not appear.

In light of the convention for natural variables described in Remark 12, we do not explicitly
show the use of the above positive/negative variable constraints in the rules for entailments.

The rules for types, terms and predicates are assumed to depend on an underlying
signature ΣB ,ΣT ,ΣP , which can be used to extend the type theory with additional symbols.
We omit the straightforward details for this extension and its corresponding interpretation.

A type
C ∈ ΣB

C type
C ∈ ΣB

Cop type
C type D type

C × D type
C type D type

[C,D] type ⊤ type

Γ ctx
[] ctx

Γ ctx C type
Γ,C ctx

Γ ∋ x : C
Γ, x : C ∋ x : C

Γ ∋ x : C
Γ, y : D ∋ x : C

Γ ⊢ t : C
Γ ∋ x : C
Γ ⊢ x : C

Γ ∋ x : C
Γ ⊢ x : Cop

f ∈ ΣF Γ ⊢ t : dom(f)
Γ ⊢ f(t) : cod(f)

Γ ⊢ ! : ⊤
Γ ⊢ s : C Γ ⊢ t : D

Γ ⊢ ⟨s, t⟩ : C × D

Γ ⊢ p : C × D

Γ ⊢ π1(p) : C

Γ ⊢ p : C × D

Γ ⊢ π2(p) : D

Γ ⊢ s : [C,D] Γ ⊢ t : C

Γ ⊢ s · t : D

Γ, x : C ⊢ t(x) : D

Γ ⊢ λx.t(x) : [C,D]

Γ ⊢ t = t′ : C
Γ, x : C ⊢ f(x) : D Γ ⊢ t : C

Γ ⊢ (λx.f(x)) · t = f [x 7→ t] : D

Γ, x : C ⊢ f(x) : D

Γ, x : C ⊢ (λx.f(x)) · x = f(x) : D
Γ ⊢ p : C × D

Γ ⊢ ⟨π1(p), π2(p)⟩ = p : C × D
Γ ⊢ t : ⊤

Γ ⊢ t = ! : ⊤
Γ ⊢ s : C Γ ⊢ t : D

Γ ⊢ π1(⟨s, t⟩) = s : C

Γ ⊢ s : C Γ ⊢ t : D

Γ ⊢ π2(⟨s, t⟩) = t : D

Figure 3 Syntax of first-order directed type theory – types (categories) and terms (functors).

▶ Theorem 35 (op, opt, opφ, opΦ are involutions). All the operations given in Figure 4 are
involutions, i.e., (Aop)op ≡ A for any type A, opt(opt(t)) ≡ t for any term t, etc.

Proof. Straightforward by induction on derivations. ◀

▶ Theorem 36 (op inverts polarity). The judgement Γ ∋ x : A pos in t is derivable if and only
if the judgement Γ ∋ x : A neg in opt(t) is derivable; similarly for negative variables.

Proof. Straightforward by induction on the derivation for predicates. ◀

A. Laretto and F. Loregian and N. Veltri 23:21

[Γ] φ prop
[Γ] φ prop [Γ] ψ prop

[Γ] φ× ψ prop
[Γ] φ prop [Γ] ψ prop

[Γ] φ ⇒ ψ prop

[Γ] ⊤ prop
Γ ⊢ s : Cop Γ ⊢ t : C

[Γ] homC(s, t) prop
P ∈ ΣP Γ ⊢ s : neg(P)op Γ ⊢ t : pos(P)

[Γ] P (s | t) prop

[Γ, x : C] φ(x) prop

[Γ]
∫ x:C

φ(x) prop

[Γ, x : C] φ(x) prop
[Γ]

∫
x:C φ(x) prop

Figure 4 Syntax of directed first-order logic – predicates (dipresheaves).

B (Co)end calculus, other derivations

We report here additional examples of derivations for (co)end calculus using our rules.

▶ Example 37 (⇒ resp. limits). Ends are limits [40], and functors −⇒− : Setop × Set → Set
preserve them (ends/limits in Setop, i.e., coends/colimits in Set). For Φ, Q : Set, P : C⋄ → Set:

[] Φ ⊢ Q ⇒
∫

x:C P (x, x)
(exp)

[] Q, Φ ⊢
∫

x:C P (x, x)
(end)

[x : C] Q, Φ ⊢ P (x, x)
(exp)

[x : C] Φ ⊢ Q ⇒ P (x, x)
(end)

[] Φ ⊢
∫

x:C (Q ⇒ P (x, x))

[] Φ ⊢ (
∫ x:C

P (x, x)) ⇒ Q
(exp)

[] (
∫ x:C

P (x, x)), Φ ⊢ Q
(coend+frob.)

