
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
 

journal homepage: www.elsevier.com/locate/jlamp

Counterpart-based Quantified Temporal Logics

Fabio Gadducci a,1, Andrea Laretto b, ,∗, Davide Trotta a,1

a Department of Computer Science, University of Pisa, Pisa, Italy
b Department of Software Science, Tallinn University of Technology, Tallinn, Estonia

A B S T R A C T 

The aim of this work is to present counterpart-based quantified temporal logics from several points of view. We start by introducing a set-based 
semantics for a (first-order) linear temporal logic based on the counterpart paradigm, along with results on its positive normal form both in the case 
of partial functions and of (possibly duplicating) relations. Then, a categorical semantics of the logic is introduced by means of relational presheaves. 
Both the presentations of the logic via the positive normal form and its categorical semantics are formalised using the proof assistant Agda, and we 
highlight the crucial aspects of our implementation and the practical use of (quantified) temporal logics in a constructive proof assistant.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1. Quantified temporal logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Counterpart semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4. Comparison with previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Quantified Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Counterpart semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. Temporal structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Quantified linear temporal logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1. Syntax and semantics of QLTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2. Contexts and assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3. Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Positive normal form for QLTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1. Semantics of PNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2. Negation of QLTL and PNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Categorical semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1. Relational presheaves models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2. Temporal structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3. Presheaf semantics for QLTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1. Classical attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2. Semantics with classical attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.3. Semantics of QLTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4. Multi-sorted algebra models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

* Corresponding author.

E-mail addresses: fabio.gadducci@unipi.it (F. Gadducci), andrea.laretto@taltech.ee (A. Laretto), trottadavide92@gmail.com (D. Trotta).
1 Research partially supported by the University of Pisa project PRA_2022_99 ``FM4HD'' and by the Italian MUR project PRIN 20228KXFN2 ``STENDHAL''.

https://doi.org/10.1016/j.jlamp.2025.101082

Received 11 May 2023; Received in revised form 26 June 2025; Accepted 4 August 2025 

J. Log. Algebraic Methods Program. 148 (2026) 101082 

Available online 13 August 2025 
2352-2208/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://orcid.org/0000-0002-6413-5794
mailto:fabio.gadducci@unipi.it
mailto:andrea.laretto@taltech.ee
mailto:trottadavide92@gmail.com
https://doi.org/10.1016/j.jlamp.2025.101082
https://doi.org/10.1016/j.jlamp.2025.101082
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2025.101082&domain=pdf


F. Gadducci, A. Laretto and D. Trotta 

3.5. Algebraic counterpart -models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6. Semantics of algebraic QLTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.7. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.8. Remarks on second-order extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. Agda formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1. Formalisation aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2. Logics in a constructive proof assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1. Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2. Category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5. Agda code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1. Relational presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2. Counterpart models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3. Algebraic counterpart -model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.4. Temporal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.5. From classical to categorical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.6. Classical attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.7. Syntax and semantics of QLTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1. Comparison with graph computation formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix A. Signatures and algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

A.1. Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1. Introduction

During the design of hardware and software for complex systems, increasingly more time and effort is spent on the verification 
of the desired mechanisms rather than in their actual construction. Formal methods provide an effective framework to verify the 
correctness of these computational devices and ensure that they satisfy a set of desired specifications. Among the many tools, temporal 
logics have proven to be one of the most effective techniques for the verification of both large-scale and stand-alone programs, see 
e.g. the standard textbook [1] and the examples and references therein.

After the foundational work by Pnueli [2], the research on temporal logics focused on both algorithmic procedures for the veri

fication of properties as well as on finding sufficiently expressive fragments of these logics suitable for the specification of complex 
multi-component systems.

Several models for temporal logics have been developed, with the leading example being the notion of transition systems, also 
known as Kripke frames: a set of states, each one representing a configuration of the system, and a relation among them, each one 
identifying a possible state evolution. Often one is interested in enriching both states and transitions with more structure, for example 
by taking states as algebras and transitions as algebra homomorphisms. A prominent use case of these models is the one exploiting 
graph logics [3,4], where states are specialised as graphs and transitions are families of (partial) graph morphisms. These logics may 
combine temporal and spatial reasoning and allow to express the possible transformations of the topology of a graph over time, 
see [5,6] for two early entries.

1.1. Quantified temporal logics

In classical temporal logics, such as LTL and CTL [7], the states of the model are taken as atomic. Instead, one of the defining 
characteristics of graph logics is that they permit reasoning and expressing properties on the individual elements of the graph or 
the algebraic structure being considered. Despite their undecidability [8,9], quantified temporal logics have been advocated in this 
setting due to their expressiveness and the possibility for quantification to range over the elements in the states of the model.

Unfortunately, the semantical models of these logics are not clearly cut. Consider for example a simple model with two states 
𝑠0, 𝑠1, two transitions 𝑠0 → 𝑠1 and 𝑠1 → 𝑠0, and an item 𝑖 that appears only in 𝑠0. Is the item 𝑖 being destroyed and recreated again 
and again, or is it just an identifier being reused multiple times? This issue is denoted in the literature as the trans-world identity 
problem [10,11]. The typical solution provided by the ``Kripke semantics'' consists in fixing a single set of universal items, which 
gives identity to each individual appearing in the states of the model. Since each item 𝑖 belongs to this universal domain, it is exactly 
the same individual after every temporal evolution in 𝑠1. However, this means that transitions basically behave as injections among 
the items of the states, and this view is conceptually difficult to reconcile with the simple model sketched above where we describe 
the destruction and recreation of a given item. Similarly, the possibility of cloning items is then ruled out, since it is impossible to 
accomodate it with the idea of evolution steps as injections.
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1.2. Counterpart semantics

A solution to this problem was proposed by Lewis [12] with the counterpart paradigm: instead of a universal set of items, each state 
identifies a local set of elements, and (possibly partial) morphisms connect them by carrying elements from one state to the other. 
This allows to speak formally about entities that are destroyed, duplicated, (re)created, or merged, and to adequately deal with the 
identity problem of individuals between worlds.

In [13], the idea of a counterpart-based semantics is used to introduce a set-theoretical presentation of a 𝜇-calculus with second

order quantifiers. This modal logic provides a sufficiently expressive and general presentation that enriches states with algebras and 
transitions with partial homomorphisms, thus also subsuming the case of graph logics.

These semantics and models are generalised to a categorical setting in [14] by means of relational presheaves, building on the 
ideas presented in [15,16]. The models are represented with categories and (families of) relational presheaves, which are used to give 
a categorical representation for the states-as-algebras approach with partial homomorphisms. The notion of temporal advancement 
of a system is captured by equipping categories with a set of one-step arrows of the model called temporal structure, and the categorical 
framework is used to introduce a second-order linear temporal logic QLTL.

1.3. Contributions

A first contribution of this work is to provide a comprehensive presentation and introduction to the setting of counterpart models 
and quantified temporal logics, as they are presented in [13,14].

Classical semantics and positive normal form. We start in Section 2 by introducing the semantics of our main temporal logic QLTL with 
a standard set-based perspective, with satisfiability being defined inductively as a logical predicate. Unlike [13,14], where the models 
and semantics are defined using partial functions, we generalise our case to the setting of relations, thus modelling the duplication 
of elements and allowing for an element to have multiple counterparts in the next world. We conclude the chapter by giving some 
results and equivalences on the positive normal form presentation of this logic, considering both the cases where the models use 
partial morphisms and relations and highlighting their differences. Positive normal forms (i.e., where negation is defined only for 
atomic formulae) are a standard tool of temporal logics, since they simplify its theoretical treatment as well as its model checking 
algorithms [17,18]. The use of relations instead of (possibly partial) functions weakens the expressiveness of such normal forms, and 
requires the introduction of additional operators for the logics. However, the duplication of individuals is a central feature of graph 
transformation formalisms such as Sequi-Pushout [19], and thus worthy of investigation. Both the classical semantics and the positive 
normal form results have been formalised using the dependently typed proof assistant Agda [20].

Categorical semantics. In Section 3 we introduce the categorical semantics for QLTL. We first motivate the use of the categorical 
formalism and of relational presheaves with a standard non-algebraic case. We then present the semantics of the logic using the 
notion of classical attribute [15,16], following the intuition that the meaning of a formula is identified with the set of individuals 
satisfying it in each world. Finally, we discuss the mechanisms required to extend the categorical presentation and its semantics to 
the general case of states as algebras and relational homomorphisms between them.

Agda formalisation. An additional contribution presented in this work is a computer-assisted formalisation in Agda of the categorical 
notions and constructions just presented. We give an overview of the general aspects of the formalisation in Section 4, and highlight 
the key definitions of the work in Section 5. Providing a mechanised presentation of these constructions has several advantages:

• Formalising the paper further solidifies the correctness and coherence of the mathematical ideas presented in the work, as they can 
be independently inspected and verified concretely by means of a software tool.

• Given the constructive interpretation of the formalisation, by following the work we essentially codified a procedure to convert 
classical set-theoretical notions into categorical ones, providing concrete witnesses of how the constructions work for any given 
setting.

• A formal presentation of modal and temporal logics effectively provides a playground in which the mechanisms and the validity of 
these logics can be expressed, tested, and experimented with.

To the best of our knowledge, few and sparse formalizations of temporal logics have been provided with a proof assistant, and a 
systematic study of formally-presented temporal logics and their mechanisation aspects is absent in the literature. This work consti

tutes a step towards the machine-verified use of temporal logics by embedding in an interactive proof assistant a relatively complex 
quantified extension of LTL that can reason on the individual elements of states. This formalisation work employs the library agda
categories [21], a proof-relevant category theory library for Agda, as a practical foundation to formalise the results in [14] on 
temporal logics and their models. Aside from the theoretical results and constructions provided by the library, our work witnesses 
the usefulness and flexibility of agda-categories from the point of view of practical applications.

1.4. Comparison with previous works

Following the advice of the second reviewer, we highlighted in Section 1.4 the comparison between the material present in this 
work and the previous ones on the topic of counterpart-based logics, where the main innovations are indeed, as mentioned, the 
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formalisation work of the categorical semantics in Agda, the generalisation of the categorical semantics to include the relational one, 
and a comprehensive overview and comparison of the different semantic perspectives on this logic via a more consistent and unified 
presentation.

The paper draws from [14] and [22]. More precisely, [14] introduces a categorical presentation of counterpart semantics based on 
partial functions. In this work, we drop the second-order aspects of the logic discussed there, and focus on extending the categorical 
semantics from morphisms to relations. These results are in Section 2 and Section 3. The work in [22] presents the Agda implemen

tation of the set-theoretical semantics for a logic based on the two-sorted signature of graphs and graph morphisms. In this work we 
generalize the formalization in Section 4 and Section 5 to multi-sorted ones on arbitrary signatures, and by adding a formalisation of 
the categorical semantics using the agda-categories library.

2. Quantified Temporal Logics

In this chapter we introduce the counterpart paradigm and define the class of models later used for our logic. We then provide the 
syntax and semantics of our main first-order linear temporal logic QLTL by adopting a standard set-based presentation, and conclude 
by introducing a positive normal form of this logic along with equiexpressivity results. Both the theoretical constructions and the 
positive normal form results have been defined and checked in Agda, and we provide pointers to the formalisation files in each 
definition. The formalisation of the set-based QTL semantics and of the positive normal form results is available at [23].

2.1. Counterpart semantics

We start by recalling the notion of Kripke frame as widely known in modal logic [11,24] and extend it for the case of counterpart 
semantics.

Definition 2.1. A Kripke frame is a 3-tuple ⟨𝑊 ,𝑈,𝑅,𝐷⟩ defined as

• 𝑊 is a non-empty set;

• 𝑈 is a set of elements, called global domain;

• 𝑅 is a binary relation on 𝑊 ;

• 𝐷 is a function assigning to any 𝜔 ∈𝑊 a set 𝐷(𝜔) ⊆𝑈 called domain.

The set 𝑊 is interpreted as the set of all possible worlds, whereas the binary relation 𝑅 represents an accessibility relation among 
worlds, connecting them whenever a transition from a world to another is possible. A domain 𝐷(𝜔) identifies the individuals that 
exist locally in the world 𝜔: individuals in different worlds are identified together by the fact that they all belong to 𝑈 .

A crucial development in the presentation of Kripke models was introduced by Lewis [12] with the notion of counterpart relations 
and the subsequent introduction of counterpart theory. The idea is to tackle the trans-world identity problem by rejecting strict 
identity of individuals belonging to a global domain, and instead employing the notion of counterpart relation between worlds to 
connect the individuals that are preserved from one world to the next one. Inspired by Lewis’s approach, a more general notion of 
counterpart model is considered in [13], where worlds are related through multiple accessibility relations, and each instance of the 
accessibility relation is equipped with a counterpart relation.

Definition 2.2. A counterpart model is a 3-tuple ⟨𝑊 ,𝐷,⟩ such that

• 𝑊 and 𝐷 are defined as for Kripke frames;

•  is a function assigning to every 2-tuple ⟨𝜔,𝜔′⟩ a set of relations ⟨𝜔,𝜔′⟩ ∈𝒫(𝒫(𝐷(𝜔) ×𝐷(𝜔′))), where 𝒫 denotes the powerset, 
and every element 𝐶 ∈ ⟨𝜔,𝜔′⟩ is a relation 𝐶 ⊆𝐷(𝜔) ×𝐷(𝜔′). We call these partial functions atomic (or one-step) counterpart 
relations.

Given two worlds 𝜔 and 𝜔′, the set ⟨𝜔,𝜔′⟩ is the collection of atomic transitions from 𝜔 to 𝜔′, defining the possible ways we 
can access worlds with a one-step transition in the system. When the set ⟨𝜔,𝜔′⟩ is empty, there are no atomic transitions from 𝜔 to 
𝜔′.

Each atomic counterpart relation 𝐶 ∈ ⟨𝜔,𝜔′⟩ connects the individuals between two given worlds 𝜔 and 𝜔′, intuitively identifying 
them as the same element after a single evolution of the model. In particular, if we consider two elements 𝑠 ∈𝐷(𝜔) and 𝑠′ ∈𝐷(𝜔′)
and a relation 𝐶 ∈ ⟨𝜔,𝜔′⟩, if ⟨𝑠, 𝑠′⟩ ∈ 𝐶 then 𝑠′ represents a future development of 𝑠 via 𝐶 .

The use of relations allows us to model the notion of removal of an element, which is represented by having no counterpart in 
the next state. For example, if there is no element 𝑠′ ∈𝐷(𝜔′) such that ⟨𝑠, 𝑠′⟩ ∈ 𝐶 , then we can conclude that the element 𝑠 has been 
deallocated by 𝐶 . Similarly, the duplication of an element can be represented by connecting it with two instances of the counterpart 
relation, for example by having two elements 𝑠′1, 𝑠

′
2 ∈𝐷(𝜔′) such that ⟨𝑠, 𝑠′1⟩ ∈ 𝐶 and ⟨𝑠, 𝑠′2⟩ ∈ 𝐶 .

Now we formally introduce counterpart relations, fixing notation for the rest of the work. We indicate composition of relations 
in diagrammatic order: as an example, given 𝐶1 ⊆ 𝐴 × 𝐵 and 𝐶2 ⊆ 𝐵 × 𝐶 , the composite relation is denoted with 𝐶1;𝐶2 = {(𝑎, 𝑐) ∣
∃𝑏. ⟨𝑎, 𝑏⟩ ∈ 𝐶1 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝐶2} ⊆𝐴 ×𝐶 .
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Fig. 1. An example of counterpart model. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Definition 2.3. A relation 𝐶 ⊆𝐷(𝜔) ×𝐷(𝜔′) is a counterpart relation if one of the following three cases holds

• 𝐶 is the identity relation;

• 𝐶 ∈ ⟨𝜔,𝜔′⟩ is a one-step counterpart relation given by the model;

• 𝐶 is the composite relation of a sequence 𝐶0;𝐶1;⋯ ;𝐶𝑛 for 𝐶𝑖 ∈ ⟨𝜔𝑖,𝜔𝑖+1⟩.

We remark here that the resulting composition 𝐶1;𝐶2 ⊆ 𝐷(𝜔1) ×𝐷(𝜔3) of two atomic counterpart relations 𝐶1 ∈ ⟨𝜔1,𝜔2⟩ and 
𝐶2 ∈ ⟨𝜔2,𝜔3⟩ might not necessarily be an atomic counterpart relation, and the model only identifies atomic transitions. This intu

itively represents the fact that transitioning through an intermediate state and transitioning directly between worlds can be regarded 
as two different possibilities, and the direct transition is not necessarily the composition of the two counterpart relations. Moreover, 
the former requires one evolution step, the latter two.

Definition 2.4. We say that an element 𝑠′ ∈ 𝐷(𝜔′) is the counterpart of 𝑠 ∈ 𝐷(𝜔) through a counterpart relation 𝐶 whenever 
⟨𝑠, 𝑠′⟩ ∈ 𝐶 .

Finally, observe that when each set ⟨𝜔,𝜔′⟩ has at most one element, the notion of counterpart model presented in Definition 2.2

becomes a particular case of Lewis’s original notion of counterpart frame.

Example 2.1 (Counterpart model). In Fig. 1 we provide a graphical presentation of a counterpart model defined by the set of worlds 
𝑊 ∶= {𝜔1,𝜔2,𝜔3}, where for example 𝐷(𝜔0) = {𝑎0, 𝑏0, 𝑐0}, 𝐷(𝜔1) = {𝑎1, 𝑏1, 𝑐1, 𝑑1}, and 𝐷(𝜔2) = {𝑎2, 𝑏2, 𝑐2, 𝑑2}. The worlds are 
connected by the following relations: ⟨𝜔0,𝜔1⟩ ∶= {𝐶0} is a single counterpart relation 𝐶0 between 𝜔0 and 𝜔1, ⟨𝜔1,𝜔2⟩ ∶= {𝐶1,𝐶2}
has two possible counterpart relations between 𝜔1,𝜔2, and ⟨𝜔2,𝜔2⟩ = {𝐶3} is a looping counterpart relation. We use blue dashed 
and green dotted lines to distinguish 𝐶1 and 𝐶2, respectively.

2.1.1. Temporal structures

As is the case of LTL, where we can identify traces connecting linearly evolving states (see e.g. [1, Definition 5.7]), we can consider 
linear sequences of counterpart relations providing a list of sequentially accessible worlds.

Definition 2.5. A trace 𝜎 on a counterpart model ⟨𝑊 ,𝐷,⟩ is an infinite sequence of one-step counterpart relations (𝐶0,𝐶1,… )
such that 𝐶𝑖 ∈ ⟨𝜔𝑖,𝜔𝑖+1⟩ for any 𝑖 ≥ 0.

Given a trace 𝜎 = (𝐶0,𝐶1,… ), we use 𝑖 as subscript 𝜎𝑖 ∶= (𝐶𝑖,𝐶𝑖+1,… ) to denote the trace obtained by excluding the first 𝑖
counterpart relations. We use 𝜔0,𝜔1,… and 𝜔𝑖 to indicate the worlds provided by the trace 𝜎 whenever it is clear from the context.

