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Abstract
We show how dinaturality plays a central role in the interpretation of directed type theory where
types are interpreted as (1-)categories and directed equality is represented by hom-functors. We
present a general elimination principle based on dinaturality for directed equality which very closely
resembles the J-rule used in Martin-Löf type theory, and we highlight the syntactic restrictions
needed to interpret this rule in the directed case. We argue that the quantifiers of such a directed
type theory should be interpreted as ends and coends, which dinaturality allows us to present in
adjoint-like correspondences to a weakening operation. We then combine these rules together to give
a logical interpretation to (co)end calculus and Yoneda reductions, and we use formal derivations to
prove the Fubini rule for quantifier exchange, the adjointness property of Kan extensions via (co)ends,
exponential objects of presheaves, and the (co)Yoneda lemma. We show transitivity (composition),
congruence (functoriality), and transport (coYoneda) for directed equality by closely following the
same approach of Martin-Löf type theory, with the notable exception of symmetry. Our main
theorems are formalized in Agda.
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1 Introduction

Equality is one of the most interesting aspects of Martin-Löf type theory: for any A : Type
and a, b : A there is a type of equalities a =A b : Type, and since this is itself a type, one
can talk about the type of equalities between equalities p =a=Ab q : Type for any p, q : a = b.
This is the fundamental idea behind homotopy type theory [14, 61], and it allows for types
to be interpreted as groupoids [32], where not all equalities are themselves equal, as well as
∞-groupoids [6], where such iterated equalities might never trivialize. In these settings, the
inherently symmetric nature of equality is what enables types to be given as (∞-)groupoids,
where equality is precisely interpreted by morphisms which are always invertible. A natural
question follows: can there be a variant of Martin-Löf type theory which enables types to be
interpreted as categories, where morphisms need not be invertible? Such a system should
take the name of directed type theory [1, 47, 39, 26], where the directed aspect comes from a
non-symmetric interpretation of “equality”, which now possesses both a source and a target
in the same way that morphisms do in a category.

Directed type theory has been a sought-after goal of recent type-theoretic research [26, 2],
with several attempts aimed at pinpointing precisely both its syntactic and semantic aspects.
A fundamental aspect of this (1-)category interpretation of type theory is the fact that with
each type/category C there is a naturally associated type Cop, where the objects are the same
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23:2 Directed equality for (co)end calculus

but all directed equalities are reversed. This allows for a type of directed equalities homC(a, b)
to be given in terms of the functor homC : Cop × C → Set, which receives a “contravariant”
argument a : Cop and a “covariant” one b : C and provides a set homC(x, y) (i.e., a category
with only trivial directed equalities) of directed equalities between any two objects x, y of C.
A directed type theory should therefore have some notion of “polarity” or “variance” which
allows variables to appear only in certain positions, as treated in [39, 46, 47, 48].

The introduction rule for symmetric equality is typically given by the term refla : a = a.
In a directed type theory where types are categories, this should be motivated by the fact
that there is a directed equality ida ∈ homC(a, a) (i.e., the identity) for any a : C. However,
naïvely stating this typing rule as “refla : homC(a, a)” would involve both a contravariant
and a covariant occurrence of the variable a : C, and would not be given functorially with
respect to the variance of hom. One solution considered by North [47] is to use the maximal
subgroupoid Ccore to collapse the two variances, since (Ccore)op ∼=Ccore. The refl rule can then
be expressed as refla : hom(iop(a), i(a)) via the embeddings i : Ccore → C and iop : Ccore → Cop.
Another fundamental rule needed to work with equalities is a way to eliminate them; this is
classically done with the so-called J-rule [31],

C : Type, P :
∏

a,b:C(a =C b → Type), t :
∏

x:C P (x, x, reflx)
(J-rule)

J(t) :
∏

a,b:C
∏

e:a=C b P (a, b, e)

where the computation rule J(x, x, reflx) ≡ t(x) holds definitionally. Intuitively, to prove a
proposition P (a, b, e) for terms a, b : C with an equality e : a = b, it is sufficient to consider
the case where a and b are the same term x, and the equality e is exactly reflx. This fact
that “it is enough to consider the case where the equality is refl” bears a striking similarity
to the fundamental idea underlying the Yoneda lemma, one of the most central and praised
results in category theory [41]. Viewing the Yoneda lemma as a sort of (directed) J-rule is
applied in practice by [56, 25] in simplicial type theory, and is investigated in HoTT in [20].
Quantifiers and (co)ends. A central yet unexplored question is how quantifiers should
be interpreted in the types-as-categories semantics of directed type theory. A well-known
rephrasing of the Yoneda lemma (called “ninja” Yoneda lemma [37]) provides inspiration
for a possible answer, described in detail in Section 3 and introduced here intuitively. The
set of natural transformations appearing in the Yoneda lemma can be characterized in
terms of a universal object called the end of a functor of a specific type [41, IX.5], [40].
Given a functor P : Cop × C → D, the end of P , denoted as

∫
x:C P (x, x), is an object of

D with a certain terminal universal property. Notationally, the integral sign of ends binds
covariant and contravariant occurrences of variables for the rest of the expression, and we
indicate with x : Cop the contravariant occurrences of variables x : C. Ends of certain
functors into Set characterize natural transformations: for any two functors F,G : C → D
there is an isomorphism Nat(F,G) ∼=

∫
x:C homD(F (x), G(x)) natural in F,G. Note the

resemblance between the end of the above functor and the universal quantification expressed
in the elementary definition of natural transformation. This allows the Yoneda lemma to
be rephrased as an isomorphism (natural in a : C and P : C → Set) between P (a) and a
certain set of naturals computed as an end; we show this isomorphism in Figure 1a above its
“decategorification”1, where ends are viewed as a sort of universal quantifier, presheaves as
(proof-relevant) predicates, and directed equality is turned back into symmetric equality.

1 We use double lines in this section to suggest a correspondence between the connectives of both formulas,
without giving it here a formal meaning.
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(a)
P (a) ∼=

∫
x:C homC(a, x) ⇒ P (x)

P (a) ⇔ ∀(x : C). a =C x ⇒ P (x)
(b)

P (a) ∼=
∫ x:C homC(x, a) × P (x)

P (a) ⇔ ∃(x : C). x =C a ∧ P (x)

Figure 1 Yoneda and coYoneda lemma using (co)ends and their corresponding logical statements.

There is a similar logical correspondence using existential rather than universal quantifiers,
shown in Figure 1b: existentials are now interpreted by the dual notion of ends, coends [40],
denoted as

∫ x:C
P (x, x). Since (co)ends are (co)limits, this result also takes the well-known

slogan of “presheaves are colimits of representables” [38] or “coYoneda lemma” [40]. This
correspondence with first order logic allows us to reframe these celebrated results of category
theory as simple logical equivalences of formulas, which one can validate with a formal system
such as sequent calculus or type theory. However, there is currently no formal system for the
directed case where one can modularly use rules for quantifiers and equality as done in logic,
e.g., with suitable introduction/elimination rules specific to directed equality and (co)ends.
(Co)end calculus. There is a formal aspect to the manipulation of ends and coends,
outlined in [40], which is common knowledge among theoreticians, that allows non-trivial
theorems to be proven using simple formal rules reminiscent of a deductive system. Apart
from its applications in pure category theory [40, 60, 16, 33], such “(co)end calculus” has
proven to be particularly useful in theoretical computer science, for example in the context
of profunctor optics [13, 11] and their string diagrams [57, 10], strong monads and functional
programming [3, 4, 30, 63], quantum circuits [27], and logic [52, 54, 23]. Leveraging this
abundance of practical applications, [40] hints at the existence of such deductive system, but
falls short of precisely pinpointing its rules. This particular application to coend calculus,
which as we will see can be interpreted logically as a first-order version of directed type
theory, is what motivates our focus on a non-dependent presentation of directed type theory.
Dinaturality. The notion of (co)end, first introduced by Yoneda [67], is intimately connected
to dinaturality: dinatural transformations are a generalization of natural transformations
which considers families of morphisms between functors with two variances F : Cop × C → D,
and were first introduced by Dubuc and Street [18] as an extension to the extranatural
transformations by Eilenberg and Kelly [19]. Famously, however, such generalized natural
transformations do not always compose: a well-known sufficient condition for the composabil-
ity of extranaturals is the absence of loops in a suitably associated graph [19], an idea recently
revived for dinaturals in [44]. Despite the apparent lack of composition, there are various
examples of settings in which all dinaturals compose: the fundamental idea is to single out a
class of “definable” dinaturals where composition follows because their formation rules are
precisely defined, and given syntactically. This point of view finds its most natural application
in the logical setting, where composition corresponds to cut elimination [50, 7, 8, 9, 24]. There
is a particularly deep connection between dinaturality and parametricity in programming
languages [51, 53, 64], as well as realizable models for System F [5, 21] where all dinaturals
compose. An in-depth review on dinaturality and its importance for both computer science
and category theory can be found in [58] and [59, Sec. 3].

