
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming

journal homepage: www.elsevier.com/locate/jlamp

Counterpart-based Quantified Temporal Logics

Fabio Gadducci a,1, Andrea Laretto b, ,∗, Davide Trotta a,1

a Department of Computer Science, University of Pisa, Pisa, Italy
b Department of Software Science, Tallinn University of Technology, Tallinn, Estonia

A B S T R A C T

The aim of this work is to present counterpart-based quantified temporal logics from several points of view. We start by introducing a set-based
semantics for a (first-order) linear temporal logic based on the counterpart paradigm, along with results on its positive normal form both in the case
of partial functions and of (possibly duplicating) relations. Then, a categorical semantics of the logic is introduced by means of relational presheaves.
Both the presentations of the logic via the positive normal form and its categorical semantics are formalised using the proof assistant Agda, and we
highlight the crucial aspects of our implementation and the practical use of (quantified) temporal logics in a constructive proof assistant.

Contents

1. Introduction . 2

1.1. Quantified temporal logics . 2

1.2. Counterpart semantics . 3

1.3. Contributions . 3

1.4. Comparison with previous works . 3

2. Quantified Temporal Logics . 4

2.1. Counterpart semantics . 4

2.1.1. Temporal structures . 5

2.2. Quantified linear temporal logic . 5

2.2.1. Syntax and semantics of QLTL . 5

2.2.2. Contexts and assignments . 6

2.2.3. Satisfiability . 6

2.3. Positive normal form for QLTL . 8

2.3.1. Semantics of PNF . 8

2.3.2. Negation of QLTL and PNF . 9

3. Categorical semantics . 11

3.1. Relational presheaves models . 11

3.2. Temporal structures . 12

3.3. Presheaf semantics for QLTL . 13

3.3.1. Classical attributes . 14

3.3.2. Semantics with classical attributes . 14

3.3.3. Semantics of QLTL . 15

3.4. Multi-sorted algebra models . 16

* Corresponding author.

E-mail addresses: fabio.gadducci@unipi.it (F. Gadducci), andrea.laretto@taltech.ee (A. Laretto), trottadavide92@gmail.com (D. Trotta).
1 Research partially supported by the University of Pisa project PRA_2022_99 ``FM4HD'' and by the Italian MUR project PRIN 20228KXFN2 ``STENDHAL''.

https://doi.org/10.1016/j.jlamp.2025.101082

Received 11 May 2023; Received in revised form 26 June 2025; Accepted 4 August 2025

J. Log. Algebraic Methods Program. 148 (2026) 101082

Available online 13 August 2025
2352-2208/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://orcid.org/0000-0002-6413-5794
mailto:fabio.gadducci@unipi.it
mailto:andrea.laretto@taltech.ee
mailto:trottadavide92@gmail.com
https://doi.org/10.1016/j.jlamp.2025.101082
https://doi.org/10.1016/j.jlamp.2025.101082
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2025.101082&domain=pdf

F. Gadducci, A. Laretto and D. Trotta

3.5. Algebraic counterpart -models . 17

3.6. Semantics of algebraic QLTL . 18

3.7. Examples . 19

3.8. Remarks on second-order extensions . 20

4. Agda formalisation . 22

4.1. Formalisation aspects . 22

4.2. Logics in a constructive proof assistant . 22

4.2.1. Automation . 23

4.2.2. Category theory . 23

5. Agda code . 23

5.1. Relational presheaves . 24

5.2. Counterpart models . 24

5.3. Algebraic counterpart -model . 25

5.4. Temporal structure . 26

5.5. From classical to categorical models . 27

5.6. Classical attributes . 28

5.7. Syntax and semantics of QLTL . 30

6. Conclusion . 31

6.1. Related work . 31

6.1.1. Comparison with graph computation formalisms . 32

6.2. Future work . 32

CRediT authorship contribution statement . 33

Declaration of competing interest . 33

Appendix A. Signatures and algebras . 33

A.1. Terms . 34

References . 35

1. Introduction

During the design of hardware and software for complex systems, increasingly more time and effort is spent on the verification
of the desired mechanisms rather than in their actual construction. Formal methods provide an effective framework to verify the
correctness of these computational devices and ensure that they satisfy a set of desired specifications. Among the many tools, temporal
logics have proven to be one of the most effective techniques for the verification of both large-scale and stand-alone programs, see
e.g. the standard textbook [1] and the examples and references therein.

After the foundational work by Pnueli [2], the research on temporal logics focused on both algorithmic procedures for the veri

fication of properties as well as on finding sufficiently expressive fragments of these logics suitable for the specification of complex
multi-component systems.

Several models for temporal logics have been developed, with the leading example being the notion of transition systems, also
known as Kripke frames: a set of states, each one representing a configuration of the system, and a relation among them, each one
identifying a possible state evolution. Often one is interested in enriching both states and transitions with more structure, for example
by taking states as algebras and transitions as algebra homomorphisms. A prominent use case of these models is the one exploiting
graph logics [3,4], where states are specialised as graphs and transitions are families of (partial) graph morphisms. These logics may
combine temporal and spatial reasoning and allow to express the possible transformations of the topology of a graph over time,
see [5,6] for two early entries.

1.1. Quantified temporal logics

In classical temporal logics, such as LTL and CTL [7], the states of the model are taken as atomic. Instead, one of the defining
characteristics of graph logics is that they permit reasoning and expressing properties on the individual elements of the graph or
the algebraic structure being considered. Despite their undecidability [8,9], quantified temporal logics have been advocated in this
setting due to their expressiveness and the possibility for quantification to range over the elements in the states of the model.

Unfortunately, the semantical models of these logics are not clearly cut. Consider for example a simple model with two states
𝑠0, 𝑠1, two transitions 𝑠0 → 𝑠1 and 𝑠1 → 𝑠0, and an item 𝑖 that appears only in 𝑠0. Is the item 𝑖 being destroyed and recreated again
and again, or is it just an identifier being reused multiple times? This issue is denoted in the literature as the trans-world identity
problem [10,11]. The typical solution provided by the ``Kripke semantics'' consists in fixing a single set of universal items, which
gives identity to each individual appearing in the states of the model. Since each item 𝑖 belongs to this universal domain, it is exactly
the same individual after every temporal evolution in 𝑠1. However, this means that transitions basically behave as injections among
the items of the states, and this view is conceptually difficult to reconcile with the simple model sketched above where we describe
the destruction and recreation of a given item. Similarly, the possibility of cloning items is then ruled out, since it is impossible to
accomodate it with the idea of evolution steps as injections.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

2

F. Gadducci, A. Laretto and D. Trotta

1.2. Counterpart semantics

A solution to this problem was proposed by Lewis [12] with the counterpart paradigm: instead of a universal set of items, each state
identifies a local set of elements, and (possibly partial) morphisms connect them by carrying elements from one state to the other.
This allows to speak formally about entities that are destroyed, duplicated, (re)created, or merged, and to adequately deal with the
identity problem of individuals between worlds.