Since a trace 𝜎 = (𝐶0,𝐶1,… ) provides a sequence of counterpart relations step-by-step connected through a world, we denote 
with 𝐶≤𝑖 the composite relation 𝐶0;⋯ ;𝐶𝑖−1 from the first world 𝜔0 up to the 𝑖-th world 𝜔𝑖 through the relations given by the trace 
𝜎. In the edge case 𝑖 = 0, the relation 𝐶≤0 is defined to be the identity relation on 𝜔0.

2.2. Quantified linear temporal logic

In this section we present the syntax and semantics of our quantified linear temporal logic QLTL. We will assume a fixed counterpart 
model ⟨𝑊 ,𝐷,⟩, with definitions referring to the data provided by the underlying model.

2.2.1. Syntax and semantics of QLTL 
To have a simpler presentation, it is customary to exclude the elementary constructs that can be expressed in terms of other 

operators, such as conjunction and universal quantification. Thus, we initially present QLTL with a minimal set of standard operators 
and derive other ones with negation.

Definition 2.6 (QLTL). Let  be a set of variables with 𝑥, 𝑦 ∈  and  a set of (unary) predicates with 𝑃 ∈  . The set QLTL of QLTL 
formulae is generated by the following rules
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𝜓 ∶= 𝗍𝗋𝗎𝖾 ∣ 𝑥 = 𝑦 ∣ 𝑃 (𝑥)

𝜙 ∶= 𝜓 ∣ ¬𝜙 ∣ 𝜙1 ∨ 𝜙2 ∣ ∃𝑥.𝜙 ∣𝖮𝜙 ∣ 𝜙1𝖴𝜙2 ∣ 𝜙1𝖶𝜙2

The next operator 𝖮𝜙 expresses the fact that a certain property 𝜙 has to be true at the next state. The until operator 𝜙1𝖴𝜙2
indicates that the property 𝜙1 has to hold at least until the property 𝜙2 becomes true, which must hold at the present or future time. 
Finally, the weak until operator 𝜙1𝖶𝜙2 is similar to the 𝜙1𝖴𝜙2 operator, but allows for counterparts to always exist while satisfying 
𝜙1 without ever reaching a point where 𝜙2 holds.

We use the letter 𝜓 to indicate the case of elementary predicates and we refer to these formulae as atomic formulae. Given the 
variables 𝑥, 𝑦 ∈  denoting two individuals, the formula 𝑥 = 𝑦 indicates that the two individuals coincide in the current world. Finally, 
our logic is extended with unary predicate symbols 𝑃 (𝑥) that will be used in the running example in Fig. 2. The usual dual operators 
can be syntactically expressed by taking 𝖿𝖺𝗅𝗌𝖾 ∶= ¬𝗍𝗋𝗎𝖾, 𝜙1 ∧ 𝜙2 ∶= ¬(¬𝜙1 ∨ ¬𝜙2), and ∀𝑥.𝜙 ∶= ¬∃𝑥.¬𝜙. Note that, differently from 
classical LTL, the until and the weak until operators are not self-dual: this fact will be discussed and made explicit in Remark 2.4.

Example 2.2 (Deallocation). As we anticipated in Section 2.1, one of the main advantages of a counterpart semantics is the possibility 
to reason about existence, deallocation, duplication and merging elements of a system. For example, we can capture a notion of 
existence of an element at the current moment with the shorthand

present(𝑥) ∶= ∃𝑦.𝑥 = 𝑦

We combine this predicate with the next operator to talk about elements that are present in the current world and that will still be 
present at the next step, for example with the formula

nextStepPreserved(𝑥) ∶= present(𝑥) ∧𝖮present(𝑥)

Similarly, we can refer to elements that are now present but that will be deallocated at the next step by considering

nextStepDeallocated(𝑥) ∶= present(𝑥) ∧ ¬𝖮present(𝑥)

2.2.2. Contexts and assignments

Since free variables referring to individuals can now appear inside formulae, we recall the usual presentation of context and 
formulae-in-context as similarly defined in [13].

Definition 2.7 (Context). A context 𝛤 over a set of variables  is a finite subset of  . We use the notation 𝛤 ,𝑥 to indicate the 
augmented context 𝛤 ∪ {𝑥}, with the empty context being indicated as ∅.

Definition 2.8 (Formulae-in-context). A formula-in-context is a formula 𝜙 along with an associated context 𝛤 that contains all the 
free variables of the formula 𝜙 (and possibly more), and we indicate this decoration with [𝛤 ]𝜙.

We omit the bracketed context whenever it is unnecessary to specify it.
To properly present the notion of satisfiability of a formula-in-context with respect to a given counterpart model, we need to first 

introduce the definition of assignment in a given world.

Definition 2.9 (Assignment). An assignment in the world 𝜔 ∈𝑊 for the context 𝛤 is a function 𝜇 ∶ 𝛤 →𝐷(𝜔). We use the notation 
𝛤

𝜔
to indicate the set of assignments 𝜇 defined in 𝜔 for the context 𝛤 .

Moreover, we denote by 𝜇[𝑥 ↦ 𝑠] ∶ 𝛤 ,𝑥 → 𝐷(𝜔) the assignment obtained by extending the domain of 𝜇 with 𝑠 ∈ 𝐷(𝜔) at the 
variable 𝑥 ∉ 𝛤 .

We now define the lifting of counterpart relations to assignments. The intuition is that we want to transfer all elements of an 
assignment to the next world using the counterpart relation individual-by-individual.

Definition 2.10 (Counterpart relations on assignments). Given a counterpart relation 𝐶 ⊆ 𝐷(𝜔1) ×𝐷(𝜔2) and two assignments 𝜇1 ∶
𝛤 → 𝐷(𝜔1) and 𝜇2 ∶ 𝛤 → 𝐷(𝜔2) defined on the same context 𝛤 , we say that the assignments 𝜇1 and 𝜇2 are counterpart related 
whenever ⟨𝜇1(𝑥), 𝜇2(𝑥)⟩ ∈ 𝐶 for all variables 𝑥 ∈ 𝛤 , and we indicate this simply with the notation ⟨𝜇1, 𝜇2⟩ ∈ 𝐶 .

2.2.3. Satisfiability

We now introduce the notion of satisfiability of a formula with respect to a given trace and assignment.

Definition 2.11 (QLTL satisfiability). Given a QLTL formula-in-context [𝛤 ]𝜙, a trace 𝜎 = (𝐶0,𝐶1,… ), an interpretation 𝑃 (𝜔𝑖) ⊆𝐷(𝜔𝑖)
for all the predicates 𝑃 ∈  and the worlds in 𝜎, and an assignment 𝜇 ∶ 𝛤 →𝐷(𝜔0) for the first world of 𝜎, we inductively define the 
satisfiability relation as follows
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Fig. 2. An example with four worlds 𝜔0,𝜔1,𝜔2,𝜔3 . 

• 𝜎,𝜇 ⊨ 𝗍𝗋𝗎𝖾;
• 𝜎,𝜇 ⊨ 𝑥 = 𝑦 if 𝜇(𝑥) = 𝜇(𝑦);
• 𝜎,𝜇 ⊨ 𝑃 (𝑥) if 𝜇(𝑥) ∈ 𝑃 (𝜔0);
• 𝜎,𝜇 ⊨ ¬𝜙 if 𝜎,𝜇 ⊭ 𝜙;

• 𝜎,𝜇 ⊨ 𝜙1 ∨ 𝜙2 if 𝜎,𝜇 ⊨ 𝜙1 or 𝜎,𝜇 ⊨ 𝜙2;

• 𝜎,𝜇 ⊨ ∃𝑥.𝜙 if there is an individual 𝑠 ∈𝐷(𝜔0) such that 𝜎,𝜇[𝑥↦ 𝑠] ⊨ 𝜙;

• 𝜎,𝜇 ⊨𝖮𝜙 if there is 𝜇1 ∈𝛤
𝜔1

such that ⟨𝜇,𝜇1⟩ ∈ 𝐶0 and 𝜎1, 𝜇1 ⊨ 𝜙;

• 𝜎,𝜇 ⊨ 𝜙1𝖴𝜙2 if there is 𝑛̄ ≥ 0 such that

1. for any 𝑖 < 𝑛̄, there is 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 and 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙1;

2. there is 𝜇𝑛̄ ∈𝛤
𝜔𝑛̄

such that ⟨𝜇,𝜇𝑛̄⟩ ∈ 𝐶≤𝑛̄ and 𝜎𝑛̄, 𝜇𝑛̄ ⊨ 𝜙2;

• 𝜎,𝜇 ⊨ 𝜙1𝖶𝜙2 if one of the following holds

– the same conditions for 𝜙1𝖴𝜙2 apply;

– for any 𝑖 there is 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 and 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙1.

Example 2.3. We present a running example in Fig. 2 to better describe the expressiveness of QLTL and to illustrate the mechanisms of 
working in a counterpart-based semantics. We consider a fixed trace 𝜎 = (𝐶0,𝐶1,𝐶2,𝐶3,𝐶3,… ) and we indicate with B(𝑥) and R(𝑥) the 
unary predicates that hold for any individual coloured in blue and red, respectively. As a concrete scenario for the temporal operators 
𝖮𝜙 and 𝜙1𝖴𝜙2 we presented in Definition 2.11, we have for example that 𝜎,{𝑥 ↦ 𝑎0} ⊨ 𝖮(R(𝑥)) and 𝜎,{𝑥 ↦ 𝑐0} ⊨ B(𝑥)𝖴R(𝑥). 
Also, we have that 𝑎0 is preserved at the next step with 𝜎,{𝑥 ↦ 𝑎0} ⊨ nextStepPreserved(𝑥), whereas 𝑐1 is removed and indeed 
𝜎1,{𝑥↦ 𝑐1} ⊨ nextStepDeallocated(𝑥).

Remark 2.1 (Eventually and always operators). As in LTL, we can define the additional eventually ◊𝜙 and always □𝜙 operators as 
◊𝜙 ∶= 𝗍𝗋𝗎𝖾𝖴𝜙 and □𝜙 ∶= 𝜙𝖶𝖿𝖺𝗅𝗌𝖾, respectively. Their semantics can be presented directly as

• 𝜎,𝜇 ⊨◊𝜙 if there is 𝑖 ≥ 0 and 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 and 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙;

• 𝜎,𝜇 ⊨□𝜙 if for any 𝑖 ≥ 0 there is 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 and 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙.

In our example in Fig. 2, we have for instance that 𝜎,{𝑥↦ 𝑐0} ⊨◊R(𝑥) but 𝜎,{𝑥↦ 𝑑0}⊭◊R(𝑥) and similarly 𝜎2,{𝑥↦ 𝑐2}⊭◊R(𝑥). 
Moreover, we have that 𝜎,{𝑥 ↦ 𝑐0} ⊨ ◊□R(𝑥) and 𝜎2,{𝑥 ↦ 𝑐2} ⊨ □B(𝑥). However, 𝜎,{𝑥 ↦ 𝑑0} ⊭ □B(𝑥) since a counterpart is 
always required to exist.

Example 2.4 (Merging). In QLTL we can express the merging of two individuals at some point in the future with the predicate

willMerge(𝑥, 𝑦) ∶= 𝑥 ≠ 𝑦 ∧◊(𝑥 = 𝑦).

In our example in Fig. 2, we have that in the first world 𝜎,{𝑥 ↦ 𝑎0, 𝑦 ↦ 𝑐0} ⊨ willMerge(𝑥, 𝑦), but clearly 𝜎,{𝑥 ↦ 𝑐0, 𝑦 ↦ 𝑑0} ⊭

willMerge(𝑥, 𝑦).

Remark 2.2 (Quantifier elision for unbound variables). A relevant difference with standard quantified logics is that in QLTL we cannot 
elide quantifications where the introduced variable does not appear in the sub-formula. Assuming ≡ to denote semantical equivalence 
and taking any 𝜙 with 𝑥 ∉ fv(𝜙), we have that in general ∃𝑥.𝜙 ≢ 𝜙 and, similarly, ∀𝑥.𝜙 ≢ 𝜙. More precisely, the above equivalences 
hold if 𝜙 contains no temporal operator and the current world 𝐷(𝜔) is not empty. A similar phenomenon arises in intuitionistic and 
constructive logic: given a type 𝜏 and a formula 𝜙 where 𝑥 does not appear free, the formula ∃(𝑥 ∶ 𝜏).𝜙 is not equivalent to 𝜙 since 
the existential quantification implicitly carries the information that the type 𝜏 is inhabited.

We describe here a concrete example: consider a world 𝜔 with a single individual 𝐷(𝜔) = {𝑠} and a looping counterpart relation 
⟨𝜔,𝜔⟩ = {𝐶}, where 𝐶 = ∅ is the empty counterpart relation. The trace is given by 𝜎 = (𝐶,𝐶,… ). By taking the empty assignment 
{ } and the closed formula 𝜙 =𝖮(𝗍𝗋𝗎𝖾), one can easily check that 𝜎,{ } ⊨𝖮(𝗍𝗋𝗎𝖾), but 𝜎,{ }⊭ ∃𝑥.𝖮(𝗍𝗋𝗎𝖾). The reason is that, once an 
assignment is extended with some element, stepping from one world to the next one requires every individual of the assignment to 
be preserved and have a counterpart in the next world.
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Alternatively, we could have restricted assignments in the semantics so that counterparts are required only for the free variables 
occurring in the formula. For example, the definition for the next 𝖮𝜙 operator would become

• 𝜎,𝜇 ⊨𝖮𝜙 if there is 𝜇1 ∈
fv(𝜙)
𝜔1

such that ⟨𝜇∣fv(𝜙), 𝜇1⟩ ∈ 𝐶0 and 𝜎1, 𝜇1 ⊨ 𝜙

For ease of presentation both in this work and with respect to our Agda implementation, we consider the case where all elements in 
the context must have a counterpart. Moreover, this alternative definition would not naturally align with the categorical semantics 
presented in Section 3: the intuition is that, for any given world 𝜔 and counterpart relation 𝑅 from it, the cartesian product of 
presheaves in that world has a counterpart through 𝑅 if and only if every element of the product has a counterpart through 𝑅.

Remark 2.3 (No self-duality for next). We observe that, contrary to classical LTL, the next 𝖮𝜙 operator in our counterpart-style 
semantics in general is not self-dual with respect to negation, i.e. ¬𝖮𝜙 ≢ 𝖮¬𝜙. As we will see in Section 2.3, to provide a positive 
normal form for QLTL it is necessary to introduce a separate next operator that allows us to adequately capture the notion of negation. 
This absence of duality is again due to the fact that we use relations in our counterpart model, which forces us to talk about the 
existence as well as the possible absence of a counterpart.

Consider the counterpart model in Fig. 2: it is easy to see that 𝜎1,{𝑥 ↦ 𝑐1} ⊨ ¬𝖮(B(𝑥)), but 𝜎1,{𝑥 ↦ 𝑐1} ⊭ 𝖮(¬B(𝑥)) since no 
counterpart for 𝑐1 exists after one step. The idea is that, since the next operator requires a counterpart at the next step to exist, its 
negation must express that either all counterparts at the next step do not satisfy the formula or that a counterpart does not exist 
altogether.

Remark 2.4 (Until and weak until are incompatible). In standard LTL, the until 𝜙1𝖴𝜙2 and weak until 𝜙1𝖶𝜙2 operators have the same 
expressivity, and can be defined in terms of each other by the equivalences

𝜙1𝖴𝜙2 ≡LTL ¬(¬𝜙2𝖶(¬𝜙1 ∧ ¬𝜙2))
𝜙1𝖶𝜙2 ≡LTL ¬(¬𝜙2𝖴(¬𝜙1 ∧ ¬𝜙2))

However, this is not the case in QLTL. Similarly, in QLTL we have that □𝜙 ≢ ¬◊¬𝜙, as for the semantics provided in Remark 2.1. 
This characteristic of QLTL is again due to the fact we are working in the setting of (possibly deallocating) relations, and we will 
formally explain and present an intuition for this when we introduce the semantics of positive normal forms for QLTL in Section 2.3. 
The usual equivalences for LTL can be obtained by restricting to models whose counterpart relations are total functions: this allows 
us to consider a unique trace of always-defined counterpart individuals, which in turn brings our models back to a notion similar to 
LTL traces.

2.3. Positive normal form for QLTL 

Positive normal forms are a standard presentation of temporal logics and can be used to simplify constructions and algorithms on 
both the theoretical and implementation side [18,17]. This presentation is crucial to define the semantics of a logic based on fixed 
points, such as in [13], while still preserving the full expressiveness of the original presentation. As we will remark in Section 4, 
explicitly providing a negation-free semantics for our logic also ensures that it can be more easily manipulated in a proof assistant 
where definitions and proofs are constructive. In this section we present an explicit semantics for the positive normal form of QLTL, 
which we denote as PNF.

2.3.1. Semantics of PNF 
As observed in Remark 2.3 and Remark 2.4, to present the positive normal form we need additional operators to adequately 

capture the negation of each of the temporal operators previously described. Thus, we introduce a new flavour of the next operator, 
called next-forall 𝖠𝜙. Similarly, we introduce a negative dual for the until 𝜙1𝖴𝜙2 and weak until 𝜙1𝖶𝜙2 operators, which we indicate 
as the then 𝜙1𝖳𝜙2 and until-forall 𝜙1𝖥𝜙2 operators, respectively.

Definition 2.12 (QLTL in PNF). Let  be a set of variables with 𝑥, 𝑦 ∈  and  be a set of (unary) predicates with 𝑃 ∈  . The set 
PNF of formulae of QLTL in positive normal form is generated by the following rules

𝜓 ∶= 𝗍𝗋𝗎𝖾 ∣ 𝑥 = 𝑦 ∣ 𝑃 (𝑥)

𝜙 ∶= 𝜓 ∣ ¬𝜓 ∣ 𝜙1 ∨ 𝜙2 ∣ 𝜙1 ∧ 𝜙2 ∣ ∃𝑥.𝜙 ∣ ∀𝑥.𝜙 ∣𝖮𝜙 ∣ 𝖠𝜙 ∣ 𝜙1𝖴𝜙2 ∣ 𝜙1𝖥𝜙2 ∣ 𝜙1𝖶𝜙2 ∣ 𝜙1𝖳𝜙2

We now provide a satisfiability relation for PNF formulae by specifying the semantics for the additional operators, omitting the 
ones that do not change.

Definition 2.13 (QLTL in PNF satisfiability). We inductively define the satisfiability relation for the additional constructs as follows

• 𝜎,𝜇 ⊨ ¬𝜓 if 𝜎,𝜇 ⊭ 𝜓 ;

• 𝜎,𝜇 ⊨ 𝜙1 ∧ 𝜙2 if 𝜎,𝜇 ⊨ 𝜙1 and 𝜎,𝜇 ⊨ 𝜙2;
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Fig. 3. A counterpart model where ¬(B(𝑥)𝖳R(𝑥)) ≢ (¬R(𝑥))𝖴(¬B(𝑥) ∧ ¬R(𝑥)). 