1.1 Contribution

In this paper we describe how dinaturality allows us to semantically validate an introduction
and an elimination rule for directed equality exactly in the style of Martin-Löf type theory,
where directed equality is interpreted by hom-functors, types by (1-)categories. Motivated by
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23:4 Directed equality for (co)end calculus

the application to (co)end calculus, we consider a (proof-relevant) non-dependent treatment
of directed type theory, using (co)presheaves as predicates and dinatural transformations as
entailments which are not required to compose. The intuition behind dinatural transforma-
tions is that they allow the same variable to appear both covariantly and contravariantly:
this is exactly what allows us to resolve the variance problems previously mentioned in the
directed refl rule, which we validate using identities in hom-sets. We present a directed
equality elimination rule which is syntactically reminiscent of the J-rule used in standard
Martin-Löf type theory, and dinaturality is again what permits the same variable x to
appear with both variances in the type P (x, x, reflx) in (J-rule). This elimination rule is
semantically motivated by the connection between dinaturality and naturality, and sheds
a light on the syntactic restrictions imposed in a full type theory where equality is now
directed rather than symmetric: in short, the syntactic requirement to contract a directed
equality in context homC(x, y) for x : Cop, y : C is that both x and y must appear only
positively (i.e., with the same variance) in the conclusion and only negatively (i.e., with the
opposite variance) in the assumptions in context. The rules for directed equality allow us to
recover the same type-theoretic definitions about symmetric equality that one expects in
standard Martin-Löf type theory, except for symmetry: e.g., transitivity of directed equality
(composition in a category), congruences of terms along directed equalities (the action of a
functor on morphisms), transport along directed equalities (i.e., the coYoneda lemma). We
highlight how the syntactic restrictions imposed by this rule for directed equality elimination
do not allow us to obtain that directed equalities are symmetric.
Moreover, we show how dinaturality allows us to more precisely view (co)ends as the “directed
quantifiers” of directed type theory, which we present in a correspondence reminiscent of
the quantifiers-as-adjoints paradigm of Lawvere [36]. The semantic setting in which we
validate our rules is by considering a categorification (both proof-relevant and directed) of
non-dependent first-order logic: types are (small) categories (possibly with −op), contexts
are lists of categories, terms are functors Cop × C → D, propositions are functors of type
Cop × C → Set, and entailments are dinatural transformations. We do not provide an account
of these rules using categorical semantics precisely because dinaturals do not compose in
general; despite this lack of general composition, the rules for directed equality and coends-
as-quantifiers can be jointly used to give concise proofs of central theorems in category theory
using a distinctly logical flavour via a series of isomorphisms: e.g., the (co)Yoneda lemma,
Kan extensions computed via (co)ends are adjoint to precomposition, presheaves form a
closed category, hom-functors preserve (co)limits, and the Fubini rules; each of these easily
follows by modularly using the logical properties of each connective used. Our treatment of
(co)ends as quantifiers, combined with a formal view of hom in terms of directed equality rules,
is a concrete step towards formally understanding the so-called “(co)end calculus” [40] from
a logical perspective. We formalize the main theorems given in this paper about dinaturality
using the Agda proof assistant and the agda-categories library. Whenever present, the
symbol ( ) next to theorems links to the formal proof, for which we report here just the core
idea. The full formalization is accessible at https://github.com/iwilare/dinaturality.

1.2 Related work
Directed type theory with groupoids. North [47] describes a dependent directed type
theory with semantics in the category of (small) categories Cat, but uses groupoidal structure
to deal with the problem of variance in both introduction and elimination rules for directed
equality. This line of research has been recently expanded in [12] by extending judgements
with variance annotations. We focus on non-dependent semantics, and tackle the variance

https://github.com/agda/agda-categories
https://github.com/iwilare/dinaturality/blob/main/
https://github.com/iwilare/dinaturality
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issue precisely with the notion of dinatural transformation; this allows us to characterize
directed equality intrinsically, without using any of the groupoidal structure of categories.
Directed type theory, judgemental models. Another approach to modeling directed
equality is at the judgemental level. This line of research started with Licata and Harper
[39] who introduced a directed type theory with a model in Cat. Since directed equality is
treated judgementally, there are no rules governing its behaviour in terms of elimination and
introduction principles, although variances are present in the context as we similarly do in
our approach. Ahrens et al. [1] similarly identify a type theory with judgmental directed
equalities with sound semantics in comprehension bicategories, and extensively compare
previous works on both judgemental and propositional directed type theories.
Synthetic logics for category theory. New and Licata [46] give a sound and complete
presentation for the internal language of (hyperdoctrines of) certain virtual equipments.
These models capture enriched, internal, and fibered categories, and have an intrinsically
directed flavour. In these contexts, the type theory can give synthetic proofs of Fubini,
Yoneda, and Kan extensions as adjoints. This generality however comes at the cost of
a non-standard syntactic structure of the logic, for example when compared to standard
Martin-Löf type theory, along with some non-trivial syntactic judgements prescribed by the
structure of the models. Directed equality elimination here takes the shape of the (horizontal)
identity laws axiomatized in virtual equipments [15], which in Prof is essentially the coYoneda
lemma. Their quantifiers are given by the universal properties of tensor and (left/right)
internal homs, which in the Prof model are given by certain restricted (co)ends which always
come combined with the tensors and internal homs of Set. Our work is similar in spirit
in that we provide a formal setting for proving category theoretical theorems using logical
methods, but we only focus on the elementary 1-categorical model of categories and do not
yet capture enriched and internal settings. However, we treat ends and coends as quantifiers
directly, with adjoints-like correspondences to weakening functors which only act on the
variables of the context and without the need for quantifiers to include (restricted forms of)
conjunction and implication. Our rules for directed equality are more direct and reminiscent
of standard Martin-Löf type theory, and specifically focus on the semantic justification based
on dinaturality. Since we consider less general models, our contexts do not have any linear
nor ordered restriction, and the same variable can appear multiple times both in equalities
and contexts. This allows us to consider profunctors of many variables and different variances
as typically needed in coend calculus.
Geometric models of directed type theory. Riehl and Shulman [56] introduce a
simplicial type theory based on a synthetic description of (∞, 1)-categories. A directed
interval type is axiomatized in a style reminiscent of cubical type theory [14], which allows a
form of (dependent) Yoneda lemma to be proven using the structure of the identity type.
This type theory has been implemented in practice in the Rzk proof assistant [35]. On this
line of research, Weaver and Licata [65] present a bicubical type theory with a directed
interval and investigate a directed analogue of the univalence axiom; the same objective
was recently explored in Gratzer et al. [26] with triangulated type theory and modalities.
In comparison with the above works, we do not explore the geometrical interpretation of
directedness and focus on elementary 1-categorical semantics; moreover, our treatment of
directed equality is done intrinsically with elimination rules as in Martin-Löf type theory
rather than with synthetic intervals, with semantics directly provided by hom-functors.
Coend calculus, formally. Caccamo and Winskel [17] give a formal system in which
one can work with coends and establish non-trivial theorems with a few syntactical rules.
The flavour is explicitly that of an axiomatic system, and does not take inspiration from
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23:6 Directed equality for (co)end calculus

type-theoretic rules: for instance, presheaves are postulated to be equivalent under the
swapping of quantifiers (Fubini), so this principle is not derived from structural rules as
typically done in a logical presentation.

2 Syntax and Semantics

We now present the syntactic judgements of a proof-relevant non-dependent first-order
directed type theory, with main semantics in 1-categories. We will consider the following
judgements along with their semantics:

C type types A,C,D are interpreted as small categories, possibly with −op; we axiomatize
these by modeling terminal ⊤, product C × D and functor categories [C,D]. We add a
base type Cop for each base type C in a fixed signature Σ, and then define an involution
−op on types by induction, following the semantics in Cat in the intuitive way. A similar
definition of op can be given for terms and predicates, which we detail in Figure 7.
Γ ctx contexts Γ,∆ are interpreted as finite products of categories;
Γ ⊢ F : C terms F,G as functors JΓK → JCK, which we axiomatize like terms in STLC;
[Γ] P prop predicates P,Q,R,A,B as dipresheaves, i.e., functors JP K :JΓKop ×JΓK→Set;

[Γ] Φ propctx propositional contexts Φ,Φ′ as pointwise products of dipresheaves;

[Γ] Φ ⊢ α : P entailments α, β, γ as dinatural transformations JΦK q q−→ JP K; we axioma-
tize composition/cut only with natural transformations, not requiring general composition;
[Γ] Φ ⊢ α = β : P equality of entailments as equality between dinaturals in Set.

For predicates/dipresheaves, we consider base predicates and the following logical connectives:
conjunction, interpreted as the pointwise product − × − of dipresheaves in Set;
implication, by postcomposing dipresheaves with the functor − ⇒ − : Setop × Set → Set;
propositional directed equality is interpreted by hom-functors homC : Cop × C → Set;
quantifiers ∀,∃ as ends and coends, logically representing universal and existential
quantifiers on predicates/dipresheaves respectively, which we consider in Section 3.

The full set of types, terms, and predicate formation rules is given in Appendix A. We show
in Figure 2 only the main rules for entailments, for which we describe the semantics in
Section 2.3. The rules for entailments implicitly use the notion of polarity for variables,
introduced in Remark 12; these are formally captured by the predicates in Figures 5 and 6.
▶ Remark 1. Because of the lack of composition of dinatural transformations, we do not
consider a categorical semantics of this syntactic system using standard categorical models,
e.g., fibrations [34], since most of them ask for full composition, which cannot be guaranteed
in our semantics. We discuss other possible models in Section 4. Hence, our approach is to
simply consider the main rules described in Figure 2 (which are equipped with restricted rules
for composition of entailments) and validate them using categories, dipresheaves, dinatural
transformations, and, e.g., introduction and elimination rules for hom-types. We then put
these rules into practice by showing (in Section 3.1) how we can prove standard theorems in
category theory using a distinctly logical flavour, as well as showing (in Section 2.4) how
the rules for directed equality can be used to construct maps and prove properties about
directed equality precisely as it can be done in Martin-Löf type theory for the symmetric
case. The reader fluent in categorical logic [34, 42] can imagine our logic to capture the
behaviour of a specific doctrine Dinat : Catop → PARACAT given by sending a small category
C to the large paracategory [Cop × C,Set]dinat (a variation of category where the composition
operation is partial, see [28, 29]), where such paracategory is defined by having dipresheaves
Cop × C → Set as objects and dinatural transformations as between them as morphisms.
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2.1 Dinaturality
The fundamental idea behind the logic is that variables in the term context can appear
in predicate symbols both covariantly and contravariantly. This is what allows us to
resolve the variance problems in the introduction and elimination rules for directed equality,
and is precisely what dinatural transformations capture. We recall basic notions about
dinatural transformations, which we abbreviate simply as “dinaturals”, and ordinary natural
transformations as “naturals”.