In [13], the idea of a counterpart-based semantics is used to introduce a set-theoretical presentation of a 𝜇-calculus with second

order quantifiers. This modal logic provides a sufficiently expressive and general presentation that enriches states with algebras and
transitions with partial homomorphisms, thus also subsuming the case of graph logics.

These semantics and models are generalised to a categorical setting in [14] by means of relational presheaves, building on the
ideas presented in [15,16]. The models are represented with categories and (families of) relational presheaves, which are used to give
a categorical representation for the states-as-algebras approach with partial homomorphisms. The notion of temporal advancement
of a system is captured by equipping categories with a set of one-step arrows of the model called temporal structure, and the categorical
framework is used to introduce a second-order linear temporal logic QLTL.

1.3. Contributions

A first contribution of this work is to provide a comprehensive presentation and introduction to the setting of counterpart models
and quantified temporal logics, as they are presented in [13,14].

Classical semantics and positive normal form. We start in Section 2 by introducing the semantics of our main temporal logic QLTL with
a standard set-based perspective, with satisfiability being defined inductively as a logical predicate. Unlike [13,14], where the models
and semantics are defined using partial functions, we generalise our case to the setting of relations, thus modelling the duplication
of elements and allowing for an element to have multiple counterparts in the next world. We conclude the chapter by giving some
results and equivalences on the positive normal form presentation of this logic, considering both the cases where the models use
partial morphisms and relations and highlighting their differences. Positive normal forms (i.e., where negation is defined only for
atomic formulae) are a standard tool of temporal logics, since they simplify its theoretical treatment as well as its model checking
algorithms [17,18]. The use of relations instead of (possibly partial) functions weakens the expressiveness of such normal forms, and
requires the introduction of additional operators for the logics. However, the duplication of individuals is a central feature of graph
transformation formalisms such as Sequi-Pushout [19], and thus worthy of investigation. Both the classical semantics and the positive
normal form results have been formalised using the dependently typed proof assistant Agda [20].

Categorical semantics. In Section 3 we introduce the categorical semantics for QLTL. We first motivate the use of the categorical
formalism and of relational presheaves with a standard non-algebraic case. We then present the semantics of the logic using the
notion of classical attribute [15,16], following the intuition that the meaning of a formula is identified with the set of individuals
satisfying it in each world. Finally, we discuss the mechanisms required to extend the categorical presentation and its semantics to
the general case of states as algebras and relational homomorphisms between them.

Agda formalisation. An additional contribution presented in this work is a computer-assisted formalisation in Agda of the categorical
notions and constructions just presented. We give an overview of the general aspects of the formalisation in Section 4, and highlight
the key definitions of the work in Section 5. Providing a mechanised presentation of these constructions has several advantages:

• Formalising the paper further solidifies the correctness and coherence of the mathematical ideas presented in the work, as they can
be independently inspected and verified concretely by means of a software tool.

• Given the constructive interpretation of the formalisation, by following the work we essentially codified a procedure to convert
classical set-theoretical notions into categorical ones, providing concrete witnesses of how the constructions work for any given
setting.

• A formal presentation of modal and temporal logics effectively provides a playground in which the mechanisms and the validity of
these logics can be expressed, tested, and experimented with.

To the best of our knowledge, few and sparse formalizations of temporal logics have been provided with a proof assistant, and a
systematic study of formally-presented temporal logics and their mechanisation aspects is absent in the literature. This work consti

tutes a step towards the machine-verified use of temporal logics by embedding in an interactive proof assistant a relatively complex
quantified extension of LTL that can reason on the individual elements of states. This formalisation work employs the library agda
categories [21], a proof-relevant category theory library for Agda, as a practical foundation to formalise the results in [14] on
temporal logics and their models. Aside from the theoretical results and constructions provided by the library, our work witnesses
the usefulness and flexibility of agda-categories from the point of view of practical applications.

1.4. Comparison with previous works

Following the advice of the second reviewer, we highlighted in Section 1.4 the comparison between the material present in this
work and the previous ones on the topic of counterpart-based logics, where the main innovations are indeed, as mentioned, the

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

3

https://archive.softwareheritage.org/swh:1:dir:1c78836cd2fadaaa2442f6f423a6620b67fbede5;origin=https://github.com/agda/agda-categories;visit=swh:1:snp:7f400967c84d441d29085226f4dcbdc1736b3132;anchor=swh:1:rev:cce07616535ea228978b08adc6dd53c275491464
https://archive.softwareheritage.org/swh:1:dir:1c78836cd2fadaaa2442f6f423a6620b67fbede5;origin=https://github.com/agda/agda-categories;visit=swh:1:snp:7f400967c84d441d29085226f4dcbdc1736b3132;anchor=swh:1:rev:cce07616535ea228978b08adc6dd53c275491464
https://archive.softwareheritage.org/swh:1:dir:1c78836cd2fadaaa2442f6f423a6620b67fbede5;origin=https://github.com/agda/agda-categories;visit=swh:1:snp:7f400967c84d441d29085226f4dcbdc1736b3132;anchor=swh:1:rev:cce07616535ea228978b08adc6dd53c275491464

F. Gadducci, A. Laretto and D. Trotta

formalisation work of the categorical semantics in Agda, the generalisation of the categorical semantics to include the relational one,
and a comprehensive overview and comparison of the different semantic perspectives on this logic via a more consistent and unified
presentation.

The paper draws from [14] and [22]. More precisely, [14] introduces a categorical presentation of counterpart semantics based on
partial functions. In this work, we drop the second-order aspects of the logic discussed there, and focus on extending the categorical
semantics from morphisms to relations. These results are in Section 2 and Section 3. The work in [22] presents the Agda implemen

tation of the set-theoretical semantics for a logic based on the two-sorted signature of graphs and graph morphisms. In this work we
generalize the formalization in Section 4 and Section 5 to multi-sorted ones on arbitrary signatures, and by adding a formalisation of
the categorical semantics using the agda-categories library.

2. Quantified Temporal Logics

In this chapter we introduce the counterpart paradigm and define the class of models later used for our logic. We then provide the
syntax and semantics of our main first-order linear temporal logic QLTL by adopting a standard set-based presentation, and conclude
by introducing a positive normal form of this logic along with equiexpressivity results. Both the theoretical constructions and the
positive normal form results have been defined and checked in Agda, and we provide pointers to the formalisation files in each
definition. The formalisation of the set-based QTL semantics and of the positive normal form results is available at [23].