• 𝜎,𝜇 ⊨ ∀𝑥.𝜙 if for any 𝑠 ∈𝐷(𝜔0) we have that 𝜎,𝜇[𝑥↦ 𝑠] ⊨ 𝜙;

• 𝜎,𝜇 ⊨ 𝖠𝜙 if for any 𝜇1 ∈𝛤
𝜔1

such that ⟨𝜇,𝜇1⟩ ∈ 𝐶0 we have that 𝜎1, 𝜇1 ⊨ 𝜙;

• 𝜎,𝜇 ⊨ 𝜙1𝖥𝜙2 if there is an 𝑛̄ ≥ 0 such that

1. for any 𝑖 < 𝑛̄ and 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 we have 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙1;

2. for any 𝜇𝑛̄ ∈𝛤
𝜔𝑛̄

such that ⟨𝜇,𝜇𝑛̄⟩ ∈ 𝐶≤𝑛̄ we have that 𝜎𝑛̄, 𝜇𝑛̄ ⊨ 𝜙2;.

• 𝜎,𝜇 ⊨ 𝜙1𝖳𝜙2 if one of the following holds

– the same conditions for 𝜙1𝖥𝜙2 apply;

– for any 𝑖 and 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 we have that 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙1.

The intuition for the next-forall 𝖠𝜙 operator is that it allows us to capture the case where a counterpart of an individual does not 
exist at the next step: if any counterpart exists, it is required to satisfy the formula 𝜙.

Similarly to the until 𝜙1𝖴𝜙2 operator, the until-forall 𝜙1𝖥𝜙2 operator allows us to take a sequence of worlds where 𝜙1 is satisfied 
for some steps until 𝜙2 holds. The crucial observation is that all the intermediate counterparts satisfying 𝜙1 and the conclusive 
counterparts must satisfy 𝜙2. Such counterparts are not required to exist, and indeed any trace consisting of all empty counterpart 
relations always satisfies both 𝜙1𝖥𝜙2 and 𝜙1𝖳𝜙2.

Similarly to the weak until 𝜙1𝖶𝜙2 operator, the then 𝜙1𝖴𝜙2 operator corresponds to a weak until-forall, where the formula can be 
validated by a trace where all counterparts satisfy 𝜙1 without ever satisfying 𝜙2.

Example 2.5 (Until-forall, then, and next-forall). In our running example in Fig. 2, we illustrate the possibility for B(𝑥)𝖥R(𝑥) and 
𝖠B(𝑥) to be satisfied even when a counterpart does not exist after one or more steps. In particular, it can be verified that 𝜎,{𝑥↦ 𝑐0} ⊨
B(𝑥)𝖥R(𝑥) holds since R(𝑥) is eventually satisfied while B(𝑥) holds, just like the until operator. We have that both 𝜎,{𝑥↦ 𝑎0} ⊨ 𝖠R(𝑥)
and 𝜎1,{𝑥↦ 𝑐1} ⊨ 𝖠R(𝑥) hold, since no counterpart for 𝑐1 exists after one step. Finally, we have that 𝜎,{𝑥↦ 𝑑0} ⊨ B(𝑥)𝖥R(𝑥) holds 
since B(𝑥) holds but no counterpart exists after two steps, and 𝜎2,{𝑥↦ 𝑐2} ⊨ B(𝑥)𝖳R(𝑥) since a counterpart always exists but B(𝑥)
holds forever.

2.3.2. Negation of QLTL and PNF 
The crucial observation that validates the PNF presented in Section 2.3 is that the negation of next 𝖮𝜙, until 𝜙1𝖴𝜙2, and weak 

until 𝜙1𝖶𝜙2 formulae can now be expressed inside the logic. We will explicitly indicate with ⊨QLTL and ⊨PNF the satisfiability relations 
defined for formulae in standard QLTL and QLTL in PNF, respectively.

Proposition 2.1 (Negation is expressible in PNF). ( Relational.Negation) 
Let 𝜓 be an atomic formula in PNF. Then we have

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊨QLTL ¬𝖮(𝜓) ⟺ 𝜎,𝜇 ⊨PNF 𝖠(¬𝜓)
∀𝜎,𝜇 ∈𝛤

𝜔0
. 𝜎, 𝜇 ⊨QLTL ¬(𝜓1𝖴𝜓2) ⟺ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖳(¬𝜓1 ∧ ¬𝜓2)

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊨QLTL ¬(𝜓1𝖶𝜓2) ⟺ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖥(¬𝜓1 ∧ ¬𝜓2).

However, a converse statement that similarly expresses the negation of these newly introduced operators in PNF does not hold: 
the only exception is the easy case of the next-forall 𝖠𝜙 operator, whose negation directly corresponds with the next 𝖮𝜙 operator.

Proposition 2.2 (Negation of new operators is not in PNF). Let 𝜓 be an atomic formula in PNF. Then we have

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊭PNF 𝖠(𝜓) ⟺ 𝜎,𝜇 ⊨PNF 𝖮(¬𝜓)
∀𝜎,𝜇 ∈𝛤

𝜔0
. 𝜎, 𝜇 ⊭PNF 𝜓1𝖳𝜓2 ⟺̸ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖴(¬𝜓1 ∧ ¬𝜓2)

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊭PNF 𝜓1𝖥𝜓2 ⟺̸ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖶(¬𝜓1 ∧ ¬𝜓2).

Proof. We provide a single direct counterexample for both the then and until-forall cases. Take for example the formula B(𝑥)𝖳R(𝑥)
and consider the counterexample in Fig. 3
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Clearly, we have that 𝜎,{𝑥 ↦ 𝑎0} ⊨ ¬(B(𝑥)𝖳R(𝑥)). However, 𝜎,{𝑥 ↦ 𝑎0} ⊭ (¬R(𝑥))𝖴(¬B(𝑥) ∧ ¬R(𝑥)) since the until operator 
requires a single counterpart to exist where both ¬B(𝑥) and ¬R(𝑥) after 𝑛 steps. The case of 𝜙1𝖥𝜙2 and its negated form using 𝜙1𝖶𝜙2
follows similarly. □

It turns out that we can recover the previous equivalences by considering the case where each counterpart relation is a partial 
function, following the definition of counterpart models given in [14,13].

Proposition 2.3 (Negation for partial functions). ( Functional.Negation) 
Let 𝜓 be an atomic formula in PNF and 𝜎 = (𝐶0,𝐶1,… ) a trace where each counterpart relation 𝐶𝑖 is a partial function 𝐶𝑖 ∶ 𝐷(𝑤𝑖) ⇀
𝐷(𝑤𝑖+1). Then we have

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊭PNF 𝖠(𝜓) ⟺ 𝜎,𝜇 ⊨PNF 𝖮(¬𝜓)
∀𝜎,𝜇 ∈𝛤

𝜔0
. 𝜎, 𝜇 ⊭PNF 𝜓1𝖳𝜓2 ⟺ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖴(¬𝜓1 ∧ ¬𝜓2)

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊭PNF 𝜓1𝖥𝜓2 ⟺ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖶(¬𝜓1 ∧ ¬𝜓2).

Notice how the previous results can be easily generalised to the case where we consider the negation of full formulae 𝜙.

The equivalences presented in Proposition 2.1 allow us to define a formal translation ⋅ ∶ QLTL → PNF from the QLTL syntax 
presented in Definition 2.11 to the current one in PNF, preserving the equivalence of formulae. This is done with the obvious syntac

tical transformation that pushes the negation in QLTL formulae down to elementary predicates and replaces temporal operators with 
their negated counterpart. For example

𝖮𝜙 ∶= 𝖮𝜙 𝜙1𝖴𝜙2 ∶= 𝜙1𝖴𝜙2
¬𝖮𝜙 ∶= 𝖠¬𝜙 𝜙1𝖶𝜙2 ∶= 𝜙1𝖶𝜙2

𝜙1 ∨ 𝜙2 ∶= 𝜙1 ∨ 𝜙2 ¬(𝜙1𝖴𝜙2) ∶= (¬𝜙2)𝖳(¬𝜙1 ∧ ¬𝜙2)
¬(𝜙1 ∨ 𝜙2) ∶= ¬𝜙1 ∧ ¬𝜙2 ¬(𝜙1𝖶𝜙2) ∶= (¬𝜙2)𝖥(¬𝜙1 ∧ ¬𝜙2)

Theorem 2.1 (PNF equivalence). ( Relational.Conversion) Let ⋅ ∶ QLTL → PNF be the aforementioned syntactical translation that 
replaces negated temporal operators with their equivalent ones in PNF. For any QLTL formula [𝛤 ]𝜙∈ QLTL we have

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊨QLTL 𝜙 ⟺ 𝜎,𝜇 ⊨PNF 𝜙 .

Now that we have defined the complete set of temporal operators, the second condition of then 𝜙1𝖳𝜙2 can similarly be expressed 
by a derived always-forall □∗𝜙 operator, which we present along with a eventually-forall ◊∗𝜙 operator.

Similarly as with the then and until-forall operators, the difference with their standard versions eventually ◊𝜙 and always □𝜙 is 
that they require for all counterparts to satisfy the formula 𝜙, if any exists.

Remark 2.5 (Eventually-forall and always-forall). The eventually-forall ◊∗𝜙 and always-forall □∗𝜙 operators are defined as ◊∗𝜙 ∶=
𝗍𝗋𝗎𝖾𝖥𝜙 and □∗𝜙 ∶= 𝜙𝖳𝖿𝖺𝗅𝗌𝖾, respectively. Their semantics can be explicitly presented as follows

• 𝜎,𝜇 ⊨◊∗𝜙 if there is 𝑖 ≥ 0 such that for any 𝜇𝑖 ∈𝐴𝛤
𝑤𝑖

with ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 we have that 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙;

• 𝜎,𝜇 ⊨□∗𝜙 if for any 𝑖 and 𝜇𝑖 ∈𝐴𝛤
𝑤𝑖

with ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 we have that 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙.

Proposition 2.4 (Equivalences between operators in PNF). ( Relational.Equivalences) 
The following equivalences hold in PNF

𝜙1𝖴𝜙2 ≡ 𝜙1𝖶𝜙2 ∧◊𝜙2 𝜙1𝖶𝜙2 ≡ 𝜙1𝖴𝜙2 ∨□𝜙1
𝜙1𝖥𝜙2 ≡ 𝜙1𝖳𝜙2 ∧◊∗𝜙2 𝜙1𝖳𝜙2 ≡ 𝜙1𝖥𝜙2 ∨□∗𝜙1.

Contrary to what happens in LTL, the usual expansion laws where each operator is defined in terms of itself do not hold in QLTL 
for the case of counterpart relations, as shown by the following result.

Proposition 2.5 (Expansion laws do not hold in QLTL). We have the following statements in PNF

𝜙1𝖴𝜙2 ≢ 𝜙2 ∨ (𝜙1 ∧𝖮(𝜙1𝖴𝜙2)) 𝜙1𝖥𝜙2 ≢ 𝜙2 ∨ (𝜙1 ∧𝖠(𝜙1𝖥𝜙2))
𝜙1𝖶𝜙2 ≢ 𝜙2 ∨ (𝜙1 ∧𝖮(𝜙1𝖶𝜙2)) 𝜙1𝖳𝜙2 ≢ 𝜙2 ∨ (𝜙1 ∧𝖠(𝜙1𝖳𝜙2)).

Proof. We provide direct counterexamples for the until 𝜙1𝖴𝜙2 and until-forall 𝜙1𝖥𝜙2 cases, the weak until 𝜙1𝖶𝜙2 and then 𝜙1𝖳𝜙2
cases obviously following.
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Fig. 4. A counterexample model where, in the case of counterpart relations, we have that B(𝑥)𝖴R(𝑥) ≢ R(𝑥) ∨ (B(𝑥) ∧𝖮(B(𝑥)𝖴R(𝑥))). 

Fig. 5. A counterpart model where B(𝑥)𝖥R(𝑥) ≢ R(𝑥) ∨ (B(𝑥) ∧𝖠(B(𝑥)𝖥R(𝑥))). 

Consider the until case with the formula B(𝑥)𝖴R(𝑥). In the model shown in Fig. 4 we have that 𝜎,{𝑥 ↦ 𝑎0} ⊨ B(𝑥)𝖴R(𝑥) since 
there is a counterpart after two steps with R(𝑥) and for all worlds before it there is a counterpart with B(𝑥). However, clearly 𝑎0 does 
not satisfy the expanded formula since neither 𝜎1,{𝑥↦ 𝑎1}⊭ B(𝑥)𝖴R(𝑥) nor 𝜎1,{𝑥↦ 𝑏1}⊭ B(𝑥)𝖴R(𝑥).

Consider the until-forall case with the formula B(𝑥)𝖥R(𝑥). In the model shown in Fig. 5 we have that 𝑎0 satisfies the expanded 
formula, since the one-step counterparts 𝑎1 and 𝑏1 are such that both 𝜎,{𝑥↦ 𝑎0} ⊨ B(𝑥)𝖥R(𝑥) and 𝜎,{𝑥↦ 𝑎0} ⊨ B(𝑥)𝖥R(𝑥), with the 
world where all counterparts satisfy R(𝑥) being reached after two and one steps, respectively. However, we have that 𝜎,{𝑥↦ 𝑎0}⊭
𝖠(B(𝑥)𝖥R(𝑥)) since there is no single world 𝜔𝑛 where all counterparts after 𝑛 steps satisfy R(𝑥). □

Similarly as with Proposition 2.3, we can recover the expansion laws by restricting ourselves to the case of partial functions as 
counterpart relations.

Proposition 2.6 (Expansion laws for partial functions). ( Functional.ExpansionLaws) 
The following equivalences hold in PNF if we restrict ourselves to traces where each counterpart relation 𝐶𝑖 is a partial function 𝐶𝑖 ∶𝐷(𝑤𝑖)⇀
𝐷(𝑤𝑖+1)

𝜙1𝖴𝜙2 ≡ 𝜙2 ∨ (𝜙1 ∧𝖮(𝜙1𝖴𝜙2)) 𝜙1𝖥𝜙2 ≡ 𝜙2 ∨ (𝜙1 ∧𝖠(𝜙1𝖥𝜙2))
𝜙1𝖶𝜙2 ≡ 𝜙2 ∨ (𝜙1 ∧𝖮(𝜙1𝖶𝜙2)) 𝜙1𝖳𝜙2 ≡ 𝜙2 ∨ (𝜙1 ∧𝖠(𝜙1𝖳𝜙2)).

Remark 2.6 (Temporal operators as fixed points). Consider the same counterpart models with partial functions of Proposition 2.6: 
contrary to the relational case, we recover that the until 𝜙1𝖴𝜙2 and until-forall 𝜙1𝖥𝜙2 operators correspond to least fixed points of 
their expansion shown in Proposition 2.6, and weak until 𝜙1𝖥𝜙2 and then 𝜙1𝖳𝜙2 correspond to greatest fixed points.

Remark 2.7 (Functional counterparts collapse the semantics). As briefly mentioned in Remark 2.3, when our counterpart model is 
restricted to relations that are total functions we actually have that the pairs of operators previously introduced collapse and provide 
the same semantics and dualities of the classical operators. In particular, we obtain that 𝖮𝜙 ≡ 𝖠𝜙, 𝜙1𝖴𝜙2 ≡ 𝜙1𝖥𝜙2, 𝜙1𝖶𝜙2 ≡ 𝜙1𝖳𝜙2, 
and this fact in turn allows us to obtain a notion of trace similar to the one classically presented in LTL.

3. Categorical semantics

In this chapter we provide a categorical presentation of the logic introduced in Section 2, by generalising both its models and 
semantics through the use of relational presheaves, counterpart  -models, and classical attributes.

3.1. Relational presheaves models

The crucial definition of Kripke frame presented in Definition 2.1 admits a natural generalisation in the categorical setting. Given 
a category  , its objects 𝐴,𝐵,𝐶,… can be considered as worlds or instants of time, and the arrows 𝑓 ∶ 𝐴 → 𝐵 of the category 
represent the Kripkean notion of temporal developments or ways of accessibility. Notice that in the usual definition of Kripke frame the 
accessibility relation 𝑅 is a binary relation on the set 𝑊 of worlds. Two worlds can thus be connected with at most one possible 
evolution from one world to another. This is an undesirable constraint from the point of applications, where one might be interested 
in having multiple different ways to evolve to a next world. Categories naturally generalise this by allowing an arbitrary set of 
morphisms between worlds in the model.

Following this correspondence in the context of category theory, the definition of counterpart model could be represented with 
the notion of presheaf 𝐷 ∶𝑜𝑝 → Set on the desired category  . The use of the opposite category 𝑜𝑝 in the definition of presheaf 
stems from its traditional use in the setting of categorical logic and hyperdoctrines [25,26].
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Fig. 6. An example of a relational presheaf 𝑋 on a category . 

Concretely, a presheaf assigns to each world 𝜔 ∈  a set 𝐷(𝜔) of individuals, and to each time development 𝑓 ∶ 𝜔→ 𝜎 a function 
𝐷(𝑓 ) ∶𝐷(𝜎)→𝐷(𝜔) in the opposite direction between the individuals in the two worlds. From the counterpart perspective, given two 
elements 𝑎 ∈𝐷(𝜔) and 𝑏∈𝐷(𝜎), the equality 𝑎 =𝐷(𝑓 )(𝑏) intuitively represents the fact that 𝑏 is a future development of 𝑎 with respect 
to 𝑓 . In other words, a presheaf represents the categorification of a counterpart model whose counterpart relation is functional. In practice, 
this means that each individual in the target world 𝜔 is forced to have a counterpart in the previous world 𝜎, thus disallowing the 
creation of new elements. Considering a standard covariant functor 𝐷 ∶ → Set would similarly allow for the creation of elements 
to be modelled, but not their deallocation, since the morphisms in Set are taken to be total functions.

To adequately capture the notion of counterpart model from the categorical perspective, we therefore generalise presheaves to 
the case of relations instead of functions, thus introducing the notion of relational presheaf.

Definition 3.1 (Relational presheaf). Given a category , a relational presheaf is a functor 𝐷 ∶ 𝑜𝑝 → Rel, where Rel is the category 
of sets and relations.

Given a relational presheaf 𝐷 and a temporal development 𝑓 ∶ 𝜔→ 𝜎, we can consider the relation 𝐷(𝑓 ) ⊆ 𝐷(𝜎) ×𝐷(𝜔) as the 
counterpart relation associated to the evolution step 𝑓 . In this context, given two elements 𝑎 ∈𝐷(𝜔) and 𝑏 ∈𝐷(𝜎) we say that 𝑏 is a 
future development of 𝑎 with respect to 𝑓 whenever ⟨𝑏, 𝑎⟩ ∈𝐷(𝑓 ).