▶ Definition 2 (Dipresheaves). Consider the (strict) comonad −⋄ : Cat → Cat defined by
C 7→ Cop × C, where the counit is given by projecting and comultiplication by duplicating and
swapping. A dipresheaf is simply a functor C⋄ → Set (i.e. a functor Cop × C → Set).

We always denote composition diagrammatically, i.e., f ; g : a → c for f : a → b, g : b → c.

▶ Definition 3 (Dinatural transformation [18]). Given functors F,G : C⋄ → D, a dinatural
transformation α : F q q−→ G is a family of arrows αx : F (x, x) −→ G(x, x) indexed by objects
x : C such that for any a, b : C and f : a → b the following equation holds:
F (idb, f) ; αb ;G(f, idb) = F (f, ida) ; αa ;G(idb, f).

▶ Lemma 4 (Dinaturals generalize naturals [18]). A natural transformation α : F → G for
F,G : C → D equivalently corresponds with a dinatural α : (π2 ; F ) q q−→ (π2 ;G) : C⋄ → D.

▶ Lemma 5 (Naturality to dinaturality). ( ) Naturality in two variables with different
variance can be “collapsed” to dinaturality in a single one: given F,G : Cop × C → D and a
natural α : F → G, there is a dinatural ∆(α) := αxx : F q q−→ G.

The pointwise composition of two dinatural transformations is not necessarily dinatural (see
[44, 22]), but dinaturals always compose with naturals on both the left and right side:

▶ Lemma 6 (Dinaturals compose with naturals [18]). Given a dinatural transformation γ :
F

q q−→ G and natural transformations α : F ′ → F, β : G → G′ for F, F ′, G,G′ : Cop×C → Set,
the map α ; γ ; β : F ′ q q−→ G′ defined by (α ; γ ; β)x := αxx ; γx ; βxx is dinatural.

2.2 Notation
We now introduce the concepts of position, variance, and polarity, and then describe the
notation for variables, predicates and entailments used in the type theory.

▶ Definition 7 (Positions in a predicate). The name position to indicates a point in which a
variable can appear in a predicate, e.g., there are four possible positions x, y, z, w for variables
to appear in the predicate hom(x, y) × P (z, f(w)).

▶ Definition 8 (Variance of a position). Positions have a variance, which can either be
positive or negative: intuitively, a position starts out as positive, and flips between being
positive and negative precisely in the following cases:
1. when it occurs on the left side of hom(x, y), e.g., x is negative in hom(x, c), hom(f(x), y);
2. when it occurs on the left of implication P ⇒ Q, e.g., x is negative in P (f(x)) ⇒ Q(y);
3. when it occurs on the left side ·1 of a base predicate symbol P (·1, ·2) : Cop × C → Set.
Moreover, variance can be inverted twice in the intuitive way: for example, x occurs positively
in the predicate hom(x, y) ⇒ P and (hom(y, x) ⇒ P ) ⇒ P .

Semantically, this flipping of variance corresponds with the presence of the opposite category
Cop on the left side of the functors homC : Cop × C → Set, and − ⇒ − := homSet. The fact
that (Cop)op ≡ C justifies the fact that inverting a negative variable makes it positive again.
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▶ Definition 9 (Polarity of a variable). Variables can occur in multiple positions at the same
time: we say that the polarity of variable x is positive iff every position in which it occurs
is positive; similarly for negative. A variable is natural iff it is either positive or negative.
Polarity in terms and predicates is captured formally using the judgements in Figures 5 and 6.

▶ Remark 10 (Notation for variance of variables). We introduce notation to highlight the con-
travariance of variables in predicates. We indicate with “x” the negative (or “contravariant”)
occurrences of variables x : C, and simply “x” for the positive (or “covariant”) ones. We use
the same terminology even when C := (C′)op is the opposite of some C′.
▶ Remark 11 (Notation for entailments). The type-theoretic notation for entailments [x : C, y :
D, ...] a : P (x, x, y, y, ...), b : Q(x, x, y, y, ...), ... ⊢ α[a, b, ...] : R(x, x, y, y, ...) is interpreted
semantically as the statement “α is a dinatural from the functor JP K × JQK × ... to JRK :
(JCK × JDK × ...)⋄ → Set”, where the former functor is interpreted by the pointwise product
of the dipresheaves in the list of assumptions Φ := P,Q, ..., which are given names and freely
permuted whenever needed. The term context [x : C, y : D, ...] indicates the indices of the
dinatural, which is to be thought as the context over which the entailments of a fiber live in
a fibration [34]. We use square brackets α[a, b, ...] both to indicate assumptions and for fun-
ctional application in Set, e.g., αc[a, b] ∈ P (c, c) whenever c ∈ C and a ∈ P (c, c), b ∈ Q(c, c).
We will often omit in P the (unrestricted) presence of variables coming from a context Γ.
▶ Remark 12 (Variables in entailments). We indicate with P (x, x, y, y) the fact that the
predicate P can depend on x, y both negatively and positively; when either variance is
omitted, e.g., in P (x, y), the predicate must depend only on x and y, i.e., naturally. These
restrictions are formally captured using the predicates for polarity of Definition 9 in the
intuitive way, which we omit their explicit use in the rules for entailments. Naturality for
entire contexts is given by [y : Γ] P (y), i.e., all variables in Γ are used only positively in P .
▶ Remark 13 (Notation for inference rules of dinaturals). Following the interpretation of
dinaturals as entailments, we use trees of inference rules to indicate that, given certain
dinatural(s) as in the rule premise, one obtains a dinatural as in the rule conclusion. Seman-
tically, inference rules are interpreted by functions between sets of dinaturals (natural in
all dipresheaves involved). We use double lines to indicate natural isomorphisms of sets of
dinaturals, and often omit the name of such isomorphisms in rules, especially in Section 3.1.

2.3 Rules
We now validate and describe the intuition behind each rule for predicates and entailments.
Whenever present, the symbol ( ) links to the Agda formalization of its semantics.

▶ Theorem 14 (Dinatural semantics). Each rule presented in Figure 2 is validated using
the semantics in categories, functors, dipresheaves, dinatural transformations. Sequents are
interpreted by functions between sets of dinaturals; these are isomorphisms when double-lines
appear. Moreover, every function is natural in all the dipresheaves that appear in the rule.

We unpack this theorem by validating and describing the intuition behind each rule.
Products. ( ) Dinaturals validate the interpretation of conjunction in (prod) via the
pointwise product of dipresheaves in Set; the bottom sequent indicates the product of sets of
dinaturals. Moreover, (wk) states that dinaturals always compose on the left with projections.
Op-types. The entailments [x : C] F (x) ⊢ α : G(x, x) and [x : Cop] F (x) ⊢ α′ : G(x, x)
clearly denote the same dinatural in the semantics, for F : Cop → D, G : Cop × C → D. We
capture this idea with the rule (op), stating precisely that positive positions of type Cop are
the same as negative positions of type C, and viceversa.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/Products.agda
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[Γ] Φ ⊢ α : P (var)
[Γ] Φ, a : P,Φ′ ⊢ a : P

[Γ] Φ ⊢ α : P
(wk)

[Γ] A,Φ ⊢ wk(α) : P
(⊤)

[Γ] Φ ⊢ ! : ⊤

[x : C,Γ] Φ(x, x) ⊢ α : P (x, x)
(op)

[x : Cop,Γ] Φ(x, x) ⊢ α : P (x, x)

Γ ⊢ F : C [x : C,Γ] Φ(x, x) ⊢ α : Q(x, x)
(idx)

[Γ] Φ(F op(x), F (x)) ⊢ F ∗(α) : Q(F op(x), F (x))
[Γ] Φ ⊢ P ×Q

(prod)
[Γ] Φ ⊢ P, [Γ] Φ ⊢ Q

[x : Γ] A(x, x),Φ(x, x) ⊢ B(x, x)
(exp)

[x : Γ] Φ(x, x) ⊢ Aop(x, x) ⇒ B(x, x)

[a : ∆op, b : ∆, x : Γ] Φ(x, x, a, b) ⊢ α : P (a, b)
[z : ∆, x : Γ] k : P (z, z),Φ(x, x, z, z) ⊢ γ[k] : Q(z, z)

(cut-din)
[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ γ[α] : Q(z, z)

[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ γ : P (z, z)
[a : ∆op, b : ∆, x : Γ] k : P (a, b),Φ(x, x, a, b) ⊢ α[k] : Q(a, b)

(cut-nat)
[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ α[γ] : Q(z, z)

(refl)
[x : C,Γ] Φ ⊢ reflC : homC(x, x)

[z : C,Γ] Φ(z, z) ⊢ h : P (z, z)
(J)

[a : Cop, b : C,Γ] e : homC(a, b),Φ(b, a) ⊢ J(h)[e] : P (a, b)

[Γ] Φ ⊢ α = β : P (J-comp)
[z : C,Γ] k : Φ(z, z) ⊢ J(h)[reflC] = h : P (z, z)

[z : C,Γ] Φ(z, z) ⊢ α[reflC] = β[reflC] : P (z, z)
(J-eq)

[a : Cop, b : C,Γ] e : homC(a, b),Φ(b, a) ⊢ α[e] = β[e] : P (a, b)

Figure 2 Main rules for entailments of first-order dinatural directed type theory.