2.1. Counterpart semantics

We start by recalling the notion of Kripke frame as widely known in modal logic [11,24] and extend it for the case of counterpart
semantics.

Definition 2.1. A Kripke frame is a 3-tuple ⟨𝑊 ,𝑈,𝑅,𝐷⟩ defined as

• 𝑊 is a non-empty set;

• 𝑈 is a set of elements, called global domain;

• 𝑅 is a binary relation on 𝑊 ;

• 𝐷 is a function assigning to any 𝜔 ∈𝑊 a set 𝐷(𝜔) ⊆𝑈 called domain.

The set 𝑊 is interpreted as the set of all possible worlds, whereas the binary relation 𝑅 represents an accessibility relation among
worlds, connecting them whenever a transition from a world to another is possible. A domain 𝐷(𝜔) identifies the individuals that
exist locally in the world 𝜔: individuals in different worlds are identified together by the fact that they all belong to 𝑈 .

A crucial development in the presentation of Kripke models was introduced by Lewis [12] with the notion of counterpart relations
and the subsequent introduction of counterpart theory. The idea is to tackle the trans-world identity problem by rejecting strict
identity of individuals belonging to a global domain, and instead employing the notion of counterpart relation between worlds to
connect the individuals that are preserved from one world to the next one. Inspired by Lewis’s approach, a more general notion of
counterpart model is considered in [13], where worlds are related through multiple accessibility relations, and each instance of the
accessibility relation is equipped with a counterpart relation.

Definition 2.2. A counterpart model is a 3-tuple ⟨𝑊 ,𝐷,⟩ such that

• 𝑊 and 𝐷 are defined as for Kripke frames;

•  is a function assigning to every 2-tuple ⟨𝜔,𝜔′⟩ a set of relations ⟨𝜔,𝜔′⟩ ∈𝒫(𝒫(𝐷(𝜔) ×𝐷(𝜔′))), where 𝒫 denotes the powerset,
and every element 𝐶 ∈ ⟨𝜔,𝜔′⟩ is a relation 𝐶 ⊆𝐷(𝜔) ×𝐷(𝜔′). We call these partial functions atomic (or one-step) counterpart
relations.

Given two worlds 𝜔 and 𝜔′, the set ⟨𝜔,𝜔′⟩ is the collection of atomic transitions from 𝜔 to 𝜔′, defining the possible ways we
can access worlds with a one-step transition in the system. When the set ⟨𝜔,𝜔′⟩ is empty, there are no atomic transitions from 𝜔 to
𝜔′.

Each atomic counterpart relation 𝐶 ∈ ⟨𝜔,𝜔′⟩ connects the individuals between two given worlds 𝜔 and 𝜔′, intuitively identifying
them as the same element after a single evolution of the model. In particular, if we consider two elements 𝑠 ∈𝐷(𝜔) and 𝑠′ ∈𝐷(𝜔′)
and a relation 𝐶 ∈ ⟨𝜔,𝜔′⟩, if ⟨𝑠, 𝑠′⟩ ∈ 𝐶 then 𝑠′ represents a future development of 𝑠 via 𝐶 .

The use of relations allows us to model the notion of removal of an element, which is represented by having no counterpart in
the next state. For example, if there is no element 𝑠′ ∈𝐷(𝜔′) such that ⟨𝑠, 𝑠′⟩ ∈ 𝐶 , then we can conclude that the element 𝑠 has been
deallocated by 𝐶 . Similarly, the duplication of an element can be represented by connecting it with two instances of the counterpart
relation, for example by having two elements 𝑠′1, 𝑠

′
2 ∈𝐷(𝜔′) such that ⟨𝑠, 𝑠′1⟩ ∈ 𝐶 and ⟨𝑠, 𝑠′2⟩ ∈ 𝐶 .

Now we formally introduce counterpart relations, fixing notation for the rest of the work. We indicate composition of relations
in diagrammatic order: as an example, given 𝐶1 ⊆ 𝐴 × 𝐵 and 𝐶2 ⊆ 𝐵 × 𝐶 , the composite relation is denoted with 𝐶1;𝐶2 = {(𝑎, 𝑐) ∣
∃𝑏. ⟨𝑎, 𝑏⟩ ∈ 𝐶1 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝐶2} ⊆𝐴 ×𝐶 .

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

4

https://archive.softwareheritage.org/swh:1:rev:ef96c8b657b9b9cc261dd5b01c6237701a75085e;origin=https://github.com/agda/agda-categories;visit=swh:1:snp:7f400967c84d441d29085226f4dcbdc1736b3132

F. Gadducci, A. Laretto and D. Trotta

Fig. 1. An example of counterpart model. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Definition 2.3. A relation 𝐶 ⊆𝐷(𝜔) ×𝐷(𝜔′) is a counterpart relation if one of the following three cases holds

• 𝐶 is the identity relation;

• 𝐶 ∈ ⟨𝜔,𝜔′⟩ is a one-step counterpart relation given by the model;

• 𝐶 is the composite relation of a sequence 𝐶0;𝐶1;⋯ ;𝐶𝑛 for 𝐶𝑖 ∈ ⟨𝜔𝑖,𝜔𝑖+1⟩.

We remark here that the resulting composition 𝐶1;𝐶2 ⊆ 𝐷(𝜔1) ×𝐷(𝜔3) of two atomic counterpart relations 𝐶1 ∈ ⟨𝜔1,𝜔2⟩ and
𝐶2 ∈ ⟨𝜔2,𝜔3⟩ might not necessarily be an atomic counterpart relation, and the model only identifies atomic transitions. This intu

itively represents the fact that transitioning through an intermediate state and transitioning directly between worlds can be regarded
as two different possibilities, and the direct transition is not necessarily the composition of the two counterpart relations. Moreover,
the former requires one evolution step, the latter two.

Definition 2.4. We say that an element 𝑠′ ∈ 𝐷(𝜔′) is the counterpart of 𝑠 ∈ 𝐷(𝜔) through a counterpart relation 𝐶 whenever
⟨𝑠, 𝑠′⟩ ∈ 𝐶 .

Finally, observe that when each set ⟨𝜔,𝜔′⟩ has at most one element, the notion of counterpart model presented in Definition 2.2

becomes a particular case of Lewis’s original notion of counterpart frame.