[x : C] P (x, x), Φ ⊢ Q
(exp)

[x : C] Φ ⊢ P op(x, x) ⇒ Q
(end)

[] Φ ⊢
∫

x:C P op(x, x) ⇒ Q

▶ Example 38 (Pointwise fomula for left Kan extensions). Dually to Theorem 33, we give
a logical proof that the functor LanF : [C,Set] → [D,Set] sending (co)presheaves to their
left Kan extensions along F : C → D computed via coends [40, 2.3.6] is left adjoint to
precomposition (F ; −) : [D,Set] → [C,Set]. For any P : C → Set, a functor/term F : C → D
and a generic Γ : D → Set:

[y : D] (LanFP)(x) :=∫ x:C homC(F op(x), y) × P (x) ⊢ Γ (y)
(coend)

[x : C, y : D] homC(F op(x), y) × P (x) ⊢ Γ (y)
(exp)

[x : C, y : D] P (x) ⊢ homop
C (F (x), y) ⇒ Γ (y)

(end)
[x : C] P (x) ⊢

∫
y:D homop

D (F (x), y) ⇒ Γ (y)
(Yoneda)

[x : C] P (x) ⊢ Γ (F (x))

▶ Example 39 (Right rifts in profunctors). We give a logical proof that composition (on
both sides) in Prof has a right adjoint [40, 5.2.5 and Exercise 5.2]. This makes Prof a
bicategory where right extensions and right liftings exist. For simplicity we only treat
precomposition, although postcomposition is completely analogous. For any composable

CVIT 2016

23:22 Directed equality for (co)end calculus

Γ ∋ x : A pos in t : C Γ ∋ x : C pos inx : C
Γ ∋ x : A pos in t : dom(f)

Γ ∋ x : A pos in f(t) : cod(f)

Γ ∋ x : A pos in ! : ⊤
Γ ∋ x : A pos in s : C Γ ∋ x : A pos in t : D

Γ ∋ x : A pos in ⟨s, t⟩ : C × D
Γ ∋ x : A pos in p : C × D

Γ ∋ x : A pos inπ1(p) : C

Γ ∋ x : A pos in p : C × D

Γ ∋ x : A pos inπ2(p) : D

Γ ∋ x : A pos in s : [C,D] Γ ∋ x : A pos in t : C

Γ ∋ x : A pos in s · t : D

Γ, x : C ⊢ t(x) : D

Γ ∋ x : A pos inλx.t(x) : [C,D]

Γ ∋ x : A neg in t : C Γ ∋ x : C neg inx : Cop
Γ ∋ x : A neg in t : dom(f)

Γ ∋ x : A neg in f(t) : cod(f)

Γ ∋ x : A neg in ! : ⊤
Γ ∋ x : A neg in s : C Γ ∋ x : A neg in t : D

Γ ∋ x : A neg in ⟨s, t⟩ : C × D
Γ ∋ x : A neg in p : C × D

Γ ∋ x : A neg inπ1(p) : C

Γ ∋ x : A neg in p : C × D

Γ ∋ x : A neg inπ2(p) : D

Γ ∋ x : A neg in s : [C,D] Γ ∋ x : A neg in t : C

Γ ∋ x : A neg in s · t : D

Γ, x : C ⊢ t(x) : D

Γ ∋ x : A neg inλx.t(x) : [C,D]

Figure 5 Syntax of first-order directed type theory – syntactic conditions for positive/negative
variables in terms.

profunctors P : Cop × A → Set, Q : Aop × D → Set and a generic Γ : Cop × D → Set:

[x : Cop, z : D] (P ; −)(Q)(x, z) :=∫ y:A
P (x, y) ×Q(y, z) ⊢ Γ (x, z)

(coend)
[x : Cop, y : A, z : D] P (x, y) ×Q(y, z) ⊢ Γ (x, z)

(exp)
[x : Cop, y : A, z : D] Q(y, z) ⊢ P op(x, y) ⇒ Γ (x, z)

(end)
[y : A, z : D] Q(y, z) ⊢

∫
x:C P

op(x, y) ⇒ Γ (x, z)
(op)

[y : Aop, z : D] Q(y, z) ⊢
∫

x:C P
op(x, y) ⇒ Γ (x, z)

:= RiftP (Γ)(y, z)

where the last (end) can be applied since x : C does not appear on the left.