Polarized exponentials. ( ) Contrary to naturals and presheaves [38], dinaturals can be
curried directly via the (exp) rule by currying each component of α in Set. This construction
is similarly given in [24, 5] and called twisted exponential. The intuition is that dipresheaves
move between the two sides of the turnstile by inverting the variance of all their positions.
Reindexing with functors as terms. ( ) Following the doctrinal presentation of logic
(see [34, 55] for standard accounts), dinaturals can be “reindexed” by functors via the rule
(idx), i.e., variables in entailments can be substituted with concrete functors, viewed as terms.
Cut naturals-dinaturals. We present two restricted cut rules (cut-din), (cut-nat) between
naturals and dinaturals, corresponding to Lemma 6. Associativity is captured in Figure 8.
The occurrences a, b in Φ in (cut-nat) are needed to make α natural in a, b when the domain
is just P , i.e., by using (exp) to move Φ and invert a, b. Note that P must not depend on Γ.
Directed equality introduction. ( ) The rule (refl) states reflexivity of directed equality,
and is validated semantically by αx(h) := idx. Dinaturality holds by ∀f : a → b, f ;idb = ida ;f .
Directed equality elimination. ( ) The rule (J) is the directed version of the J rule
in Martin-Löf type theory. Note the syntactic restrictions: P cannot have contravariant
occurrences a, b, and Φ cannot have covariant occurrences a, b. A computation rule (J-comp)
holds, using (cut-nat) on J(h) to compose with (refl). Semantically, J(h) is defined by
J(h)abx[e, k] := (JΦK(idb, e, idx, idx) ;hbx ;JP K(e, idb, idx, idx))[k]. The computation rule clearly
holds when a = b = z and e = idz, without using dinaturality.

The operational meaning behind (J) is the following: having identified two covariant
positions a : Cop and b : C in the predicate P , if there is a directed equality homC(a, b) in
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context then it is enough to prove that P holds “on the diagonal”, where the two positions
have been identified with the same dinatural variable z : C; moreover, a, b can be identified
in the context Φ only if they appear contravariantly, i.e., as a and b. One can use (op) to
equivalently state (J) to have a, b : C to have the same type: the formulation above with
a :Cop, b :C emphasizes how the two variables play different asymmetric roles.
Dependent hom elimination. ( ) A dependent version of directed J , rule (J-eq), is
needed in Section 2.4 to prove equational properties of maps definable with (J); this is done
by allowing hom(a, b) to be contracted inside equality judgements. Intuitively, given α[e] and
β[e] with an equality in context e : homC(a, b) which can be contracted using (J), α and β

are equal everywhere as soon as they are equal on e = reflC,z for all z :C. This is validated in
the model, crucially, using the fact that α, β are dinatural, as in the Yoneda lemma [38, 4.2].
▶ Remark 15 (Exponentials for naturals). The following derivation using (exp) elucidates why
the exponential object in the category of presheaves and naturals is non-trivial, and is not
the pointwise hom in Set; by directly applying (exp) for (co)presheaves F,G,H : C → Set,

[x : C] F (x) ×G(x) ⊢ H(x)
(exp)

[x : C] G(x) ⊢ F op(x) ⇒ H(x)
but the bottom family of arrows is dinatural in x, since it appears both co- and contravariantly.
We show in Theorem 32 how (exp) and the rules for directed equality can be used to give a
logical proof that the usual definition of exponential for presheaves [38, 6.3.20] is correct.
▶ Remark 16 (Failure of symmetry for directed equality). The restrictions in (J) illustrate
why one cannot derive that directed equality is symmetric, i.e., obtain a general map
[a : Cop, b : C] e : hom(a, b) ⊢ sym : hom(b, a). The equality e : hom(a, b) cannot be
contracted because a appears in the conclusion negatively (similarly with b), whereas (J)
requires that the conclusion only has positive occurrences of the variables being contracted.
As in the symmetric case, (J) and hom can be characterized via an isomorphism [34, 3.2.3]:
▶ Theorem 17 (Directed J as isomorphism). ( ) Rule (J) is an isomorphism, and the
inverse map is given by J−1(h) := h[reflC] using (cut-nat) and (refl). We refer to the whole
isomorphism as the rule (hom). Moreover, J−1 ; J = id is logically equivalent to (J-eq).
Proof. The computation rule states precisely that J ;J−1 = id. To show J−1 ;J= id, we instan-
tiate (J-eq) with α :=J(β[reflC]) and use (J-comp) in the hypothesis, i.e., J(β[reflC])[reflC]=
β[reflC], to obtain J(β[reflC])=β as desired. We show that J−1 ;J = id implies (J-eq): the
hypothesis in (J-eq) is exactly J−1(α)=J−1(β), hence α=β by applying J on both sides. ◀

▶ Theorem 18 (hom⇒ refl). Rules (refl) and (J) are logically equivalent to (hom).
Proof. Clearly (J) is the top-to-bottom direction of (hom). The rule (refl) follows from J−1

in Theorem 17 by picking P := hom and using the projection (var) as the bottom side map
h. Semantically, the map obtained must coincide with refl: J−1(h) := h[reflC], and since we
picked h to be the projection π1, we have that h = π1[reflC, k] = reflC as desired. ◀

▶ Remark 19 (Groupoidal case). When C ∼= Cop is a groupoid, (hom) simply becomes the
characterization of symmetric equality as left adjoint to reindexing on diagonals [34, 3.2.4].
Moreover, the non-compositionality of dinaturals is an intrinsic property of directed proof-
relevant type theory, since in the groupoidal case they all compose (in the proof-irrelevant
case, where Set is replaced by the preorder I := {0 → 1}, dinaturals compose trivially since
there is no hexagon to check):
▶ Theorem 20 (Dinaturals in groupoids). ( ) Given a groupoid C ∼= Cop and any D, all
dinaturals α : F q q−→ G, β : G q q−→ H for F,G,H : C⋄ → D compose.

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J-Iso.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/J-Iso.agda
https://github.com/iwilare/dinaturality/blob/main/Dinaturality/GroupoidCompose.agda
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2.4 Examples for directed equality
We show how the rules for directed equality can be used to obtain the same terms definable
with symmetric equality in Martin-Löf type theory, and proving properties about them
follows precisely the steps of the usual proofs [61, 31]. All examples in this section satisfy the
constraints for (cut-nat) to be applied: this kind of composition essentially corresponds to
vertical composition in Prof as a virtual equipment [46, 15]. We start by showing transitivity
of directed equality, i.e., the fact that every category is equipped with composition maps.

▶ Example 21 (Composition in a category). The following derivation constructs the composi-
tion map for C, which is natural in a : Cop, c : C and dinatural in b : C:

(var)
[z : C, c : C] hom(z, c) ⊢ id : hom(z, c)

(J)
[a : Cop, b : C, c : C] f : hom(a, b), g : hom(b, c) ⊢ J(id) : hom(a, c)

We contracted the first equality f : hom(a, b). Rule (J) can be applied since a, b appear only
negatively in context (a does not appear) and positively in the conclusion (b does not). We
now prove that comp[f, g] := J(id), denoted as “f ; g”, is unital on identities (i.e., reflC) and
associative. Since we chose to contract f , the computation rule ensures unitality on the left:

(J-comp)
[z : C, c : C] g : hom(z, c) ⊢ reflz ; g = g : hom(z, c)

essentially because J−1(J(id)=comp)= id. On the other hand, to show that composition is
right-unital we must use directed equality induction for equalities (J-eq), where now it is
enough to just consider the case in which a = z = w and f = reflw,

(J-comp)
[w : C] ⊤ ⊢ reflw ; reflw = reflw : hom(w,w)

(J-eq)
[a : Cop, z : C] f : hom(a, z) ⊢ f ; reflz = f : hom(a, z)

which follows by the computation rule for comp since reflw is on the left. Similarly, to show
associativity we just need to consider the case a = b = z and f = reflz,

(J-comp)
[z : C, c : C, d : C] g : hom(z, c), h : hom(c, d) ⊢ reflz ; (g ; h) = (reflz ; g) ; h : hom(z, d)

(J-eq)
[a : C, b : C, c : C, d : C] f : hom(a, b), g : hom(b, c), h : hom(c, d) ⊢ f ; (g ; h) = (f ; g) ; h : hom(a, d)

where the top sequent equals g ; h by the computation rules for comp := J(id).