Example 3.1. We present in Fig. 6 a pictorial example of relational presheaf on a category .

With the notion of relational presheaf, we can redefine counterpart models in the categorical setting.

Definition 3.2 (Counterpart  -model). A counterpart  -model is a pair 𝑀 = ⟨ ,𝐷⟩ such that

•  is a category of worlds;

• 𝐷 ∶𝑜𝑝 → Rel is a relational presheaf on  .

A crucial difference with classical counterpart models is that counterpart  -models introduce considerably more morphisms than 
those that might be desirable. In particular, categories are required to always have identity morphisms: this practically means that, 
for each world, there must be an idle time development remaining in the same world where no entity is either created or destroyed. 
Similarly, having all compositions in a category means that one can always directly skip to a world if a path of time evolutions can 
be constructed to reach it.

In order to adequately restrict the models to only a specific set of desirable arrows, the notion of temporal structure is introduced.

3.2. Temporal structures

Definition 3.3 (Temporal structure). A temporal structure 𝑇 on a category  is a class of selected morphisms of  .

The intuition behind temporal structures is that they select only the atomic transitions, or indecomposable operations of  , and are 
precisely the arrows we consider as relevant in the semantics of our logic. Temporal structures and categories can be bundled up 
together to form a specific kind of model which we call temporal counterpart  -model.
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Fig. 7. An example of temporal counterpart  -model ⟨ ,𝐷,𝑇 ⟩. 

Definition 3.4. A temporal counterpart  -model is defined as a tuple ⟨ ,𝐷,𝑇 ⟩, where ⟨ ,𝐷⟩ is a counterpart  -model and 𝑇
is a temporal structure on  .

Example 3.2 (Temporal counterpart  -model). We introduce a concrete example of temporal counterpart  -model in Fig. 7.

Temporal counterpart  -models are sufficiently flexible to express and obtain as particular instance the classical models of LTL 
and CTL, for example retrieving the usual notion of trace described in Definition 2.5, which we employ in Definition 3.10 for the 
semantics of our logic.

Definition 3.5 (Paths). Notationally, given a temporal structure 𝑇 we denote by path(𝑇 ,𝜔) the class of possible sequences of arrows 
𝑡 = (𝑡0, 𝑡1, 𝑡2,… ) such that 𝑡𝑖 ∈ 𝑇 and cod(𝑡𝑖) = dom(𝑡𝑖+1) for any 𝑖 ≥ 0, with the sequence starting with dom(𝑡0) = 𝜔. Whenever the 
path 𝑡 ∈ path(𝑇 ,𝜔) is clear from the context, we indicate with 𝜔𝑖 = cod(𝑡𝑖) the 𝑖-th world of the path.

Equipping counterpart  -models with temporal structures allows to formally link classical counterpart models with their cate

gorical version.

Proposition 3.1. Given a classical counterpart model ⟨𝑊 ,𝐷,⟩, one can construct a temporal counterpart  -model ⟨ ,𝐷,𝑇 ⟩ as follows

•  is the category with Obj() ∶= 𝑊 as objects and whose arrows are freely generated (i.e. adding identities and compositions) by 
introducing a morphism 𝑟 ∶ 𝜔1 → 𝜔2 for each relation 𝑅∈ ⟨𝜔1,𝜔2⟩;

• 𝐷 is the relational presheaf 𝐷 ∶𝑜𝑝 → Rel defined as 𝐷(𝜔) ∶= 𝑑(𝜔), and assigning to each arrow 𝑟 ∶ 𝜔1 → 𝜔2 its generating relation 
𝑅 ∈ ⟨𝜔1,𝜔2⟩ with 𝐷(𝑟) ∶=𝑅 (it is straightforward to verify that this is indeed a functor);

• 𝑇 is the temporal structure identifying as class of morphisms all arrows 𝑟 ∶ 𝜔1 → 𝜔2 given by the one-step relations 𝑅 ∈ ⟨𝜔1,𝜔2⟩ of the 
model.

Proposition 3.2. Given a temporal counterpart  -model ⟨ ,𝐷,𝑇 ⟩, one can construct a classical counterpart model ⟨𝑊 ,𝐷,⟩ as follows

• 𝑊 ∶= Obj() is the set of worlds given by the objects of the category;

• 𝑑(𝜔) ∶=𝐷(𝜔) is a function assigning to each 𝜔∈𝑊 the action on objects of the relational presheaf 𝐷;

•  is the function assigning to each tuple ⟨𝜔1,𝜔2⟩ the set of relations ⟨𝜔1,𝜔2⟩ ∶= {𝐷(𝑟) | 𝑟 ∶ 𝜔1 → 𝜔2 ∧ 𝑟 ∈ 𝑇 }, where each morphism 
𝑟 of  must be selected by the temporal structure 𝑇 .

Remark 3.1. We remark how these two constructions are not one the inverse of the other, e.g., going from a temporal counterpart 
 -model ⟨ ,𝐷,𝑇 ⟩ to a classical one loses information about morphisms which are not part of the temporal structure. However, we 
will recover in Proposition 3.3 how these notions of model are equivalent with respect to the semantics of the logic.

3.3. Presheaf semantics for QLTL 

Having introduced the categorical perspective on counterpart models, we now give the definitions required to present the semantics 
in the categorical setting by means of relational presheaves and classical attributes.
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3.3.1. Classical attributes

In Definition 2.11 and Definition 2.13, we associated a meaning to each formula using an inductively defined logical relation. In 
the context of our categorical semantics, the satisfiability of a formula is instead denoted by assigning to each formula 𝜙 a classical 
attribute [16,27]: the intuition is that a classical attribute is simply a family of sets indexed on worlds, associating to each world 𝜔
the subset of individuals in 𝜔 that satisfy a given property.

Definition 3.6 (Classical attributes). Let 𝑋 ∶ 𝑜𝑝 → Rel be a relational presheaf. A classical attribute on 𝑋 is a family of sets 
𝐴 ∶= {𝐴𝜔}𝜔∈ such that 𝐴𝜔 ⊆𝑋(𝜔) for any 𝜔 ∈ . The set of all classical attributes on 𝑋 is denoted with  (𝑋) ∶= {{𝐴𝜔}𝜔∈ | 𝐴𝜔 ⊆

𝑋(𝜔)}.

Intuitively, the base relational presheaf 𝑋 ∶𝑜𝑝 → Rel provides a common universe of elements that can be reasoned about, while 
a classical attribute gives a specific subset of elements in each world 𝑋(𝜔) for which a property is satisfied. Thus, given a relational 
presheaf 𝑋 ∶𝑜𝑝 → Rel and a classical attribute 𝐴 ∈  (𝑋), whenever an element 𝑠 ∈𝑋(𝜔) is such that 𝑠 ∈ 𝐴𝜔, we can say that in 
the world 𝜔 the individual 𝑠 satisfies the property 𝐴.

For any relational presheaf 𝑋 ∶𝑜𝑝 → Rel, the set  (𝑋) of classical attributes has a natural structure of complete boolean algebra 
with respect to inclusion, where the top element is given by ⊤ = {𝑋(𝜔)}𝜔∈ and the bottom element by ⊥ = {∅}𝜔∈ .

Remark 3.2 (Classical attributes are presheaves). A classical attribute can alternatively be considered as a (relational) presheaf 𝑋 ∶
𝑜𝑝 → Rel in the intuitive way, since it assigns sets to worlds of the category. However, to be consistent with the Agda formalization 
and for our restricted purpose of providing a categorical semantics for QLTL, we simply consider a classical attribute as a family of 
sets indexed by the worlds of the category  , and we highlight this difference notationally by using a subscript for classical attributes 
𝐴𝜔 and using function application for presheaves 𝑋(𝜔).

3.3.2. Semantics with classical attributes

Having fixed a relational presheaf 𝑋 ∶𝑜𝑝 → Rel, we can define the temporal operators of our logic as operators that combine 
classical attributes and return other classical attributes. This mirrors the intuition that the set of individuals satisfying a composite 
formula 𝜙1𝖴𝜙2 is obtained by knowing which elements satisfy the subformulae 𝜙1, 𝜙2 composing it.

Definition 3.7 (Temporal operators on classical attributes). Let 𝑋 ∶𝑜𝑝 → Rel be a relational presheaf and 𝑇 a temporal structure on 
 . Let 𝐴 ∈  (𝑋) and 𝐵 ∈  (𝑋) be two classical attributes on 𝑋. Given a world 𝜔 ∈ and an element 𝑠 ∈ 𝑋(𝜔), we define the 
following temporal classical attributes

• 𝑠 ∈ (𝖮𝐴)𝜔 if for any arrow 𝑟 ∶ 𝜔→ 𝜎 of 𝑇 there is an element 𝑧 ∈𝑋(𝜎) such that ⟨𝑧, 𝑠⟩ ∈𝑋(𝑟) and 𝑧 ∈𝐴𝜎 ;

• 𝑠 ∈ (𝖠𝐴)𝜔 if for any arrow 𝑟 ∶ 𝜔→ 𝜎 of 𝑇 and element 𝑧 ∈𝑋(𝜎) such that ⟨𝑧, 𝑠⟩ ∈𝑋(𝑟) we have that 𝑧 ∈𝐴𝜎 ;

• 𝑠 ∈ (𝐴𝖴𝐵)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) there is an 𝑛̄ ≥ 0 such that

1. for any 𝑖 < 𝑛̄ there is 𝑧𝑖 ∈𝑋(𝜔𝑖) such that ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) and 𝑧𝑖 ∈𝐴𝜔𝑖
;

2. there is 𝑧𝑛̄ ∈𝑋(𝜔𝑛̄) such that ⟨𝑧𝑛̄, 𝑠⟩ ∈𝑋(𝑡≤𝑛̄) and 𝑧𝑛̄ ∈ 𝐵𝜔𝑛̄
.

• 𝑠 ∈ (𝐴𝖥𝐵)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) there is an 𝑛̄ ≥ 0 such that

1. for any 𝑖 < 𝑛̄ and 𝑧𝑖 ∈𝑋(𝜔𝑖) such that ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) we have that 𝑧𝑖 ∈𝐴𝜔𝑖
;

2. for any 𝑧𝑛̄ ∈𝑋(𝜔𝑛̄) such that ⟨𝑧𝑛̄, 𝑠⟩ ∈𝑋(𝑡≤𝑛̄) we have that 𝑧𝑛̄ ∈𝐵𝜔𝑛̄
.

• 𝑠 ∈ (𝐴𝖶𝐵)𝜔 if one of the following holds

– the same conditions for 𝑠 ∈ (𝐴𝖴𝐵)𝜔 apply;

– for any 𝑖 there is 𝑧𝑖 ∈𝑋(𝜔𝑖) such that ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) and 𝑧𝑖 ∈𝐴𝜔𝑖
.

• 𝑠 ∈ (𝐴𝖳𝐵)𝜔 if one of the following holds

– the same conditions for 𝑠 ∈ (𝐴𝖥𝐵)𝜔 apply;

– for any 𝑖 and 𝑧𝑖 ∈𝑋(𝜔𝑖) with ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) we have that 𝑧𝑖 ∈𝐴𝜔𝑖
.

Remark 3.3 (Eventually and always). Given a relational presheaf 𝑋 ∶𝑜𝑝 → Rel, a temporal structure 𝑇 on  and a classical attribute 
𝐴 ∈  (𝑋) on 𝑋, it is easy to see that the semantics of our derived temporal operators always and eventually can be given directly as

• 𝑠 ∈ (◊𝐴)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) there is an 𝑛̄ ≥ 0 and an element 𝑧𝑛̄ ∈𝑋(𝜔𝑛̄) such that ⟨𝑧𝑛̄, 𝑠⟩ ∈𝑋(𝑡≤𝑛̄) and 𝑧𝑛̄ ∈𝐴𝜔𝑛̄
;

• 𝑠 ∈ (◊∗𝐴)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) there is an 𝑛̄ ≥ 0 for which any element 𝑧𝑛̄ ∈𝑋(𝜔𝑛̄) with ⟨𝑧𝑛̄, 𝑠⟩ ∈𝑋(𝑡≤𝑛̄) is such that 𝑧𝑛̄ ∈𝐴𝜔𝑛̄
;

• 𝑠 ∈ (□𝐴)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) and 𝑖 ≥ 0 there is an element 𝑧𝑖 ∈𝑋(𝜔𝑖) such that ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) and 𝑧𝑖 ∈𝐴𝜔𝑖
;
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• 𝑠 ∈ (□∗𝐴)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) and 𝑖 ≥ 0 any element 𝑧𝑖 ∈𝑋(𝜔𝑖) with ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) is such that 𝑧𝑖 ∈𝐴𝜔𝑖
.

We have presented this semantics in full generality by quantifying over all possible time development traces 𝑡 ∈ path(𝑇 ,𝜔) provided 
by the model: notice, however, that the positive normal form equivalences for QLTL and PNF expressed in Section 2.3.2 clearly only 
hold in the case where the temporal structure 𝑇 forms a linear order, hence implicitly induces a QLTL trace.

We will use these temporal operators on classical attributes when providing the full semantics of the logic in Definition 3.10.

3.3.3. Semantics of QLTL 
We can now show how the semantics of formulae-in-context is provided in our categorical models. Throughout the rest of this 

section we consider a fixed temporal counterpart  -model ⟨ ,𝐷,𝑇 ⟩.

To introduce the categorical semantics of formulae through classical attributes we provide the following intuition: given a formula 
𝜙 with a single free variable, there is an associated classical attribute 𝐴𝜙 which assigns to each world 𝜔 the set of individuals in 𝜔 that 
satisfy the formula. In fact, classical attributes are the categorical generalisation of the notion of assignment presented in Definition 2.9. 
Similarly, given a formula with 𝑛 free variables, we consider classical attributes that assign to each world 𝜔 the set of 𝑛-tuples of 
individuals in 𝜔 such that the formula is satisfied. Notice how this is a subset of elements among all possible tuples given by the 
𝑛-iterated cartesian product of 𝐷(𝜔), which is a set, and is therefore in line with the notion of classical attribute. A relatively minor 
difference with assignments is that variable names in a formula are assumed to refer to indices in the tuple, instead of the proper 
names given by an assignment, hence a context Γ is properly described as a list of variables.

To make this intuition precise, we introduce products and a terminal object for relational presheaves.

Definition 3.8 (Product of presheaves). Given two relational presheaves 𝑋,𝑌 ∶𝑜𝑝 → Rel, the product of relational presheaves 
𝑋 × 𝑌 ∶ 𝑜𝑝 → Rel is defined as the relational presheaf that uses point-wise the standard set product on worlds. The action on 
objects is defined as (𝑋 × 𝑌 )(𝜔) ∶= 𝑋(𝜔) × 𝑌 (𝜔), and for a given morphism 𝑟 ∶ 𝜔1 → 𝜔2 we define the relation (𝑋 × 𝑌 )(𝑟) =
{⟨⟨𝑥, 𝑦⟩, ⟨𝑥′, 𝑦′⟩⟩ | ⟨𝑥,𝑥′⟩ ∈𝑋(𝑟) ∧ ⟨𝑦, 𝑦′⟩ ∈ 𝑌 (𝑟)}.

Definition 3.9 (Terminal relational presheaf). The terminal relational presheaf ⊥ ∶𝑊 𝑜𝑝 → Rel is defined as the relational presheaf 
⊥(𝜔) = {∗} assigning the singleton set {∗} to all worlds 𝜔 ∈𝑊 , and assigning the identity relation on {∗} to every morphism.

Notation 3.1 (Relational presheaf of a context). For any context 𝛤 = [𝑥1,… , 𝑥𝑛] as presented in Definition 2.7, we indicate with ⟦𝛤 ⟧

the presheaf defined by

⟦𝛤 ⟧ =𝐷 ×⋯ ×𝐷
⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟

𝑛 times

where × denotes the product of relational presheaves given in Definition 3.8. If the context is empty, we define ⟦∅⟧ ∶= ⊥. Given a 
variable 𝑥 ∈ 𝛤 , we indicate with 𝜋𝑥 ∶ ⟦𝛤 ⟧ →𝐷 the corresponding set-based projection on the 𝑥-th variable.

As we mentioned, the intuition is that a classical attribute on a product of presheaves identifies tuples of individuals that satisfy a 
given property.

Remark 3.4 (Classical attribute on a singleton). Consider the terminal relational presheaf ⊥ ∶𝑜𝑝 → Rel. Then each classical attribute 
𝐴 on ⊥ has only two possible assignments for any given world 𝜔 ∈ by either having 𝐴(𝜔) = {∗} or 𝐴(𝜔) = {}, thus indicating 
that either 𝐴 holds or does not for the entire world. In light of Notation 3.1, classical attributes on ⊥ correspond with the semantics of 
closed formulae.

The interpretation of a formula-in-context [𝛤 ]𝜙 is given by a classical attribute ⟦[𝛤 ]𝜙⟧ on the relational presheaf ⟦𝛤 ⟧ where the 
formula is defined.

Definition 3.10 (Satisfiability of a formula). Given a formula-in-context [𝛤 ]𝜙 and an interpretation 𝑃 (𝜔) ⊆ 𝐷(𝜔) for each unary 
predicate 𝑃 ∈  and world 𝜔, the classical attribute ⟦[𝛤 ]𝜙⟧ on ⟦𝛤 ⟧ is a function defined by induction on the formula [𝛤 ]𝜙 as follows

• ⟦[𝛤 ]𝖿𝖺𝗅𝗌𝖾⟧𝜔 ∶= ∅;

• ⟦[𝛤 ]𝗍𝗋𝗎𝖾⟧𝜔 ∶= ⟦𝛤 ⟧(𝜔);
• ⟦[𝛤 ]𝑃 (𝑥)⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | 𝜋𝑥(𝑎) ∈ 𝑃 (𝜔)};

• ⟦[𝛤 ]𝑥 = 𝑦⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | 𝜋𝑥(𝑎) = 𝜋𝑦(𝑎)};

• ⟦[𝛤 ]¬𝜓⟧𝜔 ∶= ⟦𝛤 ⟧(𝜔) ⧵ ⟦[𝛤 ]𝜓⟧𝜔;

• ⟦[𝛤 ]𝜙1 ∨ 𝜙2⟧𝜔 ∶= ⟦[𝛤 ]𝜙1⟧𝜔 ∪ ⟦[𝛤 ]𝜙2⟧𝜔;

• ⟦[𝛤 ]𝜙1 ∧ 𝜙2⟧𝜔 ∶= ⟦[𝛤 ]𝜙1⟧𝜔 ∩ ⟦[𝛤 ]𝜙2⟧𝜔;

• ⟦[𝛤 ]∃𝑥.𝜙⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | ∃𝑏 ∈𝐷(𝜔).⟨𝑎, 𝑏⟩ ∈ ⟦[𝛤 ,𝑥]𝜙⟧𝜔};

• ⟦[𝛤 ]∀𝑥.𝜙⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | ∀𝑏 ∈𝐷(𝜔).⟨𝑎, 𝑏⟩ ∈ ⟦[𝛤 ,𝑥]𝜙⟧𝜔}.
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Fig. 8. Examples of three Gr-algebras G0 (left), G1 (middle), G2 (right). 