Example 2.1 (Counterpart model). In Fig. 1 we provide a graphical presentation of a counterpart model defined by the set of worlds
𝑊 ∶= {𝜔1,𝜔2,𝜔3}, where for example 𝐷(𝜔0) = {𝑎0, 𝑏0, 𝑐0}, 𝐷(𝜔1) = {𝑎1, 𝑏1, 𝑐1, 𝑑1}, and 𝐷(𝜔2) = {𝑎2, 𝑏2, 𝑐2, 𝑑2}. The worlds are
connected by the following relations: ⟨𝜔0,𝜔1⟩ ∶= {𝐶0} is a single counterpart relation 𝐶0 between 𝜔0 and 𝜔1, ⟨𝜔1,𝜔2⟩ ∶= {𝐶1,𝐶2}
has two possible counterpart relations between 𝜔1,𝜔2, and ⟨𝜔2,𝜔2⟩ = {𝐶3} is a looping counterpart relation. We use blue dashed
and green dotted lines to distinguish 𝐶1 and 𝐶2, respectively.

2.1.1. Temporal structures

As is the case of LTL, where we can identify traces connecting linearly evolving states (see e.g. [1, Definition 5.7]), we can consider
linear sequences of counterpart relations providing a list of sequentially accessible worlds.

Definition 2.5. A trace 𝜎 on a counterpart model ⟨𝑊 ,𝐷,⟩ is an infinite sequence of one-step counterpart relations (𝐶0,𝐶1,…)
such that 𝐶𝑖 ∈ ⟨𝜔𝑖,𝜔𝑖+1⟩ for any 𝑖 ≥ 0.

Given a trace 𝜎 = (𝐶0,𝐶1,…), we use 𝑖 as subscript 𝜎𝑖 ∶= (𝐶𝑖,𝐶𝑖+1,…) to denote the trace obtained by excluding the first 𝑖
counterpart relations. We use 𝜔0,𝜔1,… and 𝜔𝑖 to indicate the worlds provided by the trace 𝜎 whenever it is clear from the context.

Since a trace 𝜎 = (𝐶0,𝐶1,…) provides a sequence of counterpart relations step-by-step connected through a world, we denote
with 𝐶≤𝑖 the composite relation 𝐶0;⋯ ;𝐶𝑖−1 from the first world 𝜔0 up to the 𝑖-th world 𝜔𝑖 through the relations given by the trace
𝜎. In the edge case 𝑖 = 0, the relation 𝐶≤0 is defined to be the identity relation on 𝜔0.

2.2. Quantified linear temporal logic

In this section we present the syntax and semantics of our quantified linear temporal logic QLTL. We will assume a fixed counterpart
model ⟨𝑊 ,𝐷,⟩, with definitions referring to the data provided by the underlying model.

2.2.1. Syntax and semantics of QLTL
To have a simpler presentation, it is customary to exclude the elementary constructs that can be expressed in terms of other

operators, such as conjunction and universal quantification. Thus, we initially present QLTL with a minimal set of standard operators
and derive other ones with negation.

Definition 2.6 (QLTL). Let  be a set of variables with 𝑥, 𝑦 ∈  and  a set of (unary) predicates with 𝑃 ∈  . The set QLTL of QLTL
formulae is generated by the following rules

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

5

F. Gadducci, A. Laretto and D. Trotta

𝜓 ∶= 𝗍𝗋𝗎𝖾 ∣ 𝑥 = 𝑦 ∣ 𝑃 (𝑥)

𝜙 ∶= 𝜓 ∣ ¬𝜙 ∣ 𝜙1 ∨ 𝜙2 ∣ ∃𝑥.𝜙 ∣𝖮𝜙 ∣ 𝜙1𝖴𝜙2 ∣ 𝜙1𝖶𝜙2

The next operator 𝖮𝜙 expresses the fact that a certain property 𝜙 has to be true at the next state. The until operator 𝜙1𝖴𝜙2
indicates that the property 𝜙1 has to hold at least until the property 𝜙2 becomes true, which must hold at the present or future time.
Finally, the weak until operator 𝜙1𝖶𝜙2 is similar to the 𝜙1𝖴𝜙2 operator, but allows for counterparts to always exist while satisfying
𝜙1 without ever reaching a point where 𝜙2 holds.

We use the letter 𝜓 to indicate the case of elementary predicates and we refer to these formulae as atomic formulae. Given the
variables 𝑥, 𝑦 ∈  denoting two individuals, the formula 𝑥 = 𝑦 indicates that the two individuals coincide in the current world. Finally,
our logic is extended with unary predicate symbols 𝑃 (𝑥) that will be used in the running example in Fig. 2. The usual dual operators
can be syntactically expressed by taking 𝖿𝖺𝗅𝗌𝖾 ∶= ¬𝗍𝗋𝗎𝖾, 𝜙1 ∧ 𝜙2 ∶= ¬(¬𝜙1 ∨ ¬𝜙2), and ∀𝑥.𝜙 ∶= ¬∃𝑥.¬𝜙. Note that, differently from
classical LTL, the until and the weak until operators are not self-dual: this fact will be discussed and made explicit in Remark 2.4.

Example 2.2 (Deallocation). As we anticipated in Section 2.1, one of the main advantages of a counterpart semantics is the possibility
to reason about existence, deallocation, duplication and merging elements of a system. For example, we can capture a notion of
existence of an element at the current moment with the shorthand

present(𝑥) ∶= ∃𝑦.𝑥 = 𝑦

We combine this predicate with the next operator to talk about elements that are present in the current world and that will still be
present at the next step, for example with the formula

nextStepPreserved(𝑥) ∶= present(𝑥) ∧𝖮present(𝑥)

Similarly, we can refer to elements that are now present but that will be deallocated at the next step by considering

nextStepDeallocated(𝑥) ∶= present(𝑥) ∧ ¬𝖮present(𝑥)

2.2.2. Contexts and assignments

Since free variables referring to individuals can now appear inside formulae, we recall the usual presentation of context and
formulae-in-context as similarly defined in [13].

Definition 2.7 (Context). A context 𝛤 over a set of variables  is a finite subset of  . We use the notation 𝛤 ,𝑥 to indicate the
augmented context 𝛤 ∪ {𝑥}, with the empty context being indicated as ∅.

Definition 2.8 (Formulae-in-context). A formula-in-context is a formula 𝜙 along with an associated context 𝛤 that contains all the
free variables of the formula 𝜙 (and possibly more), and we indicate this decoration with [𝛤]𝜙.

We omit the bracketed context whenever it is unnecessary to specify it.
To properly present the notion of satisfiability of a formula-in-context with respect to a given counterpart model, we need to first

introduce the definition of assignment in a given world.