▶ Example 22 (Functorial action on morphisms). For any functor C ⊢ F : D, the functorial
action on morphisms of F corresponds with the fact that any term/functor F respects
directed equality, i.e., directed equality is a congruence:

(idx)+(refl)
[z : C] ⊤ ⊢ F ∗(reflC) : homD(F op(z), F (z))

(J)
[x : C, y : C] homC(x, y) ⊢ J(F ∗(reflC)) : homD(F op(x), F (y))

and thus we define mapF [f ] := J(F ∗(reflC)), using (idx) with F in the top sequent.
The computation rule gives that F maps identities to identities:

(J-comp)
[z : C] ⊤ ⊢ mapF [reflC] = F ∗(reflC) : homD(F op(x), F (x))

Functoriality holds, since both top sides equal mapF [g] using computation rules:

(J-comp)
[z : C, c : C] g : hom(z, c) ⊢ mapF [reflz ; g] = reflF (z) ; mapF [g] : hom(z, d)

(J-eq)
[a : C, b : C, c : C] f : hom(a, b), g : hom(b, c) ⊢ mapF [f ; g] = mapF [f ] ; mapF [g] : hom(a, d)

CVIT 2016



23:12 Directed equality for (co)end calculus

▶ Example 23 (Transport). Transporting points of predicates along directed equalities [61,
2.3.1] is the functorial action of copresheaves P :C→Set, i.e., [x :C]P prop, for x only positive:

(var)
[z : C] P (z) ⊢ P (z)

(J)
[a : Cop, b : C] hom(a, b), P (a) ⊢ P (b)

(J-comp)
[z : C] k : P (z) ⊢ subst[reflC, k] = k : P (z)

The computation rule simply states that transporting a point of P (a) along the identity
morphism with subst[f, k] := J(id) is the same as giving the point itself, i.e., subst[reflC] = id.

▶ Example 24 (Internal dinaturality for entailments). For any [x : C] P (x, x) ⊢ α : Q(x, x), an
internal version of (di)naturality for entailments, as in Theorem 3, holds via (J-comp):

(J-comp)
[z : C] k : P (z, z) ⊢ substQ[(refl, refl), [α[substP [(refl, refl), k]]]]

= substQ[(refl, refl), [α[substP [(refl, refl), k]]]] : Q(z, z)
(J-eq)

[a : Cop, b : C] f : homC(a, b), k : P (b, a) ⊢ substQ[(refl, f), [α[substP [(f, refl), k]]]]
= substQ[(f, refl), [α[substP [(refl, f), k]]]] : Q(a, b)

3 (Co)ends as quantifiers

In this section we describe how dinaturality allows us to give an interpretation of ends
and coends as the “directed quantifiers” for the (1-)category interpretation of directed type
theory. We provide rules for ends and coends which are reminiscent of the quantifiers-as-
adjoints paradigm by Lawvere [36]; we show in Theorem 27 that ends and coends can be
captured as “right and left adjoint” operations to a common weakening operation which only
operates on the context of entailments [34, 1.9.1]: this adjointness relation should be only
interpreted suggestively, since (co)ends are functorial operations for naturals but in general
not dinaturals [40, 1.1.7]. Despite this, the rules for (co)ends can be combined with the ones
given for directed equality (hom) to provide concise proofs of theorems in category theory
using sequences of natural isomorphisms, following an approach similar to that described as
“(co)end calculus” [40] but emphasizing the role of (co)ends as quantifiers and hom as directed
equality. This approach has the advantage that several properties of quantifiers, e.g., that
they can be exchanged and permuted whenever possible, follow automatically from certain
structural properties of contexts, which we omit here since they are standard. For example,
in first order logic the formulas ∀x.∀y.P ⇔∀y.∀x.P ⇔∀(x, y).P are logically equivalent for
any predicate P (x, y): this is indeed also verified for ends (and coends with existentials) and
takes the name of “Fubini rule” [41, IX.8], [40, 1.3.1], which we prove in Theorem 34. More
details on (co)ends and their calculus can be found in [41, IX.5-6], [40, Ch. 1].

▶ Definition 25 ((Co)wedges for P [40, 1.1.4]). Given P : Cop × C → D, a wedge for P is
a pair object/dinatural (X : D, α : KX

q q−→ P ), where KX is the constant functor in X. A
wedge morphism (X,α) → (Y, α′) is an f :X → Y of D such that ∀c : C, αc = f ; α′

c. A
cowedge is a wedge in Dop, denoting the categories of (co)wedges as Wedge(P ),Cowedge(P ).

▶ Definition 26 ((Co)ends [40, 1.1.6]). Given a functor P : Cop × C → D, the end of P is
defined to be the terminal object of Wedge(P ), whose object in D is denoted as

∫
x:C P (x, x).

Dually, the coend of P is the initial object of Cowedge(P ), denoted similarly as
∫ x:D

P (x, x).
The integral symbol acts as a binder, in the sense that “

∫
c:C P (c, c)” and “

∫
x:C P (x, x)” are (α-

)equivalent; moreover, P can depend on many parameters, e.g., if P : (Aop×A)×(Bop×B) → D
then

∫
b:B P (a, a, b, b) : Aop × A → D. (Co)ends exist when D is (co)complete [40].
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▶ Theorem 27 (Ends and coends as quantifiers). ( ) The following rules are validated by
isomorphisms of sets of dinaturals, natural in P :C⋄ →Set, Q :A⋄ × C⋄ →Set, where C := JΓK:

[a : A,Γ] Φ ⊢ Q(a, a)
(end)

[Γ] Φ ⊢
∫

a:A Q(a, a)

[Γ]
(∫ a:A

Q(a, a)
)
,Φ ⊢ P

(coend+frob.)
[a : A,Γ] Q(a, a),Φ ⊢ P

Theorem 27 expresses an adjoint-like (up to the non-composition of dinaturals) correspondence∫ A[C] ⊣ π∗
A[C] ⊣

∫
A[C] between the weakening functor π∗

A[C] : [C⋄,Set]→ [A⋄ × C⋄,Set] and the
functors

∫ A[C]
,
∫

A[C] : [A⋄ × C⋄,Set]→ [C⋄,Set] sending dipresheaves to their (co)end in A.

We leave the weakening operations of the above rules implicit for the rest of the paper.
Quantifiers in categorical logic typically have to satisfy additional requirements in order
to faithfully model logical operations: the Beck-Chevalley condition [34, 1.9.4] states that
“quantifiers commute with substitution”, and the Frobenius condition [34, 1.9.12] logically
corresponds to having an additional context Φ in rules for colimit-like connectives [34, 3.4.4].
The rule given in Theorem 27 is already stated with such additional context.

▶ Theorem 28 (Beck-Chevalley and Frobenius condition for (co)ends). (Co)ends satisfy a
Beck-Chevalley condition, in the sense that for all F : C⋄ → D there is a strict isomorphism∫

A[D] ;F ∗ ∼= (idA⋄ × F )∗ ;
∫

A[C] in the (large) functor category [[A⋄ × D⋄,Set],[D⋄,Set]], where∫
A[C],

∫ A[C] : [A⋄ × C⋄,Set] → [C⋄,Set] are the functors sending dipresheaves to their (co)end
in A and F ∗ : [D⋄,Set] → [C⋄,Set] is precomposition with F ⋄.

Moreover, a Frobenius condition for coends is satisfied, in the sense that there is an
isomorphism

∫ A[C](π∗
A[C](P ) ∧ Γ ) ∼= π∗

A[C](P ) ∧
∫ A[C](Γ ), natural in Γ : A⋄ × C⋄ → Set, P :

C⋄ → Set, where − ∧ − : [C,Set] × [C,Set]→ [C,Set] for any C is the product of (di)presheaves.

Proof. Beck-Chevalley is immediate. For Frobenius, our logical rules can be used to apply
exactly the argument given in [34, 1.9.12(i)], detailed in Appendix C. ◀

3.1 Coend calculus via dinaturality
We show how the rules for directed equality and (co)ends can be used to give concise proofs
with a distinctly logical flavour to several central theorems of category theory. The technique
we use mirrors the way coend calculus is applied in practical settings (e.g., [11, 30, 57]) via
a “Yoneda-like” series of natural isomorphisms of sets: to prove that two objects A,B : C
are isomorphic, one can assume to have a generic object Φ and then apply a series of
isomorphisms of sets natural in Φ to establish that C(Φ, A) ∼= C(Φ, B), from which A ∼= B

follows the fully faithfulness of the Yoneda embedding [11, 38]. The same technique can be
used to show that functors are naturally isomorphic, as well as adjunctions, e.g., Theorems 32
and 33. Our proofs follow a different approach to that taken in [40, 17], since we use sets of
dinaturals and explicitly view hom(a, b) in terms of directed equality and (co)ends via their
characterization in terms of contextual operations, rather than applying arbitrary semantic
rules. We now show our main examples, with additional derivations in Appendix B.
▶ Remark 29 (Internalizing Yoneda). The above technique is not captured as part of the type
theory, and is just a semantic result in the meta-theory; our logic makes this easier since it
constructs the required natural isos. This could be internalized in the type theory by adding
a universe Set and a univalence-like statement homSet(A,B) ∼= A ⇒ B (as in [2, 26]), which
allows for implication to be represented as a directed equality and then contracted with
(J); then, using a similar argument as in Theorem 24, one can interalize naturality and the
standard proof of the Yoneda lemma, e.g., [38]. We show internal naturality in Theorem 42.
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▶ Remark 30 (Naturality of rules). ( ) All rules given in previous sections are natural in
each of the dipresheaves involved. In the following series of examples no proof ever involves
a “dinatural isomorphism”, since Yoneda cannot be applied between sets which are not
hom-sets; natural isomorphisms between sets of dinaturals are only used as intermediate
steps. This technique allows us to sidestep the issue of the compositionality of dinaturals,
and motivates our approach omitting the underlying equational theory.
▶ Example 31 ((co)Yoneda lemma). For any presheaf P : C → Set, and a presheaf Φ : C → Set
acting as generic context, the following derivations capture the Yoneda lemma [40, Thm. 1]
(using the characterization of naturals as an end) and coYoneda lemma [41, III.7, Theorem
1] (i.e., presheaves are isomorphic to a weighted colimit of representables), respectively.
[a :C] Φ(a) ⊢