▶ Example 40 (Composition of profunctors is associative). Using our approach relying on
contextual operations we easily show that composition of profunctors, defined via a coend
[40], is associative and essentially follows from associativity of products. For composable
profunctors P : Aop × B → Set, Q : Bop × C → Set, R : Cop × D → Set and a generic

A. Laretto and F. Loregian and N. Veltri 23:23

Γ ∋ x : A pos inφ

Γ ∋ x : A pos inφ Γ ∋ x : A pos inψ
Γ ∋ x : A pos inφ ∧ ψ

Γ ∋ x : A neg inφ Γ ∋ x : A pos inψ
Γ ∋ x : A pos inφ ⇒ ψ

Γ ∋ x : A pos in ⊤

Γ, y : D ∋ x : C pos inφ

Γ ∋ x : A pos in
∫ x:C

φ(x)

Γ, y : D ∋ x : C pos inφ
Γ ∋ x : A pos in

∫
x:C φ(x)

Γ ∋ x : A neg in s : Cop Γ ∋ x : A pos in t : C

Γ ∋ x : A pos in homC(s, t)
Γ ∋ x : A neg in s : neg(P)op Γ ∋ x : A pos in t : pos(P)

Γ ∋ x : A pos inP (s | t)
Γ ∋ x : A neg inφ

Γ ∋ x : A neg inφ Γ ∋ x : A neg inψ
Γ ∋ x : A neg inφ ∧ ψ

Γ ∋ x : A pos inφ Γ ∋ x : A neg inψ
Γ ∋ x : A neg inφ ⇒ ψ

Γ ∋ x : A neg in ⊤

Γ, y : D ∋ x : C neg inφ

Γ ∋ x : A neg in
∫ x:C

φ(x)

Γ, y : D ∋ x : C neg inφ
Γ ∋ x : A neg in

∫
x:C φ(x)

Γ ∋ x : A pos in s : Cop Γ ∋ x : A neg in t : C

Γ ∋ x : A neg in homC(s, t)
Γ ∋ x : A pos in s : neg(P)op Γ ∋ x : A neg in t : pos(P)

Γ ∋ x : A neg inP (s | t)

Γ ∋ x : A pos in Φ Γ ∋ x : A pos in []
Γ ∋ x : A pos in Φ Γ ∋ x : A pos inφ

Γ ∋ x : A pos in Φ, φ

Γ ∋ x : A neg in Φ Γ ∋ x : A neg in []
Γ ∋ x : A neg in Φ Γ ∋ x : A neg inφ

Γ ∋ x : A neg in Φ, φ

Figure 6 Syntax of first-order directed type theory – mutually defined syntactic conditions for
positive/negative variables in predicates and propositional contexts.

Γ : Aop × D → Set:

[a : A, d : D]
∫ b:B

P (a, b) ×
(∫ c:C

Q(b, c) ×R(c, d)
)

⊢ Γ (a, d)
(coend)

[a : A, b : B, d : D] P (a, b) ×
(∫ c:C

Q(b, c) ×R(c, d)
)

⊢ Γ (a, d)
(coend+frob.)

[a : A, b : B, c : C, d : D] P (a, b) × (Q(b, c) ×R(c, d)) ⊢ Γ (a, d)
(structural property)

[a : A, b : B, c : C, d : D] (P (a, b) ×Q(b, c)) ×R(c, d) ⊢ Γ (a, d)
(coend+frob.)

[a : A, c : C, d : D]
(∫ b:B

P (a, b) ×Q(b, c)
)

×R(c, d) ⊢ Γ (a, d)
(coend)

[a : A, d : D]
∫ c:C

(∫ b:B
P (a, b) ×Q(b, c)

)
×R(c, d) ⊢ Γ (a, d)

▶ Example 41 (Dinaturals as an end). The set of dinaturals Dinat(P,Q) := {P q q−→ Q}
between dipresheaves P,Q : Cop × C → Set can be characterized in terms of the following
end [18, Thm. 1], Dinat(P,Q) ∼=

∫
x:C P

op(x, x) ⇒ Q(x, x).