Definition 2.9 (Assignment). An assignment in the world 𝜔 ∈𝑊 for the context 𝛤 is a function 𝜇 ∶ 𝛤 →𝐷(𝜔). We use the notation
𝛤

𝜔
to indicate the set of assignments 𝜇 defined in 𝜔 for the context 𝛤 .

Moreover, we denote by 𝜇[𝑥 ↦ 𝑠] ∶ 𝛤 ,𝑥 → 𝐷(𝜔) the assignment obtained by extending the domain of 𝜇 with 𝑠 ∈ 𝐷(𝜔) at the
variable 𝑥 ∉ 𝛤 .

We now define the lifting of counterpart relations to assignments. The intuition is that we want to transfer all elements of an
assignment to the next world using the counterpart relation individual-by-individual.

Definition 2.10 (Counterpart relations on assignments). Given a counterpart relation 𝐶 ⊆ 𝐷(𝜔1) ×𝐷(𝜔2) and two assignments 𝜇1 ∶
𝛤 → 𝐷(𝜔1) and 𝜇2 ∶ 𝛤 → 𝐷(𝜔2) defined on the same context 𝛤 , we say that the assignments 𝜇1 and 𝜇2 are counterpart related
whenever ⟨𝜇1(𝑥), 𝜇2(𝑥)⟩ ∈ 𝐶 for all variables 𝑥 ∈ 𝛤 , and we indicate this simply with the notation ⟨𝜇1, 𝜇2⟩ ∈ 𝐶 .

2.2.3. Satisfiability

We now introduce the notion of satisfiability of a formula with respect to a given trace and assignment.

Definition 2.11 (QLTL satisfiability). Given a QLTL formula-in-context [𝛤]𝜙, a trace 𝜎 = (𝐶0,𝐶1,…), an interpretation 𝑃 (𝜔𝑖) ⊆𝐷(𝜔𝑖)
for all the predicates 𝑃 ∈  and the worlds in 𝜎, and an assignment 𝜇 ∶ 𝛤 →𝐷(𝜔0) for the first world of 𝜎, we inductively define the
satisfiability relation as follows

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

6

F. Gadducci, A. Laretto and D. Trotta

Fig. 2. An example with four worlds 𝜔0,𝜔1,𝜔2,𝜔3 .

• 𝜎,𝜇 ⊨ 𝗍𝗋𝗎𝖾;
• 𝜎,𝜇 ⊨ 𝑥 = 𝑦 if 𝜇(𝑥) = 𝜇(𝑦);
• 𝜎,𝜇 ⊨ 𝑃 (𝑥) if 𝜇(𝑥) ∈ 𝑃 (𝜔0);
• 𝜎,𝜇 ⊨ ¬𝜙 if 𝜎,𝜇 ⊭ 𝜙;

• 𝜎,𝜇 ⊨ 𝜙1 ∨ 𝜙2 if 𝜎,𝜇 ⊨ 𝜙1 or 𝜎,𝜇 ⊨ 𝜙2;

• 𝜎,𝜇 ⊨ ∃𝑥.𝜙 if there is an individual 𝑠 ∈𝐷(𝜔0) such that 𝜎,𝜇[𝑥↦ 𝑠] ⊨ 𝜙;

• 𝜎,𝜇 ⊨𝖮𝜙 if there is 𝜇1 ∈𝛤
𝜔1

such that ⟨𝜇,𝜇1⟩ ∈ 𝐶0 and 𝜎1, 𝜇1 ⊨ 𝜙;

• 𝜎,𝜇 ⊨ 𝜙1𝖴𝜙2 if there is 𝑛̄ ≥ 0 such that

1. for any 𝑖 < 𝑛̄, there is 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 and 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙1;

2. there is 𝜇𝑛̄ ∈𝛤
𝜔𝑛̄

such that ⟨𝜇,𝜇𝑛̄⟩ ∈ 𝐶≤𝑛̄ and 𝜎𝑛̄, 𝜇𝑛̄ ⊨ 𝜙2;

• 𝜎,𝜇 ⊨ 𝜙1𝖶𝜙2 if one of the following holds

– the same conditions for 𝜙1𝖴𝜙2 apply;

– for any 𝑖 there is 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 and 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙1.

Example 2.3. We present a running example in Fig. 2 to better describe the expressiveness of QLTL and to illustrate the mechanisms of
working in a counterpart-based semantics. We consider a fixed trace 𝜎 = (𝐶0,𝐶1,𝐶2,𝐶3,𝐶3,…) and we indicate with B(𝑥) and R(𝑥) the
unary predicates that hold for any individual coloured in blue and red, respectively. As a concrete scenario for the temporal operators
𝖮𝜙 and 𝜙1𝖴𝜙2 we presented in Definition 2.11, we have for example that 𝜎,{𝑥 ↦ 𝑎0} ⊨ 𝖮(R(𝑥)) and 𝜎,{𝑥 ↦ 𝑐0} ⊨ B(𝑥)𝖴R(𝑥).
Also, we have that 𝑎0 is preserved at the next step with 𝜎,{𝑥 ↦ 𝑎0} ⊨ nextStepPreserved(𝑥), whereas 𝑐1 is removed and indeed
𝜎1,{𝑥↦ 𝑐1} ⊨ nextStepDeallocated(𝑥).

Remark 2.1 (Eventually and always operators). As in LTL, we can define the additional eventually ◊𝜙 and always □𝜙 operators as
◊𝜙 ∶= 𝗍𝗋𝗎𝖾𝖴𝜙 and □𝜙 ∶= 𝜙𝖶𝖿𝖺𝗅𝗌𝖾, respectively. Their semantics can be presented directly as

• 𝜎,𝜇 ⊨◊𝜙 if there is 𝑖 ≥ 0 and 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 and 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙;

• 𝜎,𝜇 ⊨□𝜙 if for any 𝑖 ≥ 0 there is 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 and 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙.

In our example in Fig. 2, we have for instance that 𝜎,{𝑥↦ 𝑐0} ⊨◊R(𝑥) but 𝜎,{𝑥↦ 𝑑0}⊭◊R(𝑥) and similarly 𝜎2,{𝑥↦ 𝑐2}⊭◊R(𝑥).
Moreover, we have that 𝜎,{𝑥 ↦ 𝑐0} ⊨ ◊□R(𝑥) and 𝜎2,{𝑥 ↦ 𝑐2} ⊨ □B(𝑥). However, 𝜎,{𝑥 ↦ 𝑑0} ⊭ □B(𝑥) since a counterpart is
always required to exist.