∫
x:C homop

C (a, x) ⇒ P (x)
(end)

[a :C, x :C] Φ(a) ⊢ homop
C (a, x) ⇒ P (x)

(exp)
[a :C, x :C] homC(a, x) × Φ(a) ⊢ P (x)

(hom)
[z : C] Φ(z) ⊢ P (z)

[a :C]
∫ x:C homC(x, a) × P (x) ⊢ Φ(a)

(coend)
[a :C, x :C] homC(a, x) × P (a) ⊢ Φ(x)

(hom)
[z : C] P (z) ⊢ Φ(z)

▶ Example 32 (Presheaves are cartesian closed). For any A,B,Φ : C → Set, the following
derivation expresses that the internal hom in the category of presheaves and naturals defined
by (A ⇒ B)(x) := Nat(hom(x,−) × A,B) is indeed the correct one, shown here via the
isomorphism of sets of the tensor/hom adjunction:

[x : C] Φ(x) ⊢ (A ⇒ B)(x) := Nat(homC(x, −) × A, B)
=

∫
y:C homop

C (x, y) × Aop(y) ⇒ B(y)
(end)

[x : C, y : C] Φ(x) ⊢ homop
C (x, y) × Aop(y) ⇒ B(y)

(exp)
[x : C, y : C] A(y) × homC(x, y) × Φ(x) ⊢ B(y)

(coend+frob.)
[y : C] A(y) ×

(∫ x:C homC(x, y) × Φ(x)
)

⊢ B(y)
(coYoneda)

[y : C] A(y) × Φ(y) ⊢ B(y)
Note that (hom) cannot be used in this derivation since y appears positively in context
in A(y), whereas it should be negative to identify it with x. Instead, we apply the rule
(coYoneda) given in Example 31 to show that copresheaf Φ : C → Set as a whole is isomorphic
to a certain functor C → Set computed as a coend, independently of the point on which it
is evaluated (in this case y). The above derivation is a simple application of our rules via
dinaturality, but it is unclear how it can be captured using the proarrow equipment approach
of [46, 66] as an abstract property of Prof, due to the repetition of the variables y, y.
▶ Example 33 (Pointwise formula for right Kan extensions). Using our rules, we give a
logical proof that the functor RanF : [C,Set] → [D,Set] sending (co)presheaves to their Kan
extensions along F : C → D computed via ends [40, 2.3.6] is right adjoint to precomposition
(F ; −) : [D,Set] → [C,Set]. Note the similarity between this derivation and the argument
given in [55, 5.6.6] to compute adjoints in a general doctrine. For any P : C → Set, a
functor/term F : C → D and a generic Φ : D → Set:

[y : D] Φ(y) ⊢ (RanF P )(y) :=
∫

x:C homop
D (y, F op(x)) ⇒ P (x)

(end)
[x : C, y : D] Φ(y) ⊢ homop

D (y, F op(x)) ⇒ P (x)
(exp)

[x : C, y : D] homD(y, F (x)) × Φ(y) ⊢ P (x)
(coend)

[x : C]
∫ y:D homD(y, F (x)) × Φ(y) ⊢ P (x)

(coYoneda)
[y : C] Φ(F (x)) ⊢ P (x)

https://github.com/iwilare/dinaturality/blob/main/Dinaturality/NaturalityExample.agda
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▶ Example 34 (Fubini rule for ends). For convenience we only show the case for ends. For
any dipresheaf Φ : ⊤op × ⊤ → Set (a dipresheaf in the empty context, i.e., simply an object
Φ : Set) and P : (Cop × C) × (Dop × D) → Set the following are all equivalent,

[ ] Φ ⊢
∫

x:C

∫
y:D P (x, x, y, y)

(end)
[x : C] Φ ⊢

∫
y:D P (x, x, y, y)

(end)
[x : C, y : D] Φ ⊢ P (x, x, y, y)

(structural property)
[y : D, x : C] Φ ⊢ P (x, x, y, y)

· · ·
(structural property)

[p : C × D] Φ ⊢ P (p, p)
(end)

[y : D] Φ ⊢
∫

x:C P (x, x, y, y)
(end)

[ ] Φ ⊢
∫

y:D

∫
x:C P (x, x, y, y)

(end)
[ ] Φ ⊢

∫
p:C×D

P (x, x, y, y)

using the fact that certain structural properties of contexts hold by cartesianness of Cat.

4 Conclusions and future work

In this paper we showed how dinaturality plays a crucial role in the semantics of a directed
type theory where types are interpreted as (1-)categories and directed equality as hom-
functors, which we then applied to give a distinctly logical interpretation to (co)end calculus
by viewing it in terms of directed equality.

Our treatment of directed equality is a first step towards a formal understanding of
the role played by directedness and variance, and their relationship with the syntax of
standard Martin-Löf type theory. The most important aspect left out from our work is a
precise treatment of the compositionality of dinatural transformations, a famously difficult
problem [58] which would, as we argued, give insight on a satisfactory syntactic treatment of
(dependent) directed type theory with 1-categories. Strong dinaturals [45, 49] provide a hint
in this direction but lack in expressivity, e.g., they are not closed in general [62]. Following
Theorem 19, this non-compositionality seems to be an intrinsic characteristic of interpreting
dinaturals in the directed proof-relevant setting, i.e., non-groupoidal categories.

Organizing the syntax into a suitable initial object in a category of models requires a
more detailed (and possibly more general) notion of model that can axiomatize the behaviour
of variables in dinaturals and naturals (e.g., as in [58]): one possible approach could be
to abstractly consider two classes of maps (dinaturals, naturals) and requiring such maps
to interact as in (cut-nat), (cut-din) and (assoc-nat-din-nat). This would be particularly
important towards a fully dependent treatment of dinatural directed type theory, in order to
investigate how polarity of variables is influenced by their appearance inside types.

All of our results can be specialized in the category of posets Pos rather than Cat, where
dinaturals compose trivially and our work provides a “logic of posets”, captured via a bona
fide doctrine, at the cost of trivializing (co)ends with (co)products. This case could be
axiomatized in the style of the doctrinal approach [34, 43], by introducing a notion of directed
doctrine that captures the roles played by variance, the −op involution, and (di)naturality.

Aside from adding a Set-like universe to the type theory as mentioned in Remark 29,
there are useful examples of (higher) coend calculus which have not yet been interpreted in
terms of directed equality: for instance, one should be able to express that composition maps
exist for all categories C : Cat, where this quantification can be expressed via a suitable
pseudo-end in Cat [40, 7.1]; similarly, the category of elements of a functor, reminiscent
of a Σ-type, can be given as the pseudo-coend El(F ) ∼=

∫ c:C
c/C × F (c), where c/C is the

coslice category and F (c) is seen as a discrete category [40, 4.2.2]. These examples could
be captured by considering the category of small categories Cat as a suitable universe of
types [31]. We leave investigating the relation between dinaturality and geometric models of
ω-categories in the spirit of [56, 26, 65] for future work.

CVIT 2016
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A Complete rules for first-order dinatural directed type theory

The complete rules for dinatural directed type theory are listed in Figures 3 to 6.
The rules to formally capture the positive and negative polarity of variables is given in

Figure 5 for terms, and Figure 6 for predicates. Note that in the condition for positiveness
for terms the case x : C ⊢ x : Cop for negative variables does not appear, viceversa in the
negative case the positive does not appear.

In light of the convention for natural variables described in Remark 12, we do not explicitly
show the use of the above positive/negative variable constraints in the rules for entailments.

The rules for types, terms and predicates are assumed to depend on an underlying
signature ΣB ,ΣT ,ΣP , which can be used to extend the type theory with additional symbols.
We omit the straightforward details for this extension and its corresponding interpretation.

A type
C ∈ ΣB

C type
C ∈ ΣB

Cop type
C type D type

C × D type
C type D type

[C,D] type ⊤ type

Γ ctx
[ ] ctx

Γ ctx C type
Γ,C ctx

Γ ∋ x : C
Γ, x : C ∋ x : C

Γ ∋ x : C
Γ, y : D ∋ x : C

Γ ⊢ t : C
Γ ∋ x : C
Γ ⊢ x : C

Γ ∋ x : C
Γ ⊢ x : Cop

f ∈ ΣF Γ ⊢ t : dom(f)
Γ ⊢ f(t) : cod(f)

Γ ⊢ ! : ⊤
Γ ⊢ s : C Γ ⊢ t : D

Γ ⊢ ⟨s, t⟩ : C × D

Γ ⊢ p : C × D

Γ ⊢ π1(p) : C

Γ ⊢ p : C × D

Γ ⊢ π2(p) : D

Γ ⊢ s : [C,D] Γ ⊢ t : C

Γ ⊢ s · t : D

Γ, x : C ⊢ t(x) : D

Γ ⊢ λx.t(x) : [C,D]

Γ ⊢ t = t′ : C
Γ, x : C ⊢ f(x) : D Γ ⊢ t : C

Γ ⊢ (λx.f(x)) · t = f [x 7→ t] : D

Γ, x : C ⊢ f(x) : D

Γ, x : C ⊢ (λx.f(x)) · x = f(x) : D
Γ ⊢ p : C × D

Γ ⊢ ⟨π1(p), π2(p)⟩ = p : C × D
Γ ⊢ t : ⊤

Γ ⊢ t = ! : ⊤
Γ ⊢ s : C Γ ⊢ t : D

Γ ⊢ π1(⟨s, t⟩) = s : C

Γ ⊢ s : C Γ ⊢ t : D

Γ ⊢ π2(⟨s, t⟩) = t : D

Figure 3 Syntax of first-order directed type theory – types (categories) and terms (functors).