In the case of temporal operators, the classical attribute ⟦[𝛤 ]𝜙⟧ is given directly by the operators defined in Definition 3.7

• ⟦[𝛤 ]𝖮𝜙⟧ ∶=𝖮⟦[𝛤 ]𝜙⟧;

• ⟦[𝛤 ]𝜙1𝖴𝜙2⟧ ∶= ⟦[𝛤 ]𝜙1⟧𝖴⟦[𝛤 ]𝜙2⟧;
• ⟦[𝛤 ]𝜙1𝖶𝜙2⟧ ∶= ⟦[𝛤 ]𝜙1⟧𝖶⟦[𝛤 ]𝜙2⟧.

Since the definitions of temporal operators are given for any relational presheaf 𝑋, we take here a specific case where the base 
presheaf 𝑋 is simply given by the product of presheaves ⟦𝛤 ⟧.

The categorical semantics of QLTL is equivalent to the classical semantics given in Definition 2.11 and Definition 2.13 in the 
following sense.

Proposition 3.3. For every classical counterpart model ⟨𝑊 ,𝐷,⟩ with a trace 𝜎 the temporal counterpart  -model ⟨ ′,𝐷′, 𝑇 ′⟩ constructed 
in Proposition 3.1 is such that for every formula 𝜑, assignment 𝜇 and index 𝑖

𝜎𝑖, 𝜇 ⊧
⟨𝑊 ,𝐷,⟩

QLTL
𝜙 ⟺ 𝜇 ∈ ⟦[𝛤 ]𝜙⟧

⟨𝑊 ′ ,𝐷′ ,𝑇 ′⟩
𝜔𝑖

for each world 𝜔𝑖 in the 𝑖-th position of 𝜎.

By following the construction in Proposition 3.2, the above correspondence similarly holds in the case where a temporal 𝑊

counterpart model ⟨ ,𝐷,𝑇 ⟩ is given with a path 𝑡 ∈ path(𝑇 ,𝜔) for some world 𝜔.

3.4. Multi-sorted algebra models

In this section we consider a specialisation of counterpart  -models to the case where states are algebras on a signature Σ. This 
considerably increases the expressiveness of our logic and, by considering for example the signature of graphs, extends it to the case 
of graph logics. We briefly recall in this section the fundamentals of multi-sorted algebras and signatures.

Definition 3.11 (Signature). A many-sorted signature Σ is a pair ⟨Σ𝑆 ,Σ𝐹 ⟩ where

• Σ𝑆 = {𝜏1,… , 𝜏𝑚} is a set of sorts;

• Σ𝐹 = {𝑓 ∶ 𝜏1 ×⋯ × 𝜏𝑛 → 𝜏 | 𝜏𝑖, 𝜏 ∈ Σ𝑆} is a set of function symbols typed over Σ∗
𝑆

.

Definition 3.12 (Algebra). A many-sorted algebra S with signature Σ, i.e. a Σ-algebra, is a pair ⟨𝑆,𝐹 ⟩ where

• 𝑆 = {S𝜏}𝜏∈Σ𝑆
is a family of sets for each sort in Σ𝑆 ;

• 𝐹 ∶= {𝑓A ∶ S𝜏1
×⋯ × S𝜏𝑛

→ S𝜏 | 𝑓 ∈ Σ𝐹 ∧ 𝑓 ∶ 𝜏1 ×⋯ × 𝜏𝑛 → 𝜏} is a set of typed functions for every function symbol 𝑓 ∈ Σ𝐹 .

Example 3.3 (Signature of graphs). The signature of graphs Gr = ⟨Gr𝑆 ,Gr𝐹 ⟩ is given by

• Gr𝑆 = {N,E};

• Gr𝐹 = {𝑠 ∶ E → N, 𝑡 ∶ E → N}, representing the source and target functions on edges.

Example 3.4 (Example of graph). Concretely, an algebra on the signature of graphs (Gr-algebra) is a directed graph. We present as an 
example a graphical representation of three Gr-algebras on the signature of graphs in Fig. 8. Similarly, a relational homomorphism of 
Gr-algebras is exactly a homomorphism of directed graphs where the relation between nodes and edges does not need to be functional. 

Definition 3.13 (Relational homomorphism of algebras). Given two algebras A and B, a relational homomorphism of algebras 𝜌 is 
a family of relations 𝜌 ∶= {𝜌𝜏 ⊆A𝜏 ×B𝜏 | 𝜏 ∈ Σ𝑆} typed over Σ𝑆 such that, for every function symbol 𝑓 ∶ 𝜏1 ×⋯× 𝜏𝑛 → 𝜏 and every 
list of elements (𝑎1,… , 𝑎𝑛) ∈ A𝜏1

×⋯ ×A𝜏𝑛
and (𝑏1,… , 𝑏𝑛) ∈ B𝜏1

×⋯ ×B𝜏𝑛
we have that

(∀𝑖 ∈ [1..𝑛].⟨𝑎𝑖, 𝑏𝑖⟩ ∈ 𝜌𝜏𝑖 ) ⟹ ⟨𝑓A(𝑎1,… , 𝑎𝑛), 𝑓B(𝑏1,… , 𝑏𝑛)⟩ ∈ 𝜌𝜏 .
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Fig. 9. Graphical representation of an algebraic counterpart  -model. 

In our example with the signature of graphs, this amounts to requiring that whenever an edge 𝑒 has a counterpart 𝑒′ in the next 
world, the source nodes (and target nodes) of 𝑒 and 𝑒′ must also be in counterpart relation. A relational homomorphism can similarly 
be considered as a partial homomorphism whenever there is at most a single counterpart in the codomain.

To introduce the notion of term on an algebra, we redefine the notion of context since variables are now typed over a set of sorts 
given by the signature. Finally, we give an inductive definition of terms defined in a typed context.

Definition 3.14 (Typed context). Given a denumerable set of variables 𝑋, a typed context 𝛤 over a signature Σ is a finite subset 
[𝑥1 ∶ 𝜏1,… , 𝑥𝑛 ∶ 𝜏𝑛] of pairs (𝑥𝑖, 𝜏𝑖) ∈𝑋 × Σ𝑆 such that 𝑥1,… , 𝑥𝑛 are distinct.

Definition 3.15 (Term-in-context). Let 𝛤 be a typed context over a multi-sorted signature Σ. A term-in-context [𝛤 ] 𝑡 ∶ 𝜏 is inductively 
generated by the rules

(𝑥 ∶ 𝜏) ∈ 𝛤

[𝛤 ] 𝑥 ∶ 𝜏 
𝑓 ∶ 𝜏1 ×⋯ 𝜏𝑛 → 𝜏 ∈ Σ𝐹 [𝛤 ] 𝑡1 ∶ 𝜏1 ⋯ [𝛤 ] 𝑡𝑛 ∶ 𝜏𝑛

[𝛤 ] 𝑓 (𝑡1,… , 𝑡𝑛) ∶ 𝜏 
where 𝑓 ∶ 𝜏1 ×⋯ × 𝑡𝑛 → 𝜏 is a function symbol of Σ𝐹 .

We show now how to extend the categorical presentation of counterpart models with relational presheaves to the setting of states 
as algebras.

3.5. Algebraic counterpart  -models

The intuition to extend our models to the algebraic setting is to consider a relational presheaf for each sort of the algebra: the 
algebra associated to each world 𝜔 is then taken to be the family of sets given by each presheaf on 𝜔. For each function symbol, 
algebras also provide a notion of set functions sending the product of sets to a single set. Similarly, to capture algebra functions 
categorically we need to send the product of relational presheaves to a single relational presheaf using set functions. We capture this 
idea with the general definition of relational morphism between any two relational presheaves.

Definition 3.16 (Relational morphisms). A relational morphism between two relational presheaves 𝑋,𝑌 ∶𝑜𝑝 → Rel is a family of 
set functions 𝜂 = {𝜂𝜔 ∶𝑋(𝜔)→ 𝑌 (𝜔)}𝜔∈𝑊 such that for every morphism 𝑓 ∶𝐴→ 𝐵 of the base category we have that

⟨𝑎, 𝑏⟩ ∈𝑋(𝑓 ) ⟹ ⟨𝜂𝐴(𝑎), 𝜂𝐵(𝑏)⟩ ∈ 𝑌 (𝑓 ).

Definition 3.17 (Algebraic counterpart  -model). Let Σ be a many-sorted signature. An algebraic counterpart  -model on the 
signature Σ is a tuple ⟨ , 𝑇 , ,⟩ such that

•  is a category of worlds;

• 𝑇 is a temporal structure on  ;

•  = {⟦𝜏⟧ ∶𝑜𝑝 → Rel}𝜏∈Σ𝑆
is a set of relational presheaves on  , assigning a relational presheaf to each sort in Σ𝑆 ;

•  = {(𝑓 ) ∶ ⟦𝜏1⟧×⋯× ⟦𝜏𝑛⟧ → ⟦𝜏⟧}𝑓∈Σ𝐹
is a set of relational morphisms, assigning a relational morphism to each function symbol 

𝑓 ∶ 𝜏1 ×⋯ × 𝑡𝑛 → 𝜏 given in Σ𝐹 by the signature Σ.

Example 3.5 (Example of algebraic counterpart  -model). Following Example 3.4, we provide in Fig. 9 our running example of alge

braic counterpart  -model on the signature of graphs Gr. We use blue dashed and green dash-dotted lines to distinguish 𝑓1 and 𝑓2, 
respectively.

We provide the categorical data given by the model by describing explicitly each component. A concrete perspective of our model 
is shown in Fig. 10.
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Fig. 10. Explicit categorical data given by Example 3.5. 

• The category  is given as the free category on the following graph

𝜔0

𝑓0

𝜔1

𝑓2

𝜔2

𝑓1

𝑓3

• The temporal structure 𝑇 is a family of morphisms that selects all one-step arrows of the graph, i.e. 𝑇 = {𝑓0, 𝑓1, 𝑓2, 𝑓3};

• The relational presheaves associated to the sorts {E,N} are given by the following data. We first consider the action on objects

⟦E⟧(𝜔0) = {𝑒0, 𝑒1, 𝑒2}, ⟦N⟧(𝜔0) = {𝑛0, 𝑛1, 𝑛2};
⟦E⟧(𝜔1) = {𝑒3, 𝑒4}, ⟦N⟧(𝜔1) = {𝑛3, 𝑛4};
⟦E⟧(𝜔2) = {𝑒5}, ⟦N⟧(𝜔2) = {𝑛5}.

By considering the action on morphisms, we define the assignments

⟦E⟧(𝑓0) = {(𝑒4, 𝑒0), (𝑒3, 𝑒1)}, ⟦N⟧(𝑓0) = {(𝑛4, 𝑛0), (𝑛3, 𝑛1), (𝑛4, 𝑛2)};
⟦E⟧(𝑓1) = {(𝑒5, 𝑒4)}, ⟦N⟧(𝑓1) = {(𝑛5, 𝑛3), (𝑛5, 𝑛4)};
⟦E⟧(𝑓2) = {(𝑒5, 𝑒3)}, ⟦N⟧(𝑓2) = {(𝑛5, 𝑛3), (𝑛5, 𝑛4)};
⟦E⟧(𝑓3) = {(𝑒5, 𝑒5)}, ⟦N⟧(𝑓3) = {(𝑛5, 𝑛5)}.

• The relational morphisms associated to each function symbol {𝑠, 𝑡} of the signature are given in the intuitive way, and one can 
easily check that these are indeed relational morphisms

(𝑠)𝜔0
= {(𝑒0 ↦ 𝑛0), (𝑒1 ↦ 𝑛1), (𝑒2 ↦ 𝑛2)},

(𝑡)𝜔0
= {(𝑒0 ↦ 𝑛1), (𝑒1 ↦ 𝑛2), (𝑒2 ↦ 𝑛0)};

(𝑠)𝜔1
= {(𝑒3 ↦ 𝑛3), (𝑒4 ↦ 𝑛4)},

(𝑡)𝜔1
= {(𝑒3 ↦ 𝑛4), (𝑒4 ↦ 𝑛3)};

(𝑠)𝜔2
= {(𝑒5 ↦ 𝑛5)},

(𝑡)𝜔2
= {(𝑒5 ↦ 𝑛5)}.

3.6. Semantics of algebraic QLTL 

We can now leverage the algebraic structure of the models to increase the expressiveness of our logic QLTL. We briefly summarise 
the crucial differences between the non-algebraic and algebraic case with respect to the syntax and semantics of our logic

• formulae are now defined in typed contexts instead of untyped contexts;

• instead of having an atomic formula 𝑥 = 𝑦 that models standard equality of individuals in the world, we can directly equate two 
terms 𝑠 =𝜏 𝑡 in a world, with the terms 𝑠, 𝑡 both having type 𝜏 ∈ Σ𝑆 in the signature Σ;
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• similarly, predicates 𝑃𝜏 are now typed over a generic sort 𝜏 ∈ Σ𝑆 of the signature, and well-typed terms can appear as arguments 
of predicates;

• existence of individuals ∃𝑥.𝜙 is typed over a generic sort ∃𝜏𝑥.𝜙.

In this section we assume to be working with a fixed algebraic counterpart  -model ⟨ , 𝑇 , ,⟩. We start by generalising 
Notation 3.1 and similarly provide the interpretation of typed contexts as relational presheaves.

Notation 3.2 (Typed contexts as relational presheaves). Given a typed context 𝛤 = [𝑥1 ∶ 𝜏1,… , 𝑥𝑛 ∶ 𝜏𝑛], we indicate with ⟦𝛤 ⟧ the 
relational presheaf

⟦𝛤 ⟧ ∶= ⟦𝜏1⟧ ×⋯ × ⟦𝜏𝑛⟧

where × denotes the product of relational presheaves in Definition 3.8.

Definition 3.18 (Interpretation of a term). Given a typed context 𝛤 and a term [𝛤 ] 𝑡 ∶ 𝜏 , we define the interpretation ⟦𝑡⟧ as the 
relational morphism given by induction on the structure of the derivation of the term, as following

• if 𝑡 = 𝑥𝑖 with (𝑥𝑖, 𝜏𝑖) ∈ 𝛤 , then ⟦𝑡⟧ is given by the relational morphism

⟦𝛤 ⟧
𝜋𝑖  

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⟦𝜏⟧

where 𝜋𝑖 is the 𝑖-th projection out of the product of relational presheaves;

• if 𝑡 = 𝑓 (𝑡1,… , 𝑡𝑛), then ⟦𝑡⟧ is given by the composition of relational morphisms

⟦𝛤 ⟧
⟨⟦𝑡𝑖⟧,… , ⟦𝑡𝑛⟧⟩  

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⟦𝛤 ′⟧
(𝑓 )  

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ ⟦𝜏⟧

where ⟨⟦𝑡𝑖⟧,… , ⟦𝑡𝑛⟧⟩ denotes the 𝑛-ary product of relational presheaves, intuitively mapping the relational morphisms ⟦𝑡𝑖⟧ to each 
component of the product.

Finally, we extend the interpretation of QLTL in the algebraic setting by generalising formulae-in-context to typed contexts.

Definition 3.19 (Algebraic QLTL). Given a set of denumerable variables  with 𝑥 ∈  , a family of (unary) predicates  ∶= {𝑃𝜏}𝜏∈Σ𝑆

indexed by sorts 𝜏 , the syntax of algebraic QLTL formulae-in-context is given by

𝜓 ∶= 𝗍𝗋𝗎𝖾 ∣ 𝑠 =𝜏 𝑡 ∣ 𝑃𝜏 (𝑠) 𝜙 ∶= 𝜓 ∣ ¬𝜙 ∣ 𝜙1 ∨ 𝜙2 ∣ ∃𝜏𝑥.𝜙 ∣𝖮𝜙 ∣ 𝜙1𝖴𝜙2 ∣ 𝜙1𝖶𝜙2

where [𝛤 ] 𝑠 ∶ 𝜏 and [𝛤 ] 𝑡 ∶ 𝜏 are terms defined in the context 𝛤 of the formula with 𝜏 ∈ Σ𝑆 . We will omit subscripts whenever the 
type used in an operator can be inferred from the context.

We now provide only the semantic rules for which their interpretation differs from the non-algebraic case.

Definition 3.20 (Semantics of algebraic QLTL). Given the semantic interpretation of QLTL formulae in Definition 3.10, by extending 
the interpretation to typed predicates 𝑃𝜏 (𝜔) ⊆ ⟦𝜏⟧(𝜔) for each sort 𝜏 , predicate symbol 𝑃𝜏 ∈  , and world 𝜔, we can consider the 
following additional definitions

• ⟦[𝛤 ]𝑃𝜏 (𝑠)⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | ⟦𝑠⟧𝜔(𝑎) ∈ 𝑃𝜏 (𝜔)};

• ⟦[𝛤 ]𝑠 = 𝑡⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | ⟦𝑠⟧𝜔(𝑎) = ⟦𝑡⟧𝜔(𝑎)};

• ⟦[𝛤 ]∃𝜏𝑥.𝜙⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | ∃𝑏 ∈ ⟦𝜏⟧(𝜔).⟨𝑎, 𝑏⟩ ∈ ⟦[𝛤 ,𝑥 ∶ 𝜏]𝜙⟧𝜔}.

The intuitive semantics for the first rule is that it identifies the set of assignments in the context such that the typed (unary) 
predicate 𝑃𝜏 (𝑠) holds for the term 𝑠 with type 𝜏 in the world 𝜔.

Notice how the definitions of temporal operators given in Definition 3.7 to deal with the temporal operators 𝖮−, −𝖴−, −𝖶− and 
their universally quantified counterparts remain unchanged, since the base relational presheaf 𝑋 is simply the relational presheaf 
associated to a typed context ⟦𝛤 ⟧(𝜔).

3.7. Examples

We provide some examples of satisfiability for simple algebraic QLTL formulae on the running example in Fig. 9. Taking for 
example the formulae

present𝜏 (𝑥) ∶= ∃𝜏𝑦.𝑥 =𝜏 𝑦,

nextStepPreserved𝜏 (𝑥) ∶= present𝜏 (𝑥) ∧𝖮present𝜏 (𝑥),
nextStepDeallocated𝜏 (𝑥) ∶= present𝜏 (𝑥) ∧ ¬𝖮present𝜏 (𝑥),
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we obtain the set of edges of graphs G1,G2,G3 surviving at the next step

⟦[𝑥 ∶ E] nextStepPreserved(𝑥)⟧𝑤0
= {𝑒0, 𝑒1}

⟦[𝑥 ∶ E] nextStepPreserved(𝑥)⟧𝑤1
= {}

⟦[𝑥 ∶ E] nextStepPreserved(𝑥)⟧𝑤2
= {𝑒5}

Notice that no edge is nextStepPreserved in the second case, since the development ⟦E⟧(𝑓1) deallocates the edge 𝑒4 and, similarly, 
⟦E⟧(𝑓2) deallocates the edge 𝑒3. Following the semantics presented in Definition 3.7, we require that a given property has to hold for 
every time development of length one.