Example 2.4 (Merging). In QLTL we can express the merging of two individuals at some point in the future with the predicate

willMerge(𝑥, 𝑦) ∶= 𝑥 ≠ 𝑦 ∧◊(𝑥 = 𝑦).

In our example in Fig. 2, we have that in the first world 𝜎,{𝑥 ↦ 𝑎0, 𝑦 ↦ 𝑐0} ⊨ willMerge(𝑥, 𝑦), but clearly 𝜎,{𝑥 ↦ 𝑐0, 𝑦 ↦ 𝑑0} ⊭

willMerge(𝑥, 𝑦).

Remark 2.2 (Quantifier elision for unbound variables). A relevant difference with standard quantified logics is that in QLTL we cannot
elide quantifications where the introduced variable does not appear in the sub-formula. Assuming ≡ to denote semantical equivalence
and taking any 𝜙 with 𝑥 ∉ fv(𝜙), we have that in general ∃𝑥.𝜙 ≢ 𝜙 and, similarly, ∀𝑥.𝜙 ≢ 𝜙. More precisely, the above equivalences
hold if 𝜙 contains no temporal operator and the current world 𝐷(𝜔) is not empty. A similar phenomenon arises in intuitionistic and
constructive logic: given a type 𝜏 and a formula 𝜙 where 𝑥 does not appear free, the formula ∃(𝑥 ∶ 𝜏).𝜙 is not equivalent to 𝜙 since
the existential quantification implicitly carries the information that the type 𝜏 is inhabited.

We describe here a concrete example: consider a world 𝜔 with a single individual 𝐷(𝜔) = {𝑠} and a looping counterpart relation
⟨𝜔,𝜔⟩ = {𝐶}, where 𝐶 = ∅ is the empty counterpart relation. The trace is given by 𝜎 = (𝐶,𝐶,…). By taking the empty assignment
{ } and the closed formula 𝜙 =𝖮(𝗍𝗋𝗎𝖾), one can easily check that 𝜎,{ } ⊨𝖮(𝗍𝗋𝗎𝖾), but 𝜎,{ }⊭ ∃𝑥.𝖮(𝗍𝗋𝗎𝖾). The reason is that, once an
assignment is extended with some element, stepping from one world to the next one requires every individual of the assignment to
be preserved and have a counterpart in the next world.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

7

F. Gadducci, A. Laretto and D. Trotta

Alternatively, we could have restricted assignments in the semantics so that counterparts are required only for the free variables
occurring in the formula. For example, the definition for the next 𝖮𝜙 operator would become

• 𝜎,𝜇 ⊨𝖮𝜙 if there is 𝜇1 ∈
fv(𝜙)
𝜔1

such that ⟨𝜇∣fv(𝜙), 𝜇1⟩ ∈ 𝐶0 and 𝜎1, 𝜇1 ⊨ 𝜙

For ease of presentation both in this work and with respect to our Agda implementation, we consider the case where all elements in
the context must have a counterpart. Moreover, this alternative definition would not naturally align with the categorical semantics
presented in Section 3: the intuition is that, for any given world 𝜔 and counterpart relation 𝑅 from it, the cartesian product of
presheaves in that world has a counterpart through 𝑅 if and only if every element of the product has a counterpart through 𝑅.

Remark 2.3 (No self-duality for next). We observe that, contrary to classical LTL, the next 𝖮𝜙 operator in our counterpart-style
semantics in general is not self-dual with respect to negation, i.e. ¬𝖮𝜙 ≢ 𝖮¬𝜙. As we will see in Section 2.3, to provide a positive
normal form for QLTL it is necessary to introduce a separate next operator that allows us to adequately capture the notion of negation.
This absence of duality is again due to the fact that we use relations in our counterpart model, which forces us to talk about the
existence as well as the possible absence of a counterpart.

Consider the counterpart model in Fig. 2: it is easy to see that 𝜎1,{𝑥 ↦ 𝑐1} ⊨ ¬𝖮(B(𝑥)), but 𝜎1,{𝑥 ↦ 𝑐1} ⊭ 𝖮(¬B(𝑥)) since no
counterpart for 𝑐1 exists after one step. The idea is that, since the next operator requires a counterpart at the next step to exist, its
negation must express that either all counterparts at the next step do not satisfy the formula or that a counterpart does not exist
altogether.

Remark 2.4 (Until and weak until are incompatible). In standard LTL, the until 𝜙1𝖴𝜙2 and weak until 𝜙1𝖶𝜙2 operators have the same
expressivity, and can be defined in terms of each other by the equivalences

𝜙1𝖴𝜙2 ≡LTL ¬(¬𝜙2𝖶(¬𝜙1 ∧ ¬𝜙2))
𝜙1𝖶𝜙2 ≡LTL ¬(¬𝜙2𝖴(¬𝜙1 ∧ ¬𝜙2))

However, this is not the case in QLTL. Similarly, in QLTL we have that □𝜙 ≢ ¬◊¬𝜙, as for the semantics provided in Remark 2.1.
This characteristic of QLTL is again due to the fact we are working in the setting of (possibly deallocating) relations, and we will
formally explain and present an intuition for this when we introduce the semantics of positive normal forms for QLTL in Section 2.3.
The usual equivalences for LTL can be obtained by restricting to models whose counterpart relations are total functions: this allows
us to consider a unique trace of always-defined counterpart individuals, which in turn brings our models back to a notion similar to
LTL traces.

2.3. Positive normal form for QLTL

Positive normal forms are a standard presentation of temporal logics and can be used to simplify constructions and algorithms on
both the theoretical and implementation side [18,17]. This presentation is crucial to define the semantics of a logic based on fixed
points, such as in [13], while still preserving the full expressiveness of the original presentation. As we will remark in Section 4,
explicitly providing a negation-free semantics for our logic also ensures that it can be more easily manipulated in a proof assistant
where definitions and proofs are constructive. In this section we present an explicit semantics for the positive normal form of QLTL,
which we denote as PNF.

2.3.1. Semantics of PNF
As observed in Remark 2.3 and Remark 2.4, to present the positive normal form we need additional operators to adequately

capture the negation of each of the temporal operators previously described. Thus, we introduce a new flavour of the next operator,
called next-forall 𝖠𝜙. Similarly, we introduce a negative dual for the until 𝜙1𝖴𝜙2 and weak until 𝜙1𝖶𝜙2 operators, which we indicate
as the then 𝜙1𝖳𝜙2 and until-forall 𝜙1𝖥𝜙2 operators, respectively.