▶ Theorem 35 (op, opt, opφ, opΦ are involutions). All the operations given in Figure 4 are
involutions, i.e., (Aop)op ≡ A for any type A, opt(opt(t)) ≡ t for any term t, etc.

Proof. Straightforward by induction on derivations. ◀

▶ Theorem 36 (op inverts polarity). The judgement Γ ∋ x : A pos in t is derivable if and only
if the judgement Γ ∋ x : A neg in opt(t) is derivable; similarly for negative variables.

Proof. Straightforward by induction on the derivation for predicates. ◀
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[Γ] φ prop
[Γ] φ prop [Γ] ψ prop

[Γ] φ× ψ prop
[Γ] φ prop [Γ] ψ prop

[Γ] φ ⇒ ψ prop

[Γ] ⊤ prop
Γ ⊢ s : Cop Γ ⊢ t : C

[Γ] homC(s, t) prop
P ∈ ΣP Γ ⊢ s : neg(P )op Γ ⊢ t : pos(P )

[Γ] P (s | t) prop

[Γ, x : C] φ(x) prop

[Γ]
∫ x:C

φ(x) prop

[Γ, x : C] φ(x) prop
[Γ]

∫
x:C φ(x) prop

Figure 4 Syntax of directed first-order logic – predicates (dipresheaves).

B (Co)end calculus, other derivations

We report here additional examples of derivations for (co)end calculus using our rules.

▶ Example 37 (⇒ resp. limits). Ends are limits [40], and functors −⇒− : Setop × Set → Set
preserve them (ends/limits in Setop, i.e., coends/colimits in Set). For Φ, Q : Set, P : C⋄ → Set:

[ ] Φ ⊢ Q ⇒
∫

x:C P (x, x)
(exp)

[ ] Q, Φ ⊢
∫

x:C P (x, x)
(end)

[x : C] Q, Φ ⊢ P (x, x)
(exp)

[x : C] Φ ⊢ Q ⇒ P (x, x)
(end)

[ ] Φ ⊢
∫

x:C (Q ⇒ P (x, x))

[ ] Φ ⊢ (
∫ x:C

P (x, x)) ⇒ Q
(exp)

[ ] (
∫ x:C

P (x, x)), Φ ⊢ Q
(coend+frob.)

[x : C] P (x, x), Φ ⊢ Q
(exp)

[x : C] Φ ⊢ P op(x, x) ⇒ Q
(end)

[ ] Φ ⊢
∫

x:C P op(x, x) ⇒ Q

▶ Example 38 (Pointwise fomula for left Kan extensions). Dually to Theorem 33, we give
a logical proof that the functor LanF : [C,Set] → [D,Set] sending (co)presheaves to their
left Kan extensions along F : C → D computed via coends [40, 2.3.6] is left adjoint to
precomposition (F ; −) : [D,Set] → [C,Set]. For any P : C → Set, a functor/term F : C → D
and a generic Γ : D → Set:

[y : D] (LanFP )(x) :=∫ x:C homC(F op(x), y) × P (x) ⊢ Γ (y)
(coend)

[x : C, y : D] homC(F op(x), y) × P (x) ⊢ Γ (y)
(exp)

[x : C, y : D] P (x) ⊢ homop
C (F (x), y) ⇒ Γ (y)

(end)
[x : C] P (x) ⊢

∫
y:D homop

D (F (x), y) ⇒ Γ (y)
(Yoneda)

[x : C] P (x) ⊢ Γ (F (x))

▶ Example 39 (Right rifts in profunctors). We give a logical proof that composition (on
both sides) in Prof has a right adjoint [40, 5.2.5 and Exercise 5.2]. This makes Prof a
bicategory where right extensions and right liftings exist. For simplicity we only treat
precomposition, although postcomposition is completely analogous. For any composable

CVIT 2016
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Γ ∋ x : A pos in t : C Γ ∋ x : C pos inx : C
Γ ∋ x : A pos in t : dom(f)

Γ ∋ x : A pos in f(t) : cod(f)

Γ ∋ x : A pos in ! : ⊤
Γ ∋ x : A pos in s : C Γ ∋ x : A pos in t : D

Γ ∋ x : A pos in ⟨s, t⟩ : C × D
Γ ∋ x : A pos in p : C × D

Γ ∋ x : A pos inπ1(p) : C

Γ ∋ x : A pos in p : C × D

Γ ∋ x : A pos inπ2(p) : D

Γ ∋ x : A pos in s : [C,D] Γ ∋ x : A pos in t : C

Γ ∋ x : A pos in s · t : D

Γ, x : C ⊢ t(x) : D

Γ ∋ x : A pos inλx.t(x) : [C,D]

Γ ∋ x : A neg in t : C Γ ∋ x : C neg inx : Cop
Γ ∋ x : A neg in t : dom(f)

Γ ∋ x : A neg in f(t) : cod(f)

Γ ∋ x : A neg in ! : ⊤
Γ ∋ x : A neg in s : C Γ ∋ x : A neg in t : D

Γ ∋ x : A neg in ⟨s, t⟩ : C × D
Γ ∋ x : A neg in p : C × D

Γ ∋ x : A neg inπ1(p) : C

Γ ∋ x : A neg in p : C × D

Γ ∋ x : A neg inπ2(p) : D

Γ ∋ x : A neg in s : [C,D] Γ ∋ x : A neg in t : C

Γ ∋ x : A neg in s · t : D

Γ, x : C ⊢ t(x) : D

Γ ∋ x : A neg inλx.t(x) : [C,D]

Figure 5 Syntax of first-order directed type theory – syntactic conditions for positive/negative
variables in terms.

profunctors P : Cop × A → Set, Q : Aop × D → Set and a generic Γ : Cop × D → Set:

[x : Cop, z : D] (P ; −)(Q)(x, z) :=∫ y:A
P (x, y) ×Q(y, z) ⊢ Γ (x, z)

(coend)
[x : Cop, y : A, z : D] P (x, y) ×Q(y, z) ⊢ Γ (x, z)

(exp)
[x : Cop, y : A, z : D] Q(y, z) ⊢ P op(x, y) ⇒ Γ (x, z)

(end)
[y : A, z : D] Q(y, z) ⊢

∫
x:C P

op(x, y) ⇒ Γ (x, z)
(op)

[y : Aop, z : D] Q(y, z) ⊢
∫

x:C P
op(x, y) ⇒ Γ (x, z)

:= RiftP (Γ )(y, z)

where the last (end) can be applied since x : C does not appear on the left.

▶ Example 40 (Composition of profunctors is associative). Using our approach relying on
contextual operations we easily show that composition of profunctors, defined via a coend
[40], is associative and essentially follows from associativity of products. For composable
profunctors P : Aop × B → Set, Q : Bop × C → Set, R : Cop × D → Set and a generic
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Γ ∋ x : A pos inφ

Γ ∋ x : A pos inφ Γ ∋ x : A pos inψ
Γ ∋ x : A pos inφ ∧ ψ

Γ ∋ x : A neg inφ Γ ∋ x : A pos inψ
Γ ∋ x : A pos inφ ⇒ ψ

Γ ∋ x : A pos in ⊤

Γ, y : D ∋ x : C pos inφ

Γ ∋ x : A pos in
∫ x:C

φ(x)

Γ, y : D ∋ x : C pos inφ
Γ ∋ x : A pos in

∫
x:C φ(x)

Γ ∋ x : A neg in s : Cop Γ ∋ x : A pos in t : C

Γ ∋ x : A pos in homC(s, t)
Γ ∋ x : A neg in s : neg(P )op Γ ∋ x : A pos in t : pos(P )

Γ ∋ x : A pos inP (s | t)
Γ ∋ x : A neg inφ

Γ ∋ x : A neg inφ Γ ∋ x : A neg inψ
Γ ∋ x : A neg inφ ∧ ψ

Γ ∋ x : A pos inφ Γ ∋ x : A neg inψ
Γ ∋ x : A neg inφ ⇒ ψ

Γ ∋ x : A neg in ⊤

Γ, y : D ∋ x : C neg inφ

Γ ∋ x : A neg in
∫ x:C

φ(x)

Γ, y : D ∋ x : C neg inφ
Γ ∋ x : A neg in

∫
x:C φ(x)

Γ ∋ x : A pos in s : Cop Γ ∋ x : A neg in t : C

Γ ∋ x : A neg in homC(s, t)
Γ ∋ x : A pos in s : neg(P )op Γ ∋ x : A neg in t : pos(P )

Γ ∋ x : A neg inP (s | t)

Γ ∋ x : A pos in Φ Γ ∋ x : A pos in [ ]
Γ ∋ x : A pos in Φ Γ ∋ x : A pos inφ

Γ ∋ x : A pos in Φ, φ

Γ ∋ x : A neg in Φ Γ ∋ x : A neg in [ ]
Γ ∋ x : A neg in Φ Γ ∋ x : A neg inφ

Γ ∋ x : A neg in Φ, φ

Figure 6 Syntax of first-order directed type theory – mutually defined syntactic conditions for
positive/negative variables in predicates and propositional contexts.