CVIT 2016

23:24 Directed equality for (co)end calculus

−op : {− type} → {− type}
(Cop)op := C
(C)op := Cop

(A×B)op := Aop ×Bop

([C,D])op := [Aop, Bop]
(⊤)op := ⊤

opt : {Γ ⊢ − : C} → {Γ ⊢ − : Cop}
opt(x) := x

opt(x) := x

opt(f(t)) := f(opt(t))
opt(⟨s, t⟩) := ⟨opt(s), opt(t)⟩
opt(π1(p)) := π1(opt(p))
opt(π2(p)) := π2(opt(p))
opt(s · t) := opt(s) · opt(t)
opt(λx.t(x)) := λx.opt(t(x))

opφ : {[Γ] − prop} → {[Γ] − prop}
opφ(⊤) := ⊤
opφ(homC(s, t)) := homCop(opt(t), opt(s))
opφ(P (s | t)) := P (opt(t) | opt(s))
opφ(

∫ x:C
φ(x)) :=

∫ x:Cop
opφ(φ(x))

opφ(
∫

x:C φ(x)) :=
∫

x:Cop opφ(φ(x))

opΦ : {[Γ] − propctx} → {[Γ] − propctx}
opΦ([]) := []
opΦ(Φ, φ) := opΦ(Φ), opφ(φ)

Figure 7 Syntax of first-order directed type theory – op-operations, defined by induction on
derivations.

[Γ] Φ ⊢ α = β : P · · ·

[a : ∆op, b : ∆, x : Γ] Φ(x, x, a, b) ⊢ α : P (a, b)
[z : ∆, x : Γ] k : P (z, z),Φ(x, x, z, z) ⊢ γ[k] : Q(z, z)

[a : ∆op, b : ∆, x : Γ] k : Q(a, b),Φ(x, x, a, b) ⊢ β[k] : R(a, b)
(assoc-nat-din-nat)

[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ (β[γ])[α] = β[γ[α]] : R(z, z)

Figure 8 Syntax of first-order directed type theory – Associativity for natural-dinatural-natural
cuts in the equational theory, using (cut-din) and (cut-nat).

We give a simple derivation by characterizing all points of the end:

Dinat(P,Q) := [x : C] P (x, x) ⊢ Q(x, x)
(exp)

[x : C] ⊤ ⊢ P op(x, x) ⇒ Q(x, x)
(end)

[] ⊤ ⊢
∫

x:C P
op(x, x) ⇒ Q(x, x)

Since dinaturals generalize naturals, a similar derivation justifies the well-known description
of natural transformations as ends shown in Section 1 for F,G : C → Set,

Nat(F,G) ∼=
∫

x:C F
op(x) ⇒ G(x).

▶ Example 42 (Internal naturality for natural transformations). We show that naturality
for natural transformations, expressed as ends [40], holds internally by directed equality
elimination. Given terms C ⊢ F,G : D, we use the counit of Theorem 27 to extract the family
of hom-sets. We first explicitly show the rules used to construct the two sides of a naturality

A. Laretto and F. Loregian and N. Veltri 23:25

[Γ] Φ ⊢ α : P
[a : C,Γ] Φ ⊢ α : Q(a, a)

(end)
[Γ] Φ ⊢ end(α) :

∫
a:C Q(a, a)

[Γ] Φ ⊢ α :
∫

a:C Q(a, a)
(end)

[a : C,Γ] Φ ⊢ end−1(α) : Q(a, a)

[Γ] Φ ⊢ α = β : P
[a : C,Γ] Φ ⊢ α : Q(a, a)

[a : C,Γ] Φ ⊢ end−1(end(α)) = α : Q(a, a)

[Γ] Φ ⊢ α :
∫

a:C Q(a, a)

[Γ] Φ ⊢ end(end−1(α)) = α :
∫

a:C Q(a, a)

Figure 9 Syntax of first-order directed type theory – Explicitly showing a bidirectional rule, e.g.,
for ends.

square:

[a : Cop, b : C] f : homC(a, b), η :
∫

x:C homD F (x), G(x) ⊢ η :
∫

x:C hom(F (x), G(x))
(end−1)

[a : Cop, b : C, x : C] f : homC(a, b), η : ... ⊢ end−1(η) : hom(F (x), G(x))
(idx)

[a : Cop, b : C] f : homC(a, b), η : ... ⊢ ∆∗(end−1(η)) : hom(F (a), G(a))
(cut-nat)

[a : Cop, b : C] f : homC(a, b), η : ... ⊢ comp[∆∗(end−1(η)), congG[f]] : hom(F (a), G(b))

where ∆∗ is the reindexing functor which collapses a, x to a single variable a, and (cut-nat)
is used to apply comp on cong for G. This composition can be done since both cong and
comp have the correct naturality shape that allows for (cut-nat) to be applied.