Definition 2.12 (QLTL in PNF). Let  be a set of variables with 𝑥, 𝑦 ∈  and  be a set of (unary) predicates with 𝑃 ∈  . The set
PNF of formulae of QLTL in positive normal form is generated by the following rules

𝜓 ∶= 𝗍𝗋𝗎𝖾 ∣ 𝑥 = 𝑦 ∣ 𝑃 (𝑥)

𝜙 ∶= 𝜓 ∣ ¬𝜓 ∣ 𝜙1 ∨ 𝜙2 ∣ 𝜙1 ∧ 𝜙2 ∣ ∃𝑥.𝜙 ∣ ∀𝑥.𝜙 ∣𝖮𝜙 ∣ 𝖠𝜙 ∣ 𝜙1𝖴𝜙2 ∣ 𝜙1𝖥𝜙2 ∣ 𝜙1𝖶𝜙2 ∣ 𝜙1𝖳𝜙2

We now provide a satisfiability relation for PNF formulae by specifying the semantics for the additional operators, omitting the
ones that do not change.

Definition 2.13 (QLTL in PNF satisfiability). We inductively define the satisfiability relation for the additional constructs as follows

• 𝜎,𝜇 ⊨ ¬𝜓 if 𝜎,𝜇 ⊭ 𝜓 ;

• 𝜎,𝜇 ⊨ 𝜙1 ∧ 𝜙2 if 𝜎,𝜇 ⊨ 𝜙1 and 𝜎,𝜇 ⊨ 𝜙2;

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

8

F. Gadducci, A. Laretto and D. Trotta

Fig. 3. A counterpart model where ¬(B(𝑥)𝖳R(𝑥)) ≢ (¬R(𝑥))𝖴(¬B(𝑥) ∧ ¬R(𝑥)).

• 𝜎,𝜇 ⊨ ∀𝑥.𝜙 if for any 𝑠 ∈𝐷(𝜔0) we have that 𝜎,𝜇[𝑥↦ 𝑠] ⊨ 𝜙;

• 𝜎,𝜇 ⊨ 𝖠𝜙 if for any 𝜇1 ∈𝛤
𝜔1

such that ⟨𝜇,𝜇1⟩ ∈ 𝐶0 we have that 𝜎1, 𝜇1 ⊨ 𝜙;

• 𝜎,𝜇 ⊨ 𝜙1𝖥𝜙2 if there is an 𝑛̄ ≥ 0 such that

1. for any 𝑖 < 𝑛̄ and 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 we have 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙1;

2. for any 𝜇𝑛̄ ∈𝛤
𝜔𝑛̄

such that ⟨𝜇,𝜇𝑛̄⟩ ∈ 𝐶≤𝑛̄ we have that 𝜎𝑛̄, 𝜇𝑛̄ ⊨ 𝜙2;.

• 𝜎,𝜇 ⊨ 𝜙1𝖳𝜙2 if one of the following holds

– the same conditions for 𝜙1𝖥𝜙2 apply;

– for any 𝑖 and 𝜇𝑖 ∈𝛤
𝜔𝑖

such that ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 we have that 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙1.

The intuition for the next-forall 𝖠𝜙 operator is that it allows us to capture the case where a counterpart of an individual does not
exist at the next step: if any counterpart exists, it is required to satisfy the formula 𝜙.

Similarly to the until 𝜙1𝖴𝜙2 operator, the until-forall 𝜙1𝖥𝜙2 operator allows us to take a sequence of worlds where 𝜙1 is satisfied
for some steps until 𝜙2 holds. The crucial observation is that all the intermediate counterparts satisfying 𝜙1 and the conclusive
counterparts must satisfy 𝜙2. Such counterparts are not required to exist, and indeed any trace consisting of all empty counterpart
relations always satisfies both 𝜙1𝖥𝜙2 and 𝜙1𝖳𝜙2.

Similarly to the weak until 𝜙1𝖶𝜙2 operator, the then 𝜙1𝖴𝜙2 operator corresponds to a weak until-forall, where the formula can be
validated by a trace where all counterparts satisfy 𝜙1 without ever satisfying 𝜙2.

Example 2.5 (Until-forall, then, and next-forall). In our running example in Fig. 2, we illustrate the possibility for B(𝑥)𝖥R(𝑥) and
𝖠B(𝑥) to be satisfied even when a counterpart does not exist after one or more steps. In particular, it can be verified that 𝜎,{𝑥↦ 𝑐0} ⊨
B(𝑥)𝖥R(𝑥) holds since R(𝑥) is eventually satisfied while B(𝑥) holds, just like the until operator. We have that both 𝜎,{𝑥↦ 𝑎0} ⊨ 𝖠R(𝑥)
and 𝜎1,{𝑥↦ 𝑐1} ⊨ 𝖠R(𝑥) hold, since no counterpart for 𝑐1 exists after one step. Finally, we have that 𝜎,{𝑥↦ 𝑑0} ⊨ B(𝑥)𝖥R(𝑥) holds
since B(𝑥) holds but no counterpart exists after two steps, and 𝜎2,{𝑥↦ 𝑐2} ⊨ B(𝑥)𝖳R(𝑥) since a counterpart always exists but B(𝑥)
holds forever.

2.3.2. Negation of QLTL and PNF
The crucial observation that validates the PNF presented in Section 2.3 is that the negation of next 𝖮𝜙, until 𝜙1𝖴𝜙2, and weak

until 𝜙1𝖶𝜙2 formulae can now be expressed inside the logic. We will explicitly indicate with ⊨QLTL and ⊨PNF the satisfiability relations
defined for formulae in standard QLTL and QLTL in PNF, respectively.

Proposition 2.1 (Negation is expressible in PNF). (Relational.Negation)
Let 𝜓 be an atomic formula in PNF. Then we have

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊨QLTL ¬𝖮(𝜓) ⟺ 𝜎,𝜇 ⊨PNF 𝖠(¬𝜓)
∀𝜎,𝜇 ∈𝛤

𝜔0
. 𝜎, 𝜇 ⊨QLTL ¬(𝜓1𝖴𝜓2) ⟺ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖳(¬𝜓1 ∧ ¬𝜓2)

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊨QLTL ¬(𝜓1𝖶𝜓2) ⟺ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖥(¬𝜓1 ∧ ¬𝜓2).

However, a converse statement that similarly expresses the negation of these newly introduced operators in PNF does not hold:
the only exception is the easy case of the next-forall 𝖠𝜙 operator, whose negation directly corresponds with the next 𝖮𝜙 operator.