By considering deallocations we have the following

⟦[𝑥 ∶ E] nextStepDeallocated(𝑥)⟧𝑤0
= {𝑒2}

⟦[𝑥 ∶ E] nextStepDeallocated(𝑥)⟧𝑤1
= {}

⟦[𝑥 ∶ E] nextStepDeallocated(𝑥)⟧𝑤2
= {}

In the second case, we have that again no edge is fully deallocated since it is present in some temporal developments. On nodes we 
have that

⟦[𝑥 ∶ N] nextStepPreserved(𝑥)⟧𝑤0
= {𝑛1, 𝑛2}

⟦[𝑥 ∶ N] nextStepPreserved(𝑥)⟧𝑤1
= {𝑛3}

⟦[𝑥 ∶ N] nextStepPreserved(𝑥)⟧𝑤2
= {𝑛5}

We can define formulae that exploit the algebraic structure of worlds and combine them with the temporal operators to consider 
their evolution in time. For example, we can construct a formula modelling if an edge 𝑒 is a loop or a node 𝑛 possesses a loop, the 
existence of a loop in the current graph, and finally if an edge 𝑒 will become a loop after at least one step

loop(𝑒) ∶= 𝑠(𝑒) =N 𝑡(𝑒),
nodeHasLoop(𝑛) ∶= ∃E𝑒.𝑠(𝑒) =N 𝑛 ∧ loop(𝑒)

hasLoop ∶= ∃E𝑒.loop(𝑒)
willBecomeLoop(𝑒) ∶= ¬loop(𝑒) ∧◊loop(𝑒)

We can verify that the only node having a loop is 𝑛5

⟦[𝑥 ∶ N] nodeHasLoop(𝑥)⟧𝑤0
= {}

⟦[𝑥 ∶ N] nodeHasLoop(𝑥)⟧𝑤1
= {}

⟦[𝑥 ∶ N] nodeHasLoop(𝑥)⟧𝑤2
= {𝑛5}

We can also express this by stating that the loop belongs to the entire world

⟦∅ hasLoop⟧𝑤0
= {}

⟦∅ hasLoop⟧𝑤1
= {}

⟦∅ hasLoop⟧𝑤2
= {∗}

Since hasLoop is a closed formula, the classical attribute only provides binary information either with the empty set or the singleton 
set, as described in Remark 3.4.

Notice that again there is no node that becomes a loop after some steps, since we require that this is the case for all temporal 
developments

⟦[𝑥 ∶ N] willBecomeLoop(𝑥)⟧𝑤0
= {}

⟦[𝑥 ∶ N] willBecomeLoop(𝑥)⟧𝑤1
= {}

⟦[𝑥 ∶ N] willBecomeLoop(𝑥)⟧𝑤2
= {}

Finally, we consider whether a node will develop a new loop after some time. Since all nodes have a counterpart in the next world, 
they all converge to the case of 𝑛5, which already has a loop

⟦[𝑥 ∶ N] ¬nodeHasLoop(𝑥) ∧◊nodeHasLoop(𝑥)⟧𝑤0
= {𝑛0, 𝑛1, 𝑛2}

⟦[𝑥 ∶ N] ¬nodeHasLoop(𝑥) ∧◊nodeHasLoop(𝑥)⟧𝑤1
= {𝑛3, 𝑛4}

⟦[𝑥 ∶ N] ¬nodeHasLoop(𝑥) ∧◊nodeHasLoop(𝑥)⟧𝑤2
= {}

3.8. Remarks on second-order extensions

We conclude this section by discussing a possible second-order extension of QLTL and, in particular, its semantics.

First, recall that having a second-order logic allows us to reason about, quantify, and prove properties of subsets of elements. 
Such an expressiveness would be relevant and useful in the formal setting of QLTL, as it would provide us with a formal way to 
deal with statements like ``there exists a set of nodes that are always connected'' or ``there exists a subset of nodes such that they are 
all connected and after one step they will be all not connected''. In other words, this would allow us to formally reason about local 
properties of our graphs and their preservation over time.
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While it is straightforward to extend the syntax and set-based semantics of QLTL with second-order features, extending our 
categorical presentation along this line is quite challenging.

In general, the problem of dealing with second (or higher) order features via category theory is that this requires introducing a 
suitable power object, i.e. an object that satisfies the universal properties holding for the powerset in Set. The leading example of a 
category with power objects is that of a topos, e.g. Set and the category of presheaves over Set. However, in our context the problem 
of higher-order features is non-trivial because the category relational presheaves (on a given category) rarely have such a topos-like 
structure, as observed in [28]. This is due to the fact that the category Rel is not a topos, but just an power-allegory [29]. For the 
formal definition and the proof that Rel is a power-allegory we refer the reader to [29, Prop. 2.414].

Therefore, since we can not employ the formal categorical notion of power object, if we want to properly deal with higher-order 
features we have to devise a suitable relational presheaf playing a similar role.

We briefly discuss how one can define such a power-set relational presheaf P(𝑋) ∶ 𝑜𝑝 → Rel of a given presheaf 𝑋 ∶ 𝑜𝑝 → Rel, and 
how this can be used to interpreted a second-order extension of QLTL. To this purpose, we employ the known equivalence between 
relations and Galois connections (or maps) on power-sets [30], i.e. the equivalence between Rel and Map(𝐏𝐨𝐰), where the latter 
denotes the category of maps on power-sets.

Recall from [30, Ex. 2] that once we have a relation 𝑅⊆𝐴×𝐵, we can define a function 𝒫𝑅 ∶𝒫(𝐵)→𝒫(𝐴) (preserving arbitrary 
unions) by assigning 𝒫𝑅(𝑆) ∶= {𝑎 ∈ 𝐴 |∃𝑏 ∈ 𝑆 ∶ 𝑎𝑅𝑏} to every subset 𝑆 ⊆ 𝐵. Moreover, given the equivalence Rel ≡Map(𝐏𝐨𝐰), 
and using the fact that 𝐏𝐨𝐰 = (𝐏𝐨𝐰𝑜𝑝)𝑜𝑝, we can immediately conclude that the assignment 𝑅 ↦ 𝒫𝑅 preserves compositions and 
identities.

Definition 3.21. Let 𝑋 ∶ 𝑜𝑝 → Rel be a relational presheaf. The relational power-set presheaf P(𝑋) ∶ 𝑜𝑝 → Rel is the functor 
defined as

• for every object 𝜎 ∈ , P(𝑋)(𝜎) ∶=𝒫(𝑋𝜎) is the power-set of 𝑋𝜎 ,

• for every arrow 𝑓 ∶ 𝜎 → 𝜔 of  the relation P(𝑋)𝑓 ⊆ P(𝑋)𝜔 × P(𝑋)𝜎 is defined as P(𝑋)𝑓 ∶=𝒫𝑋𝑓
.

The relational presheaf P(𝑋) ∶ 𝑜𝑝 → Rel is thus an ordinary presheaf over 𝐒𝐞𝐭. Finally, given a relational presheaf 𝑋 ∶ 𝑜𝑝 → Rel

we define the epsiloff relational presheaf ∈𝑋∶ 𝑜𝑝 → Rel, following the idea and notation in [29].

Definition 3.22. Let 𝑋 ∶ 𝑜𝑝 → Rel be a relational presheaf. The epsiloff relational presheaf is the functor ∈𝑋∶ 𝑜𝑝 → Rel defined 
as

• for every 𝜎 ∈ , ∈𝑋 (𝜎) ∶= {(𝑎,𝐴) ∈𝑋𝜎 × P(𝑋)𝜎 | 𝑎 ∈𝐴},

• for every 𝑓 ∶ 𝜎 → 𝜔, (∈𝑋 )𝑓 is the relation given by ⟨(𝑏,𝐵), (𝑎,𝐴)⟩ ∈ (∈𝑋 )𝑓 if ⟨𝑏, 𝑎⟩ ∈ 𝑋𝑓 and P(𝑋)𝑓 (𝐵) = 𝐴 where 𝐵 ⊆ 𝑋𝜔 and 
𝐴⊆𝑋𝜎 .

These relational presheaves allow us to interpret, for examples, the following second-order extension of QLTL (which is based 
on the logics considered in [13,14]): the syntax is now equipped with a set of second order (typed) variables  , a set of (atomic) 
predicates 𝜓 including the predicates 𝜀 ∈𝜏 𝜒 (where 𝜀 is a first-order variable and 𝜒 is a second-order variable, both of sort 𝜏), and 
𝜙 with second order quantifier ∃𝜏𝜒.𝜓 . Following the previous notation, we denote by [Γ,Δ] the contexts where Γ is the context of 
first-order variables, while Δ represents the second-order context.

In this setting, we can interpret (with respect to a fixed counterpart  -model as in the previous section) a second order context 
Δ as

⟦Δ⟧ ∶= P(⟦𝜏1⟧) ×⋯ × P(⟦𝜏𝑛⟧)

and then a context [Γ,Δ] as

⟦Γ,Δ⟧ ∶= ⟦Γ⟧ × ⟦Δ⟧

The interpretation of the second-order formulae at a given world is as follows

• ⟦[𝛤 ,Δ]𝜀 ∈𝜏 𝜒⟧𝜔 ∶= ⟨𝜋𝜀, 𝜋𝜒 ⟩
∗
𝜔
(∈⟦𝜏⟧ (𝜔)) where ⟨𝜋𝜀, 𝜋𝜒 ⟩ ∶ ⟦𝛤 ,Δ⟧ → ⟦𝜀 ∶ 𝜏,𝜒 ∶ 𝜏⟧ denotes the opportune projection of relation 

presheaves;

• ⟦[𝛤 ,Δ]∃𝜏𝜒.𝜙⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ,Δ⟧(𝜔) | ∃𝑏 ∈ P(⟦𝜏⟧)(𝜔).⟨𝑎, 𝑏⟩ ∈ ⟦[𝛤 ,𝜒 ∶ 𝜏,Δ]𝜙⟧𝜔}.

Therefore, even if the category of relational presheaves is not equipped with power objects, we can define suitable relational 
presheaves allowing us to provide a meaningful interpretation of second-order extension of QLTL.

Again, we stress the fact that this is just a possible solution to the problem of the absence of power objects, and other possible 
solutions could be adopted. Defining and studying the properties of other powerset-like relational presheaves is an interesting line of 
investigation for future works.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082 

21 



F. Gadducci, A. Laretto and D. Trotta 

4. Agda formalisation

In this chapter we present an overview of an additional contribution of this work, a formalisation of the categorical semantics 
presented in Section 3 using the dependently typed programming language and proof assistant Agda [20]. We introduce here just a 
part of the formalised codebase, and we focus on the most important structures and definitions by providing the semantics of our 
logic directly with algebraic counterpart  -models. The full code of the categorical formalisation is available at [31], whereas the 
code for the set-based formalization for positive normal forms is available at [23].

We assume in this chapter that the reader is familiar with Agda and its notation, but we believe that most of the definitions 
presented in the following sections can be understood even with little or no familiarity with the language and its syntax. For a 
complete introduction to Agda we refer to [32].

4.1. Formalisation aspects

Our formalisation work consists in the mechanisation of all the aspects presented so far: we start by defining the notions of 
counterpart relations and traces of relational morphisms as models of the logic, and provide a representation for (well-typed and 
well-scoped) syntax for formulae of QLTL and PNF along with their satisfiability semantics. Then, we provide a conversion function 
from QLTL to PNF along with proofs of correctness and completeness of the procedure; finally, using the defined framework, we prove 
among other equivalences the relevant expansion laws introduced in Section 2.3.2 for the functional setting. The implementation is 
general enough to consider the case of algebras over any generic multi-sorted signature. In practice, this means that by specifying a 
suitably defined signature the class of models (and formulae) considered by the logic can be extended to the case of any graphical 
formalism that admits an algebraic representation on a multi-sorted signature, such as trees, hypergraphs, and so on.

Moreover, given the constructive interpretation of the formalisation, proving that the correctness and completeness of PNF with 
respect to QLTL also doubles-down as a concrete procedure that can convert formulae into their positive normal form version, while 
at the same time providing a proof of the correctness of the conversion.

We describe now how the main components provided by our formalisation can be employed by the user to interact with the proof 
assistant.

• Signature definition. Exploiting the definitions given in our formalisation, the user can write their own algebraic signature that will 
be used to represent the system of interest as algebras on the signature. For example, by defining the signature of graphs Gr the 
user can reason on the temporal evolution of graphs, using (relational) graph homomorphisms as counterpart relations between 
worlds.

• Formula construction. After having provided the signature of interest, the user can construct formulae using the full expressiveness 
of QLTL and can reason on equality of terms constructing according to the signature. This allows the user to express properties 
that combine both logical quantifiers as well as exploiting the specific structure of the system, possibly composing and reusing 
previously defined formulae. The infrastructure provided by the formalisation is such that the formulae constructed by the user are 
inherently checked to be well-scoped and well-typed with respect to the sorts of the signature, e.g. edges and nodes in the case of 
graphs. The user can freely use negation in formulae, and can (optionally) use the procedures we defined to automatically convert 
formulae to their PNF, which we have seen in Section 2.3 how can be particularly counterintuitive in the counterpart setting with 
respect to standard temporal logics.

• Model definition. The models of the system at various time instances can be constructed by the user, following again the signature 
provided. Then, the user specifies a series of symbolic worlds and indicates the possible transitions that can be taken by defining 
a relation on the worlds. Then, an algebra of the signature must be assigned to each world, and the connection between worlds 
is translated into a morphism between the algebras provided by the user. The transitions of the models are checked by Agda 
to preserve the algebraic structure of the worlds considered, thus corresponding to the notion of graph morphisms; this step is 
relatively straightforward as the automation available in Agda helps with proving the structure-preservation of the maps. Traces 
between worlds are given using a coinductive definition of traces using sized types [33], allowing for infinite (repeating) traces to 
be modelled and defined by the user.

• Validation of formulae in the model. Using the library the user can prove that a specific model satisfies a given formula; our formali

sation automatically simplifies the goal that must be proven to verify the formula, and the user is guided by the proof assistant by 
automatically constructing the skeleton of the proof term.

4.2. Logics in a constructive proof assistant

In our setting, some crucial usability issues need to be mentioned. Agda is a proof assistant based on the Curry-Howard corre

spondence, where types are connected with propositions and elements of a type are viewed as its proofs [34]. This paradigm gives an 
intuitionistic interpretation of mathematics, where proving a theorem amounts to being able to show a concrete witness of its validity. 
In practice, this means that some useful logical principles often used in the setting of temporal logics, such as the law of excluded 
middle, double negation elimination, or the De Morgan laws to switch connectives and quantifiers whenever negation appears in sub

formulae, are not provable in the system. Consequently, both implementer and user would not be able to prove that for example in our 
logic QLTL the formula ¬¬𝜙 ⟹ 𝜙 always holds for any choice of models and formula 𝜙, since it is not provable in the metalanguage 
provided by the proof assistant. Thus, without explicitly assuming any other logical principle, the embedding of our temporal logic is 
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actually restricted to the intuitionistic fragment of QLTL. In practice, this is not particularly problematic since classical reasoning can 
simply be assumed as axiom, and allows the equivalences previously mentioned to be recovered: this however would be undesirable 
from the user’s perspective, as they would have to explicitly use these classical axioms in their proofs.

The negation of logical connectives can also be cumbersome to handle practically. In constructive mathematics, negation is defined 
as the implication ¬𝜙 ∶= 𝜙 ⟹ ⊥, where ⊥ indicates the empty type, i.e. falsity. This forces the user to always apply a reductio

ad-absurdum technique to prove the validity of any proposition involving negation, first assuming that the formula is valid and then 
deriving a contradiction. On the other hand, it is often desirable to directly express the negation of a formula using other formulae 
available in the logic that are easier to manipulate, while still maintaining the full expressivity of the original logic with no additional 
power. This is a core use case of positive normal forms such as the one presented in Section 2.3.

As an example specific to our logic, consider the case where we try to prove

𝜎,𝜇 ⊨QLTL ¬(¬𝜙1𝖴¬𝜙2)

In order to prove this in the constructive setting, one needs to show that a contradiction can be derived by assuming there exists 
an 𝑛 with the desired properties. It can often be easier to directly work with its negated formula

𝜎,𝜇 ⊨QLTL 𝜙2𝖶(𝜙1 ∧ 𝜙2)

since, by construction, directly provides two cases to be analysed where either 𝜙2 always holds or a concrete 𝑛 is given where both 
formulae are satisfied.

Working with the negation of simple connectives such as ¬(𝜙1 ∨ 𝜙2) can also be problematic, since converting disjunctions 
in conjunctions uses the classical direction of the De Morgan law which implicitly relies on double negation elimination. A similar 
mechanism happens with first-order quantifiers, such as those used in our logic, as well as in the case of temporal operators.

In order to tackle these usability issues and the treatment of negation in the intuitionistic setting, we take the following approach: 
the formulae of the logic are expressed in Agda using a full positive normal form similar to the one presented in Section 2.3, giving the 
user complete accessibility over the extended set of quantifiers. This lifts the user from having to deal with negation in subformulas, 
which can be problematic as we mentioned. On the other hand, the positive normal form is supported by the equiexpressivity results 
shown in Theorem 2.1, which, to be formally proven in Agda, do require classical principles to be postulated. This effectively shifts 
the burden of dealing (classically) with negation from the user to the implementer, while providing a theoretical guarantee that no 
expressive power is either gained or lost in the presentation of the logic.

4.2.1. Automation

Embedding a temporal logic in a proof assistant allows the user to exploit the assistant aspect of the tool, e.g. by aiding the user 
in showing (or even proving automatically) that a certain formula in a model is satisfied or not.

In Agda, this automation aspect is limited, especially if compared to proof assistants where automation and the use of tactics 
is a core aspect of the software environment, such as Coq [35], Lean [36], and Isabelle [37]. The Agda synthesizer Agsy [38] is 
the main helper tool in Agda implementing a form of automated proof search. Unfortunately, Agsy only provides general-purpose 
searching procedures and its theorem proving capabilities are nowhere near those of specialised model checking algorithms. Still, the 
goal-oriented interactivity available in Agda is an invaluable tool in proving theorems step-by-step and manually verify formulae in 
our setting, and the assisted introduction of constructors allows the user to quickly generate the proof structure needed to validate 
temporal formulae.

4.2.2. Category theory

The agda-categories library [21] is a category theory library implemented in Agda, using proof-relevance and setoid-based 
reasoning as core design choices. In our context of temporal logics, we show that the library provides a solid foundation to use 
category-theoretical notions even in a practical context that does not necessarily touch upon the theoretical aspects of category 
theory, but where the categorical perspective is simply used to provide the appropriate data for our models. We will explain the 
notation used in agda-categories whenever required, but we do not provide details ifor the definitions and structures offered by 
the library.