Γ : Aop × D → Set:

[a : A, d : D]
∫ b:B

P (a, b) ×
(∫ c:C

Q(b, c) ×R(c, d)
)

⊢ Γ (a, d)
(coend)

[a : A, b : B, d : D] P (a, b) ×
(∫ c:C

Q(b, c) ×R(c, d)
)

⊢ Γ (a, d)
(coend+frob.)

[a : A, b : B, c : C, d : D] P (a, b) × (Q(b, c) ×R(c, d)) ⊢ Γ (a, d)
(structural property)

[a : A, b : B, c : C, d : D] (P (a, b) ×Q(b, c)) ×R(c, d) ⊢ Γ (a, d)
(coend+frob.)

[a : A, c : C, d : D]
(∫ b:B

P (a, b) ×Q(b, c)
)

×R(c, d) ⊢ Γ (a, d)
(coend)

[a : A, d : D]
∫ c:C

(∫ b:B
P (a, b) ×Q(b, c)

)
×R(c, d) ⊢ Γ (a, d)

▶ Example 41 (Dinaturals as an end). The set of dinaturals Dinat(P,Q) := {P q q−→ Q}
between dipresheaves P,Q : Cop × C → Set can be characterized in terms of the following
end [18, Thm. 1], Dinat(P,Q) ∼=

∫
x:C P

op(x, x) ⇒ Q(x, x).
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−op : {− type} → {− type}
(Cop)op := C
(C)op := Cop

(A×B)op := Aop ×Bop

([C,D])op := [Aop, Bop]
(⊤)op := ⊤

opt : {Γ ⊢ − : C} → {Γ ⊢ − : Cop}
opt(x) := x

opt(x) := x

opt(f(t)) := f(opt(t))
opt(⟨s, t⟩) := ⟨opt(s), opt(t)⟩
opt(π1(p)) := π1(opt(p))
opt(π2(p)) := π2(opt(p))
opt(s · t) := opt(s) · opt(t)
opt(λx.t(x)) := λx.opt(t(x))

opφ : {[Γ] − prop} → {[Γ] − prop}
opφ(⊤) := ⊤
opφ(homC(s, t)) := homCop(opt(t), opt(s))
opφ(P (s | t)) := P (opt(t) | opt(s))
opφ(

∫ x:C
φ(x)) :=

∫ x:Cop
opφ(φ(x))

opφ(
∫

x:C φ(x)) :=
∫

x:Cop opφ(φ(x))

opΦ : {[Γ] − propctx} → {[Γ] − propctx}
opΦ([ ]) := [ ]
opΦ(Φ, φ) := opΦ(Φ), opφ(φ)

Figure 7 Syntax of first-order directed type theory – op-operations, defined by induction on
derivations.

[Γ] Φ ⊢ α = β : P · · ·

[a : ∆op, b : ∆, x : Γ] Φ(x, x, a, b) ⊢ α : P (a, b)
[z : ∆, x : Γ] k : P (z, z),Φ(x, x, z, z) ⊢ γ[k] : Q(z, z)

[a : ∆op, b : ∆, x : Γ] k : Q(a, b),Φ(x, x, a, b) ⊢ β[k] : R(a, b)
(assoc-nat-din-nat)

[z : ∆, x : Γ] Φ(x, x, z, z) ⊢ (β[γ])[α] = β[γ[α]] : R(z, z)

Figure 8 Syntax of first-order directed type theory – Associativity for natural-dinatural-natural
cuts in the equational theory, using (cut-din) and (cut-nat).

We give a simple derivation by characterizing all points of the end:

Dinat(P,Q) := [x : C] P (x, x) ⊢ Q(x, x)
(exp)

[x : C] ⊤ ⊢ P op(x, x) ⇒ Q(x, x)
(end)

[ ] ⊤ ⊢
∫

x:C P
op(x, x) ⇒ Q(x, x)

Since dinaturals generalize naturals, a similar derivation justifies the well-known description
of natural transformations as ends shown in Section 1 for F,G : C → Set,

Nat(F,G) ∼=
∫

x:C F
op(x) ⇒ G(x).

▶ Example 42 (Internal naturality for natural transformations). We show that naturality
for natural transformations, expressed as ends [40], holds internally by directed equality
elimination. Given terms C ⊢ F,G : D, we use the counit of Theorem 27 to extract the family
of hom-sets. We first explicitly show the rules used to construct the two sides of a naturality
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[Γ] Φ ⊢ α : P
[a : C,Γ] Φ ⊢ α : Q(a, a)

(end)
[Γ] Φ ⊢ end(α) :

∫
a:C Q(a, a)

[Γ] Φ ⊢ α :
∫

a:C Q(a, a)
(end)

[a : C,Γ] Φ ⊢ end−1(α) : Q(a, a)

[Γ] Φ ⊢ α = β : P
[a : C,Γ] Φ ⊢ α : Q(a, a)

[a : C,Γ] Φ ⊢ end−1(end(α)) = α : Q(a, a)

[Γ] Φ ⊢ α :
∫

a:C Q(a, a)

[Γ] Φ ⊢ end(end−1(α)) = α :
∫

a:C Q(a, a)

Figure 9 Syntax of first-order directed type theory – Explicitly showing a bidirectional rule, e.g.,
for ends.

square:

[a : Cop, b : C] f : homC(a, b), η :
∫

x:C homD F (x), G(x) ⊢ η :
∫

x:C hom(F (x), G(x))
(end−1)

[a : Cop, b : C, x : C] f : homC(a, b), η : ... ⊢ end−1(η) : hom(F (x), G(x))
(idx)

[a : Cop, b : C] f : homC(a, b), η : ... ⊢ ∆∗(end−1(η)) : hom(F (a), G(a))
(cut-nat)

[a : Cop, b : C] f : homC(a, b), η : ... ⊢ comp[∆∗(end−1(η)), congG[f ]] : hom(F (a), G(b))

where ∆∗ is the reindexing functor which collapses a, x to a single variable a, and (cut-nat)
is used to apply comp on cong for G. This composition can be done since both cong and
comp have the correct naturality shape that allows for (cut-nat) to be applied.

The other derivation is obtained similarly:

[a : Cop, b : C] f : homC(a, b), η :
∫

x:C homD F (x), G(x) ⊢ η :
∫

x:C hom(F (x), G(x))
(end−1)

[a : Cop, b : C, x : C] f : homC(a, b), η : ... ⊢ end−1(η) : hom(F (x), G(x))
(idx)

[a : Cop, b : C] f : homC(a, b), η : ... ⊢ ∆∗(end−1(η)) : hom(F (b), G(b))
(cut-nat)

[a : Cop, b : C] f : homC(a, b), η : ... ⊢ comp[congF [f ],∆∗(end−1(η))] : hom(F (a), G(b))

We show that the two maps constructed, corresponding to the two sides of a naturality
square, are equal using directed equality elimination; let K := ∆∗(end−1(η)):

[z : C] ... ⊢ K = K : hom(F (z), G(z))
(J-comp)

[z : C] ... ⊢ comp[reflz,K] = comp[K, reflz] : hom(F (z), G(z))
(J-comp)

[z : C] ... ⊢ comp[congF [reflz],K] = comp[K, congG[reflz]] : hom(F (z), G(z))
(J-eq)

[a : Cop, b : C] f : homC(a, b), ... ⊢ comp[congF [f ],K] = comp[K, congG[f ]] : hom(F (a), G(b))

where the equations used follow by the computation rules for cong and left and right unitality
of comp. Note that (J-eq) can be used since a, b appear precisely with the correct types that
allow for (J) to be applied to contract the equality.

This naturality can then be used to prove a suitable internal Yoneda lemma for the hom
of categories by following the standard argument, e.g., given in [38].
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C Frobenius condition for coends

▶ Theorem 43 (Frobenius condition for coends). For any Γ : A⋄ × C⋄ → Set and a generic
K : C⋄ → Set, the following series of derivations establishes the Frobenius condition given in
Theorem 28, which we prove by following exactly the argument given in [34, 1.9.12(i)] in the
case of fibrations with exponentials. Note that we use the same Yoneda technique described
in Remark 30.

[y : C]
∫ x:A[y:C](P (y, y) × Γ (x, x, y, y)) ⊢ K(y, y)

(coend)
[x : A, y : C] P (y, y), Γ (x, x, y, y) ⊢ K(y, y)

(exp)
[x : A, y : C] Γ (x, x, y, y) ⊢ P op(y, y) ⇒ K(y, y)

(coend)
[y : C]

∫ x:A[y:C]
Γ (x, x, y, y) ⊢ P op(y, y) ⇒ K(y, y)

(exp)
[y : C] P (y, y),

∫ x:A[y:C]
Γ (x, x, y, y) ⊢ K(y, y)

▶ Theorem 44 ((coend)⇒ (coend+frob.)). Following a similar argument to the one given
in Theorem 43 using the existence of exponentials, the rule (coend+frob.) can be directly
justified using (coend), as follows:

[x : C]
(∫ a:A

Q(a, a, x, x)
)
, Γ (x, x) ⊢ P (x, x)

(exp)
[x : C]

∫ a:A
Q(a, a, x, x)⊢ Γ op(x, x) ⇒ P (x, x)

(coend)
[x : C, y : C] Q(a, a, x, x) ⊢ Γ op(x, x) ⇒ P (x, x)

(exp)
[x : C] Q(a, a, x, x), Γ (x, x) ⊢ P (x, x)
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