The other derivation is obtained similarly:

[a : Cop, b : C] f : homC(a, b), η :
∫

x:C homD F (x), G(x) ⊢ η :
∫

x:C hom(F (x), G(x))
(end−1)

[a : Cop, b : C, x : C] f : homC(a, b), η : ... ⊢ end−1(η) : hom(F (x), G(x))
(idx)

[a : Cop, b : C] f : homC(a, b), η : ... ⊢ ∆∗(end−1(η)) : hom(F (b), G(b))
(cut-nat)

[a : Cop, b : C] f : homC(a, b), η : ... ⊢ comp[congF [f],∆∗(end−1(η))] : hom(F (a), G(b))

We show that the two maps constructed, corresponding to the two sides of a naturality
square, are equal using directed equality elimination; let K := ∆∗(end−1(η)):

[z : C] ... ⊢ K = K : hom(F (z), G(z))
(J-comp)

[z : C] ... ⊢ comp[reflz,K] = comp[K, reflz] : hom(F (z), G(z))
(J-comp)

[z : C] ... ⊢ comp[congF [reflz],K] = comp[K, congG[reflz]] : hom(F (z), G(z))
(J-eq)

[a : Cop, b : C] f : homC(a, b), ... ⊢ comp[congF [f],K] = comp[K, congG[f]] : hom(F (a), G(b))

where the equations used follow by the computation rules for cong and left and right unitality
of comp. Note that (J-eq) can be used since a, b appear precisely with the correct types that
allow for (J) to be applied to contract the equality.

This naturality can then be used to prove a suitable internal Yoneda lemma for the hom
of categories by following the standard argument, e.g., given in [38].

CVIT 2016

23:26 Directed equality for (co)end calculus

C Frobenius condition for coends

▶ Theorem 43 (Frobenius condition for coends). For any Γ : A⋄ × C⋄ → Set and a generic
K : C⋄ → Set, the following series of derivations establishes the Frobenius condition given in
Theorem 28, which we prove by following exactly the argument given in [34, 1.9.12(i)] in the
case of fibrations with exponentials. Note that we use the same Yoneda technique described
in Remark 30.

[y : C]
∫ x:A[y:C](P (y, y) × Γ (x, x, y, y)) ⊢ K(y, y)

(coend)
[x : A, y : C] P (y, y), Γ (x, x, y, y) ⊢ K(y, y)

(exp)
[x : A, y : C] Γ (x, x, y, y) ⊢ P op(y, y) ⇒ K(y, y)

(coend)
[y : C]

∫ x:A[y:C]
Γ (x, x, y, y) ⊢ P op(y, y) ⇒ K(y, y)

(exp)
[y : C] P (y, y),

∫ x:A[y:C]
Γ (x, x, y, y) ⊢ K(y, y)

▶ Theorem 44 ((coend)⇒ (coend+frob.)). Following a similar argument to the one given
in Theorem 43 using the existence of exponentials, the rule (coend+frob.) can be directly
justified using (coend), as follows:

[x : C]
(∫ a:A

Q(a, a, x, x)
)
, Γ (x, x) ⊢ P (x, x)

(exp)
[x : C]

∫ a:A
Q(a, a, x, x)⊢ Γ op(x, x) ⇒ P (x, x)

(coend)
[x : C, y : C] Q(a, a, x, x) ⊢ Γ op(x, x) ⇒ P (x, x)

(exp)
[x : C] Q(a, a, x, x), Γ (x, x) ⊢ P (x, x)

	1 Introduction
	1.1 Contribution
	1.2 Related work

	2 Syntax and Semantics
	2.1 Dinaturality
	2.2 Notation
	2.3 Rules
	2.4 Examples for directed equality

	3 (Co)ends as quantifiers
	3.1 Coend calculus via dinaturality

	4 Conclusions and future work
	A Complete rules for first-order dinatural directed type theory
	B (Co)end calculus, other derivations
	C Frobenius condition for coends