5. Agda code

In the following sections we present more in detail the main components of our formalisation work. A preliminary part which 
captures multi-sorted signatures and algebras is left in Appendix A, and we focus here only on the formalisation of the categorical 
semantics. We start by describing the formalisation of relational presheaves and algebraic counterpart  -models, highlighting the 
constructions that allow to convert the categorical models into classical ones and viceversa. After showing how we formalise the 
notion of classical attribute, we introduce the syntax and semantics of our quantified temporal logic, and formalise the examples 
shown in Section 3.7. The code presented in this chapter has been structured and checked as an Agda literate file and we will omit 
for simplicity several details, imports, and proofs.
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5.1. Relational presheaves

We start by formally capturing the notion of relational presheaf on a given category C, which we provide by parameterising the 
RelPresheaves module with respect to any category C:

module RelPresheaves {co c𝓁 ce } (C : Category co c𝓁 ce) where 

A relational presheaf is simply a presheaf with the category of sets and relations Rels as target: 

RelPresheaf : Set (suc𝓁 co ⊔ suc𝓁 c𝓁 ⊔ ce) 
RelPresheaf = Presheaf C (Rels co c𝓁) 

Given two relational presheaves, a relational morphism between them is given by the pointwise map between their sets 𝜂, along 
with an imply property stating that target elements are related by Y whenever they were related by X at the source. For any given 
functor X, the functions X.0 and X.1 refer to the action on objects and morphisms, respectively. The notation C [ 𝜔1 , 𝜔2 ] refers to 
the type of morphisms in the category C between 𝜔1 and 𝜔2. 

record RelPresheaf⇒ (X : RelPresheaf) (Y : RelPresheaf) 
: Set (co ⊔ c𝓁) where 

private 
module X = Functor X 
module Y = Functor Y 

open Category C 

field 
𝜂 : ∀ {𝜔 } → X.0 𝜔 → Y.0 𝜔 
imply : ∀ {𝜔1 𝜔2 t s } {f : C [ 𝜔1 , 𝜔2 ] } 

→ X.1 f t s 
→ Y.1 f (𝜂 t) (𝜂 s) 

Finally, relational presheaves and relational morphisms form a category where identity and composition are defined in the in

tuitive way. We omit the proofs of associativity and identity required to prove that RelPresheaves is a Category since they follow 
definitionally. 

RelPresheaves : Category _ _ _ 
RelPresheaves = record 

{ Obj = RelPresheaf
; _⇒_ = RelPresheaf⇒
; _≈_ = 𝜆 F G → ∀ {𝜔 } x → F.𝜂 {𝜔 } x ≡ G.𝜂 {𝜔 } x 
; id = 

record { 𝜂 = id
; imply = id
} 

; _◦_ = 𝜆 F G → 
record { 𝜂 = F.𝜂 ◦ G.𝜂

; imply = F.imply ◦ G.imply
} 

} 

5.2. Counterpart models

We now provide the definition of counterpart model from the non-categorical perspective. First, we define a standard counterpart 
model, as given in Definition 2.2: 

module CounterpartClassical {𝓁 } where 
record LewisCounterpartModel : Set (suc𝓁 𝓁) where 

field 
W : Set 𝓁 
D : W → Set 𝓁 
R : Rel W 𝓁 
C : ∀ {w1 w2 } 
→ R w1 w2 
→ REL (D w1) (D w2) 𝓁 
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The function C is to be interpreted as assigning a relation between two worlds whenever they are themselves connected using the 
accessibility relation R. Note that this does not impose a restriction on having multiple counterpart relations between worlds since, 
in Agda, the relation R can be inhabited with multiple witnesses for the same pair of worlds.

Having introduced the notions of algebras and relational homomorphisms, we now extend the standard version of counterpart 
models to the algebraic case, using algebras as worlds and relational homomorphisms of algebras instead of counterpart relations: 

record CounterpartModel (Σ : Signature {𝓁 }) : Set (suc𝓁 𝓁) where 
field 

W : Set 𝓁 
d : W → Σ-Algebra Σ 
_⇝_ : Rel W 𝓁 
f : ∀ {w1 w2 } 
→ w1 ⇝ w2 
→ Σ-Rel (d w1) (d w2) 

Similarly as with the case of a standard LewisCounterpartModel, this definition of CounterpartModel allows for worlds to be 
connected through multiple relational homomorphisms.

5.3. Algebraic counterpart  -model

We now provide the definition of an algebraic counterpart  -model. 

module CounterpartCategorical where 

First, we need to define the relational presheaf associated to a context, which we again consider here as a Ctx. For simplicity, we 
omit here the proofs of identity and functoriality of the presheaf defined, and we only show the actions on objects F0 and F1: 

module ContextPresheaf {𝓁 } {W : Category 𝓁 𝓁 𝓁 } { : Set 𝓁 } 
(⟦_⟧ :  → RelPresheaf W) where 

⟦_⟧* : ∀ {n } → Vec  n → RelPresheaf W 
⟦ Γ ⟧* = 

record 
{ F0 = 𝜆 𝜔 → mapT (𝜆 Σ → F0 (⟦ Σ ⟧) 𝜔) Γ 
; F1 = 𝜆 f → zip (𝜆 {Σ } → F1 (⟦ Σ ⟧) f) 
} 

An algebraic counterpart  -model on a given signature is simply the collection of the three fields given in Definition 3.17: a 
category W, a presheaf ⟦ 𝜏 ⟧ on W for each sort 𝜏 , and a family I of relational morphisms for each function symbol. Each relational 
morphism I f has as source the relational presheaf associated to the product of input types of the function, and as target the relational 
presheaf of the return type:

record CounterpartWModel {𝓁 } (Σ : Signature {𝓁 }) : Set (suc𝓁 𝓁) where 
field 

W : Category 𝓁 𝓁 𝓁 
⟦_⟧ : ∀ (𝜏 :  ) → RelPresheaf W
I : ∀ (f :  ) → RelPresheaf⇒ ⟦ args f ⟧* ⟦ ret f ⟧

Given a counterpart  -model, we also obtain the following definitions associated to it. The projection relational morphism, which 
corresponds exactly with the lookup operation in a context, is given by the following: 

𝜋𝑖 : ∀ {n } {Γ : Ctx n } 
→ (i : Fin n) 
→ RelPresheaf⇒ (⟦ Γ ⟧*) ⟦ Vec.lookup Γ i ⟧

𝜋𝑖 i = record { 𝜂 = lookup i 
; imply = lookup-zip i 
} 

Moreover, we have a relational morphism given by the uniqueness property of the cartesian product of a context. This essentially 
allows us to apply a Vec of relational presheaves to each sort of a context Γ′ . This is given by induction on the structure of the context 
Γ′ on which the mapping is applied:
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⟨_⟩* : ∀ {n m } {Γ : Ctx n } {Γ′ : Ctx m } 
→ mapT (𝜆 𝜏 → RelPresheaf⇒ (⟦ Γ ⟧*) ⟦ 𝜏 ⟧) Γ′ 
→ RelPresheaf⇒ (⟦ Γ ⟧*) (⟦ Γ′ ⟧*) 

⟨_⟩* {Γ ′ = [] } * = 
record { 𝜂 = 𝜆 _ → *

; imply = 𝜆 _ → *
} 

⟨_⟩* {Γ ′ = _ ∶∶ _} (x , xs) = 
let module x = RelPresheaf⇒ x 

module xs = RelPresheaf⇒ (⟨ xs ⟩*) 
in record { 𝜂 = < x.𝜂 , xs.𝜂 >

; imply = < x.imply , xs.imply >
} 

Finally, following Definition 3.18 we have the relational morphism associated to a term, given by induction on the term structure. 
We use the superscript 𝑡 to indicate that this is the semantic interpretation of terms. 

⟦_⟧𝑡 : ∀ {i n 𝜏 } {Γ : Ctx n } 
→ Γ ⊢ 𝜏 ⟨ i ⟩
→ RelPresheaf⇒ (⟦ Γ ⟧*) ⟦ 𝜏 ⟧

⟦ var i ⟧𝑡 = 𝜋𝑖 i 
⟦ fun f x ⟧𝑡 = I f ◦ ⟨ map ⟦_⟧𝑡 x ⟩*

5.4. Temporal structure

The last piece of data for our models is the notion of temporal structure on a category W. A temporal structure is implemented as 
a (unary) predicate of arrows of the category, thus selecting a specific family of one-step morphisms:

record TemporalStructure {co c𝓁 ce } 
(W : Category co c𝓁 ce) 
: Set (suc𝓁 (co ⊔ c𝓁)) where 

constructor TStructure
open Category W 

field 
T : ∀ {A B } → Pred (A ⇒ B) c𝓁 

For any given temporal structure T, we define a Path from some object A to be a coinductive datatype containing an arrow of the 
category arr : A ⇒ B, an implicit proof arr ∈ T indicating that arr is selected by the temporal structure T, and a successor path. We 
again use sized types and the Thunk comonad instead of coinductive records since we will need to pattern match on Paths and reason 
by cases on the arrow A ⇒ B provided by the path: 

data Path (A : Obj) (i : Size) : Set (co ⊔ c𝓁) where 
_→_ : ∀ {B } 

→ (arr : A ⇒ B) 
→ {arr ∈ T} 
→ Thunk (Path B) i 
→ Path A i 

Given a path we define some self-explanatory accessors on its components: 

next : ∀ {A i } → Path A i → Obj
next (_→_ {B } _ _) = B 

arr : ∀ {A } → (p : Path A ∞) → A ⇒ next p 
arr (a → _) = a 

tail : ∀ {A i } {j : Size< i } → (p : Path A i) → Path (next p) j 
tail (_ → p) = p .force

We can take for any i the world given by the trace after i steps, and the arrow compose≤ p i obtained by composing the first i 
arrows together, noting that this arrow is not necessarily part of the temporal structure. 
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obj : ∀ {A } → Path A ∞ → ℕ → Obj
obj {A } p zero = A 
obj p (suc i) = obj (tail p) i 

compose≤ : ∀ {A } → (p : Path A ∞) → (n : ℕ) → A ⇒ obj p n 
compose≤ p zero = id
compose≤ p (suc i) = compose≤ (tail p) i ◦ arr p 

5.5. From classical to categorical models

A temporal counterpart  -model is simply the definition of CounterpartWModel endowed with an additional temporal structure 
T on its category W:

record TemporalCounterpartWModel {𝓁 } (Σ : Signature {𝓁 }) : Set (suc𝓁 𝓁) where 
field 

M : CounterpartWModel Σ 

open CounterpartWModel M public 

field 
T : TemporalStructure W

Given a classical CounterpartModel on algebras, we can obtain the corresponding categorical model by defining a procedure that 
constructs a TemporalCounterpartWModel following Proposition 3.1. Since our logic QLTL is defined using the categorical presenta

tion with presheaf semantics, this procedure can be exploited to leverage the categorical semantics on classical models, which are 
easier to describe and do not refer to presheaves:

module ClassicalToCategorical {𝓁 } {Σ : Signature {𝓁 }} where 

open import Relation.Binary.Construct.Composition using (_;_) 
open import Relation.Binary.Construct.Closure.ReflexiveTransitive

using (Star; 𝜀; _⊲_; _⊲⊲_; _⊳⊳_) 
open import Categories.Category.Construction.PathCategory

using (PathCategory) 

The construction follows precisely the idea described in Proposition 3.1. 

ClassicalToCategorical : CounterpartModel Σ 
→ TemporalCounterpartWModel Σ 

ClassicalToCategorical M = 

We elucidate the four fields W, ⟦_⟧, I, and T provided by the construction. Given a classical model, the category W is given by the 
free category (indicated here by PathCategory) induced by the set of worlds W of the model with the accessibility relation _⇝_ on 
it: 

record 
{ M = record 

{ W = PathCategory
record 

{ Obj = W
; _⇒_ = _⇝_
; _≈_ = _≡_
; equiv = isEquivalence
} 

For any sort 𝜏 , its corresponding presheaf ⟦ 𝜏 ⟧ takes each world 𝜔 to the set of objects of the algebra d 𝜔. Similarly, for any 
function symbol  , the relational morphism I takes each world 𝜔 to the corresponding function given by the algebra d 𝜔 on the 
symbol  . In order to show that this is a proper relational morphism, an additional lemma star-imply is shown later in this section 
using the homomorphism property 𝜌-homo of relational homomorphisms between algebras: 

; ⟦_⟧ = 
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𝜆 𝜏 → 
record 

{ F0 = 𝜆 𝜔 → S (d 𝜔) 𝜏 
; F1 = StarRel
; identity = (𝜆 { refl → lift refl }) , 𝜆 { (lift refl) → refl } 
; homomorphism = 𝜆 { {g = g } → star-homomorphism {f = g }} 
; F-resp-≈ = star-resp-≈*
} 

; I = 
𝜆   → 

record 
{ 𝜂 = 𝜆 {𝜔 } → F (d 𝜔)   
; imply = 𝜆 { {f = f } → star-imply f } 
} 

} 

The temporal structure T associated to this model is a simple predicate that returns the unit type ⊤ for all morphisms of the free 
category with length exactly one. The empty type ⊥ representing falsity is given in the other cases: 

; T = TStructure
𝜆 { 𝜀 → ⊥

; (_ ⊲ 𝜀) → ⊤
; (_ ⊲ (_ ⊲ _)) → ⊥
} 

} 

The action on arrows of the relational presheaf ⟦ 𝜏 ⟧ is given by the function StarRel, which lifts the arrows of the free category 
to relations between the sets of the algebra, for any sort 𝜏 . This lifting is defined by cases on the length of the morphism of the free 
category: 

where 
StarRel : ∀ {𝜏 A B } 
→ Star _⇝_ B A 
→ REL (S (d A) 𝜏) (S (d B) 𝜏) 𝓁 
StarRel 𝜀 = _≡_
StarRel (B⇝C ⊲ C⇝*A) = StarRel C⇝*A ; flip (𝜌 (f B⇝C)) 

where the base case is the identity relation _≡_ and composition of relations _;_ is applied in the inductive case. The use of flip is 
dictated by the fact that presheaves are functors in the opposite category W𝑜𝑝, thus the relation given by the counterpart model needs 
to be inverted before composing it.

We briefly recap here the obligations that must be proved for the previous construction, omitting their proofs. 

star-homomorphism : ∀ {𝜏 X Y Z } {g : Star _⇝_ Y X } {f : Star _⇝_ Z Y } 
→ StarRel {𝜏 } (g ⊳⊳ f) ≈ StarRel {𝜏 } f ◦ StarRel {𝜏 } g 

star-imply : ∀ {  𝜎 𝜏 t s } f 
→ zip (StarRel f) t s 
→ StarRel f (F (d 𝜏)   t) (F (d 𝜎)   s) 

star-resp-≈* : ∀ {𝜏 } {A B } {f g : Star _⇝_ B A } 
→ f ≈* g 
→ Rels 𝓁 𝓁 [ StarRel {𝜏 } f ≈ StarRel {𝜏 } g ]

In these last lemmas the function _⊳⊳_ and the relation _≈*_ indicate composition and morphism equality in the PathCategory, 
respectively.

5.6. Classical attributes

In order to define satisfiability, we introduce the notion of ClassicalAttribute. A classical attribute on a relational presheaf X is 
defined as a (unary) predicate which identifies a subset of X in 𝜔, for each of the worlds 𝜔:
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module ClassicalAttributes {co c𝓁 ce } (W : Category co c𝓁 ce) 
(T : TemporalStructure W) where 

ClassicalAttribute : RelPresheaf W → Set (suc𝓁 (co ⊔ c𝓁 ⊔ ce)) 
ClassicalAttribute X = ∀ {𝜔 } → Pred (X.0 𝜔) _ 

where module X = Functor X 

The action of temporal operators on classical attributes for a given relational presheaf X is defined according to Definition 3.7. We 
first provide some shorthands to capture the notion of existential and universal quantification of counterparts with a certain property 
A after i steps:

module _ (X : RelPresheaf W) where 
private module X = Functor X 
-- Shorthand for: 
-- ``There exists a counterpart for s in the 
-- path p after i steps which satisfies A''
at∃ : ∀ {𝜔 } → Path 𝜔 ∞ → X.0 𝜔 → ClassicalAttribute X → ℕ → Set _ 
at∃ p s A i = ∃[ z ] X.1 (compose≤ p i) z s × z ∈ A 

-- Shorthand for: 
-- ``All counterparts of s in the path p 
-- after i steps satisfy A''
at∀ : ∀ {𝜔 } → Path 𝜔 ∞ → X.0 𝜔 → ClassicalAttribute X → ℕ → Set _ 
at∀ p s A i = ∀ z → X.1 (compose≤ p i) z s → z ∈ A 

The one-step classical attributes for the next 𝖮𝜙 and next-forall 𝖠𝜙 operators are defined in the intuitive way. Notice how we again 
require as implicit argument a proof 𝜌 ∈ T that the morphisms considered by the two operators are part of the temporal structure: 

XO : ClassicalAttribute X → ClassicalAttribute X 
XO A s = ∀ {𝜎 } 

→ (𝜌 : _ ⇒ 𝜎) 
→ {𝜌 ∈ T} 
→ ∃[ z ] X.1 𝜌 z s × s ∈ A 

XA : ClassicalAttribute X → ClassicalAttribute X 
XA A s = ∀ {𝜎 } 

→ (𝜌 : _ ⇒ 𝜎) 
→ {𝜌 ∈ T} 
→ ∀ z → X.1 𝜌 z s → s ∈ A 

We use a set of standard predicates inspired by LTL in order to make subsequent definitions more readable: 

-- A holds for all i strictly before n steps 
_before_ : ∀ {𝓁 } (A : Pred ℕ 𝓁) → Pred ℕ 𝓁 
A before n = ∀ i → i < n → i ∈ A 

-- A holds until B is satisfied 
_until_ : ∀ {𝓁 } (A B : Pred ℕ 𝓁) → Set 𝓁 
A until B = ∃[ n ] (A before n × n ∈ B) 

-- A is always satisfied at each step 
always : ∀ {𝓁 } (A : Pred ℕ 𝓁) → Set 𝓁 
always A = ∀ i → i ∈ A 

-- Either until or always hold 
_weakUntil_ : ∀ {𝓁 } (A B : Pred ℕ 𝓁) → Set 𝓁 
A weakUntil B = A until B ⊎ always A 

Finally, we define the classical attributes associated to each operator by combining the previous shorthands to provide any possibile 
operator. The predicates at∃ p s A and at∃ p s A are curried over the number of steps i, and are thus viewed as predicates on integers 
ℕ: 

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082 

29 



F. Gadducci, A. Laretto and D. Trotta 

XU : ClassicalAttribute X → ClassicalAttribute X → ClassicalAttribute X 
XU A B {𝜔 } s = ∀ (p : Path 𝜔 ∞) → (at∃ p s A) until (at∃ p s B) 

XF : ClassicalAttribute X → ClassicalAttribute X → ClassicalAttribute X 
XF A B {𝜔 } s = ∀ (p : Path 𝜔 ∞) → (at∀ p s A) until (at∀ p s B) 

XW : ClassicalAttribute X → ClassicalAttribute X → ClassicalAttribute X 
XW A B {𝜔 } s = ∀ (p : Path 𝜔 ∞) → (at∃ p s A) weakUntil (at∃ p s B) 

XT : ClassicalAttribute X → ClassicalAttribute X → ClassicalAttribute X 
XT A B {𝜔 } s = ∀ (p : Path 𝜔 ∞) → (at∀ p s A) weakUntil (at∀ p s B) 

5.7. Syntax and semantics of QLTL 

We now introduce the definition of QLTL formulae, which are intrinsically well-scoped and well-typed with respect to the algebra 
signature. Following the positive normal form given in Section 2.3 and the issues discussed in Section 4.1, we present the syntax of 
algebraic QLTL by explicitly providing the entire set of operators as well as negation:

module QLTL {𝓁 } {Σ : Signature {𝓁 }} 
(M : TemporalCounterpartWModel Σ) where 

The type of QLTL formulae QLTL carries the context Γ in which the formula is defined. We start with the standard cases of 
formulae with constants, simple connectives and temporal operators: 

data QLTL {n } (Γ : Ctx n) : Set 𝓁 where 
true : QLTL Γ 
false : QLTL Γ 
!_ : QLTL Γ → QLTL Γ 
_∧_ : QLTL Γ → QLTL Γ → QLTL Γ 
_∨_ : QLTL Γ → QLTL Γ → QLTL Γ 
O_ : QLTL Γ → QLTL Γ 
A_ : QLTL Γ → QLTL Γ 
_F_ : QLTL Γ → QLTL Γ → QLTL Γ 
_U_ : QLTL Γ → QLTL Γ → QLTL Γ 
_W_ : QLTL Γ → QLTL Γ → QLTL Γ 
_T_ : QLTL Γ → QLTL Γ → QLTL Γ 

Existential and universal quantification state explicitly the sort 𝜏 on which they quantify on. The context of the inner formula is 
then extended with a new free variable with type 𝜏 , which allows the terms in the sub-formula to refer to it: 

∃<_>_ : (𝜏 :  ) 
→ QLTL (𝜏 ∶∶ Γ) 
→ QLTL Γ 

∀<_>_ : (𝜏 :  ) 
→ QLTL (𝜏 ∶∶ Γ) 
→ QLTL Γ 

Finally, the elementary formulae for equality of terms considers the two terms in the context of the formula: 

_≡𝑡_ : ∀ {i 𝜏 } 
→ Γ ⊢ 𝜏 ⟨ i ⟩
→ Γ ⊢ 𝜏 ⟨ i ⟩
→ QLTL Γ 

_≢𝑡_ : ∀ {i 𝜏 } 
→ Γ ⊢ 𝜏 ⟨ i ⟩
→ Γ ⊢ 𝜏 ⟨ i ⟩
→ QLTL Γ 

We can define the usual syntactic sugar for derived temporal operators: 

◊_ : ∀ {n } {Γ : Ctx n } → QLTL Γ → QLTL Γ 
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◊ 𝜙 = true U 𝜙 

□_ : ∀ {n } {Γ : Ctx n } → QLTL Γ → QLTL Γ 
□ 𝜙 = 𝜙 W false

◊*_ : ∀ {n } {Γ : Ctx n } → QLTL Γ → QLTL Γ 
◊* 𝜙 = true F 𝜙 

□*_ : ∀ {n } {Γ : Ctx n } → QLTL Γ → QLTL Γ 
□* 𝜙 = 𝜙 T false

The semantics of QLTL formulae is simply a function ⟨_⟩ that assigns a predicate to formulae in each world. Each predicate ⟨ 𝜙 ⟩
is defined to be true for a given tuple of elements a in a world 𝜔 whenever the formula 𝜙 is satisfied by that assignment of elements 
a. This definition corresponds exactly to the notion of classical attribute, with the latter being considered on the relational presheaf 
of the underlying context ⟦ Γ ⟧*. 

⟨_⟩ : ∀ {n } {Γ : Ctx n } → QLTL Γ → ClassicalAttribute (⟦ Γ ⟧*) 
⟨ true ⟩ a = ⊤
⟨ false ⟩ a = ⊥
⟨ ! 𝜙 ⟩ a = ¬ ⟨ 𝜙 ⟩ a 
⟨ 𝜙1 ∧ 𝜙2 ⟩ a = ⟨ 𝜙1 ⟩ a × ⟨ 𝜙2 ⟩ a 
⟨ 𝜙1 ∨ 𝜙2 ⟩ a = ⟨ 𝜙1 ⟩ a ⊎ ⟨ 𝜙2 ⟩ a 
⟨ ∃< 𝜏 > 𝜙 ⟩ a = ∃[ b ] ⟨ 𝜙 ⟩ (b , a) 
⟨ ∀< 𝜏 > 𝜙 ⟩ a = ∀ b → ⟨ 𝜙 ⟩ (b , a) 
⟨ t1 ≡𝑡 t2 ⟩ a = 𝜂 (⟦ t1 ⟧𝑡) a ≡ 𝜂 (⟦ t2 ⟧𝑡) a 
⟨ t1 ≢𝑡 t2 ⟩ a = 𝜂 (⟦ t1 ⟧𝑡) a ≢ 𝜂 (⟦ t2 ⟧𝑡) a 
⟨ O 𝜙 ⟩ = XO (⟦ _ ⟧*) ⟨ 𝜙 ⟩
⟨ A 𝜙 ⟩ = XA (⟦ _ ⟧*) ⟨ 𝜙 ⟩
⟨ 𝜙1 U 𝜙2 ⟩ = XU (⟦ _ ⟧*) ⟨ 𝜙1 ⟩ ⟨ 𝜙2 ⟩
⟨ 𝜙1 F 𝜙2 ⟩ = XF (⟦ _ ⟧*) ⟨ 𝜙1 ⟩ ⟨ 𝜙2 ⟩
⟨ 𝜙1 W 𝜙2 ⟩ = XW (⟦ _ ⟧*) ⟨ 𝜙1 ⟩ ⟨ 𝜙2 ⟩
⟨ 𝜙1 T 𝜙2 ⟩ = XT (⟦ _ ⟧*) ⟨ 𝜙1 ⟩ ⟨ 𝜙2 ⟩

6. Conclusion

We have shown how a set-based semantics and a categorical semantics for a first-order linear temporal logic can be presented 
in the counterpart setting. We have investigated some results on the positive normal forms of this logic in the case of relations and 
partial functions, and argued for their usefulness both in practice and in the case of constructive proof assistants. Finally, we saw 
how its models can be naturally extended to the algebraic setting, and how the notions and the categorical models presented in the 
previous chapters can be formalised and practically experimented with in a proof assistant based on dependent type theory such as 
Agda. We have investigated some results on the positive normal forms of this logic in the case of relations and partial functions, and 
argued for their usefulness both in practice and in the case of constructive proof assistants.

6.1. Related work

Up to the early 2010s, a series of papers argued for the use of quantified logics for expressing properties of graphs and of graph 
evolutions. Our models are inspired by the counterpart-based logics explored in the context of a 𝜇-calculus with fixed points in [13], 
and we refer there for an overview of and a comparison with the by-then current proposals, all favouring an approach based on 
universal domains. Missing there is [39] and follow-ups such as [40,41], which illustrate one of the relevant tools developed in the 
graph community, GROOVE. To some extent, the present article and its companion [14], which introduces the categorical semantics 
of QTL, are summarising a previous thread of research concerning counterpart models, including its implementation. Indeed, the 
categorical semantics for counterpart models seems of interest in itself, as witnessed by the works surveyed in [14].

The formalisation of temporal logics in (constructive) proof assistants has a long history, see e.g. [42--44]. A practical application 
and comparison with modern model checkers is in [45], and a fully verified one for LTL is implemented in the Isabelle theorem 
prover. In [46], a verified proof-search program fro CTL is formalised in Agda, together with a toolbox to implement well-typed 
proof-searching procedures; a similar embedding of constructive LTL in Agda is provided in [47] for the verification of functional 
reactive programs. Our proof-of-concept implementation of QLTL witnesses the possibility to move towards the formalisation of 
quantified temporal logics for proof assistants, an issue sparsely tackled in the literature.
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6.1.1. Comparison with graph computation formalisms

Section 3.4 shows how the counterpart paradigm allows for reasoning on the evolution of any formalism that can be presented 
by a multi-sorted signature. As exemplified in Fig. 9, a case of particular interest is the signature of (directed) graphs, which allows 
our proposal to be compared with formalisms that can express properties on graph topologies and their evolution.

The idea behind these graph computation formalisms (GCFs) is to use graph-specific definitions where syntactical statements on 
nodes, edges, sources and targets of edges, and their equalities are first-class citizens. The field has been quite active in the last 
decade, with a series of papers advocating quantified temporal logics for the specification of GCFs properties. We offer here a short 
review of some of the most recent proposals, focussing on the dichotomy between the universal domains and the counterpart-based 
approaches.

Graph programs/flow graphs. The use of monadic-second order logics to prove properties of graph-based programming languages 
has been advocated in [48,49], where the emphasis is placed on distilling post-conditions formulae from a graph transformation rule 
and a precondition formula. A more abstract meta-model for run-time verification is proposed in [50,51], where a control flow graph 
can be instantiated to concrete models and the properties are given by first-order formulae. Despite the differences, in both cases the 
resulting analysis is akin to the adoption of a universal domain approach.

Metric logics, I. The use of traces and first-order specifications is a key ingredient of runtime verification. A relevant proposal is the 
use of metric first-order temporal logic (MFOTL) [52,53], investigated with respect to the expressiveness of suitable fragments in [54] 
or to duality results akin to our PNF in [55]. These logics allow to reason on the individual components of states, using (arbitrary) 
sets of relations as models, which allows for different kinds of graphs to be encoded. The core difference with our line of work is 
that, contrary to standard models of MFOTL, we allow for variable domains in the temporal structure and for nodes to be created 
and destroyed.

Metric logics, II. A graph-oriented approach to MFOTL is given by Metric Temporal Graph Logic (MTGL) [56,57], which allows to 
model properties on the structures and the attributes of the state and has been used in the context of formal testing [58]. Here traces 
are pairs of injective spans representing a rule, and are equivalent to our partial graph morphisms. The syntax is tailored over such 
rules, so that 𝜙𝐺 refers to a formula over a given graph 𝐺, and a one step ∃(𝑓,𝜙𝐻 ) is indexed over a mono 𝑓 ∶ 𝐺 → 𝐻 , roughly 
representing the partial morphism induced by a rule. Identity and preservation/deletion of elements seem to be left implicit, and the 
exploration of the connection with counterpart-based QLTL is among our future endeavours.

6.2. Future work

We identify a variety of possible expansions for our work.

Second-order. Our theoretical presentation and formalisation work focuses on the first-order aspects of QLTL. The semantics in 
[13,14] allows also for the quantification over sets of elements. This is impractical in Agda due to the typical formalisation of 
subsets as predicates, which would be cumbersome to present in concrete examples, e.g. when expressing universal quantification 
and extensional equality over subsets of elements. A possible extension could be to investigate practical encodings and possible 
automation techniques to introduce second-order quantification for counterpart-based temporal logics.

CTL and other logics. The quantified temporal logics presented here focus on providing a restricted yet sufficiently powerful set of 
operators and structures. These logics could be extended to more expressive constructs and models, such as the case of CTL [7], by 
considering branching models and building more complex temporal structures on the notion of category. We believe that working 
along these lines would be a straightforward task, which might however cause a combinatorial explosion in the case of possible 
temporal operators required to obtained a positive normal form of the logic.

Automation and solvers. We highlighted how the proofs required to validate temporal formulae need to be provided manually by the 
user. Considerable amount of effort has been spent in interfacing proof assistants with external solvers and checkers to both reuse 
existing work and algorithms and to provide more efficient alternatives to the automation given by proof assistants. The traditional 
way of employing proof automation is through the use of internal and external solvers: the first technique uses the reflection capabilities 
of Agda to allow a (verified) solver and proof-searching procedure to be written in Agda itself, in the spirit of [46,45,59]. The second 
mechanism consists in writing bindings to external programs, such as external model checkers or SMT and SAT solvers, so that proving 
the formula or providing a counterexample is offloaded to a more efficient and specialised program. A possible extension of this work 
would be the implementation of either of these mechanisms to the setting of counterpart semantics.

Category theory. The category theoretical notions formalised in our work constitute a small part of the mechanisation, with categories 
and relational presheaves being mainly used as data instead of proper structures on which theorems can be stated and shown. Recall 
that the perspective given by categorical logic is to present the notion of syntax in terms of indexed categories and models as 
morphisms between them: a future expansion of this work could be to also formalise our notions of models and assignments in terms 
of morphisms between suitable indexed categories [26].
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Finite traces. A current trend in artificial intelligence is the study of temporal formulas over finite traces [60], due to applications in 
planning and reinforcement learning. Our models seem to be well-suited to tackle such a development, since each finite trace can be 
thought of as an infinite one terminating with a cycle in an empty graph, thus inheriting all the issues we highlighted about positive 
normal forms for our logic.
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Appendix A. Signatures and algebras

We describe how we captured in Agda the notion of signature, algebra, and term. To give the definition of signature of an algebra, 
we first package up the signature of a function, where  indicates a generic set of sorts:

module SortedAlgebra {𝓁 } where 

record FunctionSignature ( : Set 𝓁) : Set 𝓁 where 
constructor _↦_
field 

{arity} : ℕ
𝜏* : Vec  arity
𝜏 :  

An algebra signature gives a set of sorts  , a set of function symbols  , and a function sign that associates a function signature 
to each symbol in  :

record Signature : Set (suc𝓁 𝓁) where 
field 
 : Set 𝓁 
 : Set 𝓁 
sign :  → FunctionSignature 

args = 𝜏* ◦ sign
ret = 𝜏 ◦ sign

An algebra for a signature Σ amounts to providing a function S from symbols to sets and a function F from function symbols to 
actual functions with type given by the signature:

record Σ-Algebra (Σ : Signature) : Set (suc𝓁 𝓁) where 
field 
 :  → Set 𝓁 

argType :  → Set 𝓁 
argType f = mapT S (args f) 

retType :  → Set 𝓁 
retType f = S (ret f) 

field 
F : ∀ (f :  ) → argType f → retType f 
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Notice that args only gives us a Vec of symbols with type  . To consider the argument type of a concrete function given by the 
algebra, we need to apply the action S on each symbol of the signature, and then consider the cartesian product of the concrete sets 
obtained.

This is exactly the use of mapT, and we refer to lemmas and properties of types obtained this way as the module VecT. The unit 
type ⊤ and its single element * is used in the case of the empty vector, and in the inductive case we combine the set f x given by the 
function using the cartesian product ×

mapT : (A → Set 𝓁) → Vec A n → Set 𝓁 
mapT f [] = ⊤
mapT f (x ∶∶ v) = f x × mapT f v 

Given some (possibly heterogeneous) relation R, we can relate two Vecs obtained with mapT if they are point-wise related with R

zip : ∀ {v : Vec A n } {f g : A → Set 𝓁 ′ } 
→ (∀ {x } → f x → g x → Set 𝓁) 
→ mapT f v → mapT g v → Set 𝓁 

zip {v = [] } R * * = ⊤
zip {v = _ ∶∶ _} R (x , xs) (y , ys) = R x y × zip R xs ys 

We can define the type Σ-Rel of relational homomorphisms between algebras given in Definition 3.13. To specify the homomor

phism property 𝜌-homo, we use zip to relate point-wise the function arguments given by the two algebras

record Σ-Rel {Σ } (A : Σ-Algebra Σ) (B : Σ-Algebra Σ) : Set (suc𝓁 𝓁) where 
open Signature Σ 
private 

module A = Σ-Algebra A 
module B = Σ-Algebra B 

field 
𝜌 : ∀ {𝜏 } → REL (A.S 𝜏) (B.S 𝜏) 𝓁 
𝜌-homo : 
∀ (f :  ) 
→ {as : A.argType f } 
→ {bs : B.argType f } 
→ zip 𝜌 as bs 
→ 𝜌 (A.F f as) (B.F f bs) 

A.1. Terms

Terms on a given signature are well-typed with respect to the algebra and use a well-scoped representation, with variables being 
indices in a context

module Terms {𝓁 } (Σ : Signature {𝓁 }) where 

We define a context simply as a Vec of sort symbols  with a known length 

Ctx : ℕ → Set 𝓁 
Ctx = Vec 

The type of terms-in-context _⊢_⟨_⟩ is given inductively and parameterised with both an underlying context Γ and with the type 
of the term being defined. Variables are implemented as de Bruijn indices, where a variable term contains an index pointing to its 
type in the context. In the var case, the type of the entire term is given using vector lookup to retrieve the type provided by the 
context. In the case of functions fun, the type of the term corresponds with the return type given by the function symbol. The use 
of sized types and the type Size is necessary in Agda to ensure that recursion on terms is terminating, but it is not essential to the 
formalisation of our temporal logics 

data _⊢_⟨_⟩ {n } Γ :  → Size → Set 𝓁 where 
var : (i : Fin n) 
→ Γ ⊢ Vec.lookup Γ i ⟨ ∞ ⟩
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fun : ∀ {s } 
→ (f :  ) 
→ mapT (Γ ⊢_⟨ s ⟩) (args f) 
→ Γ ⊢ ret f ⟨ ↑ s ⟩

A substitution from a context Γ to a context Δ amounts to being able to derive a new term t : Δ ⊢ 𝜏 for each sort 𝜏 ∈ Γ

Subst : ∀ {n m } → Ctx n → Ctx m → Set 𝓁 
Subst Γ Δ = ∀ i → Δ ⊢ Vec.lookup Γ i ⟨ ∞ ⟩

Substitutions can be applied to terms, and this consists in reframing a term into a different context:

sub : ∀ {n m } {Γ : Ctx n } {Δ : Ctx m } 
→ Subst Γ Δ 
→ (∀ {s A } → Γ ⊢ A ⟨ s ⟩ → Δ ⊢ A ⟨ s ⟩) 

sub 𝜎 (var x) = 𝜎 x 
sub 𝜎 (fun f x) = fun f (map (sub 𝜎) x) 

The identity substitution is given by replacing each variable with a term consisting of the same variable, and substitutions can be 
suitably composed:

id : ∀ {n } {Γ : Ctx n } → Subst Γ Γ 
id i = var i 

_◦_ : ∀ {n m o } {A : Ctx n } {B : Ctx m } {C : Ctx o } 
→ Subst B C → Subst A B → Subst A C 

(f ◦ g) i = sub f (g i) 
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