Proposition 2.2 (Negation of new operators is not in PNF). Let 𝜓 be an atomic formula in PNF. Then we have

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊭PNF 𝖠(𝜓) ⟺ 𝜎,𝜇 ⊨PNF 𝖮(¬𝜓)
∀𝜎,𝜇 ∈𝛤

𝜔0
. 𝜎, 𝜇 ⊭PNF 𝜓1𝖳𝜓2 ⟺̸ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖴(¬𝜓1 ∧ ¬𝜓2)

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊭PNF 𝜓1𝖥𝜓2 ⟺̸ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖶(¬𝜓1 ∧ ¬𝜓2).

Proof. We provide a single direct counterexample for both the then and until-forall cases. Take for example the formula B(𝑥)𝖳R(𝑥)
and consider the counterexample in Fig. 3

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

9

https://archive.softwareheritage.org/swh:1:cnt:ef0c7deed2710df335511994b74dfb57539416da;origin=https://github.com/iwilare/qltl-pnf;visit=swh:1:snp:c87315cde6c3208c0d4dba447e65e174584763d3;anchor=swh:1:rev:7dc3264b12885b0cba761d13ce67c05c122a999b;path=/Relational/Negation.agda

F. Gadducci, A. Laretto and D. Trotta

Clearly, we have that 𝜎,{𝑥 ↦ 𝑎0} ⊨ ¬(B(𝑥)𝖳R(𝑥)). However, 𝜎,{𝑥 ↦ 𝑎0} ⊭ (¬R(𝑥))𝖴(¬B(𝑥) ∧ ¬R(𝑥)) since the until operator
requires a single counterpart to exist where both ¬B(𝑥) and ¬R(𝑥) after 𝑛 steps. The case of 𝜙1𝖥𝜙2 and its negated form using 𝜙1𝖶𝜙2
follows similarly. □

It turns out that we can recover the previous equivalences by considering the case where each counterpart relation is a partial
function, following the definition of counterpart models given in [14,13].

Proposition 2.3 (Negation for partial functions). (Functional.Negation)
Let 𝜓 be an atomic formula in PNF and 𝜎 = (𝐶0,𝐶1,…) a trace where each counterpart relation 𝐶𝑖 is a partial function 𝐶𝑖 ∶ 𝐷(𝑤𝑖) ⇀
𝐷(𝑤𝑖+1). Then we have

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊭PNF 𝖠(𝜓) ⟺ 𝜎,𝜇 ⊨PNF 𝖮(¬𝜓)
∀𝜎,𝜇 ∈𝛤

𝜔0
. 𝜎, 𝜇 ⊭PNF 𝜓1𝖳𝜓2 ⟺ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖴(¬𝜓1 ∧ ¬𝜓2)

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊭PNF 𝜓1𝖥𝜓2 ⟺ 𝜎,𝜇 ⊨PNF (¬𝜓2)𝖶(¬𝜓1 ∧ ¬𝜓2).

Notice how the previous results can be easily generalised to the case where we consider the negation of full formulae 𝜙.

The equivalences presented in Proposition 2.1 allow us to define a formal translation ⋅ ∶ QLTL → PNF from the QLTL syntax
presented in Definition 2.11 to the current one in PNF, preserving the equivalence of formulae. This is done with the obvious syntac

tical transformation that pushes the negation in QLTL formulae down to elementary predicates and replaces temporal operators with
their negated counterpart. For example

𝖮𝜙 ∶= 𝖮𝜙 𝜙1𝖴𝜙2 ∶= 𝜙1𝖴𝜙2
¬𝖮𝜙 ∶= 𝖠¬𝜙 𝜙1𝖶𝜙2 ∶= 𝜙1𝖶𝜙2

𝜙1 ∨ 𝜙2 ∶= 𝜙1 ∨ 𝜙2 ¬(𝜙1𝖴𝜙2) ∶= (¬𝜙2)𝖳(¬𝜙1 ∧ ¬𝜙2)
¬(𝜙1 ∨ 𝜙2) ∶= ¬𝜙1 ∧ ¬𝜙2 ¬(𝜙1𝖶𝜙2) ∶= (¬𝜙2)𝖥(¬𝜙1 ∧ ¬𝜙2)

Theorem 2.1 (PNF equivalence). (Relational.Conversion) Let ⋅ ∶ QLTL → PNF be the aforementioned syntactical translation that
replaces negated temporal operators with their equivalent ones in PNF. For any QLTL formula [𝛤]𝜙∈ QLTL we have

∀𝜎,𝜇 ∈𝛤
𝜔0

. 𝜎, 𝜇 ⊨QLTL 𝜙 ⟺ 𝜎,𝜇 ⊨PNF 𝜙 .

Now that we have defined the complete set of temporal operators, the second condition of then 𝜙1𝖳𝜙2 can similarly be expressed
by a derived always-forall □∗𝜙 operator, which we present along with a eventually-forall ◊∗𝜙 operator.

Similarly as with the then and until-forall operators, the difference with their standard versions eventually ◊𝜙 and always □𝜙 is
that they require for all counterparts to satisfy the formula 𝜙, if any exists.

Remark 2.5 (Eventually-forall and always-forall). The eventually-forall ◊∗𝜙 and always-forall □∗𝜙 operators are defined as ◊∗𝜙 ∶=
𝗍𝗋𝗎𝖾𝖥𝜙 and □∗𝜙 ∶= 𝜙𝖳𝖿𝖺𝗅𝗌𝖾, respectively. Their semantics can be explicitly presented as follows

• 𝜎,𝜇 ⊨◊∗𝜙 if there is 𝑖 ≥ 0 such that for any 𝜇𝑖 ∈𝐴𝛤
𝑤𝑖

with ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 we have that 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙;

• 𝜎,𝜇 ⊨□∗𝜙 if for any 𝑖 and 𝜇𝑖 ∈𝐴𝛤
𝑤𝑖

with ⟨𝜇,𝜇𝑖⟩ ∈ 𝐶≤𝑖 we have that 𝜎𝑖, 𝜇𝑖 ⊨ 𝜙.

Proposition 2.4 (Equivalences between operators in PNF). (Relational.Equivalences)
The following equivalences hold in PNF

𝜙1𝖴𝜙2 ≡ 𝜙1𝖶𝜙2 ∧◊𝜙2 𝜙1𝖶𝜙2 ≡ 𝜙1𝖴𝜙2 ∨□𝜙1
𝜙1𝖥𝜙2 ≡ 𝜙1𝖳𝜙2 ∧◊∗𝜙2 𝜙1𝖳𝜙2 ≡ 𝜙1𝖥𝜙2 ∨□∗𝜙1.

Contrary to what happens in LTL, the usual expansion laws where each operator is defined in terms of itself do not hold in QLTL
for the case of counterpart relations, as shown by the following result.

Proposition 2.5 (Expansion laws do not hold in QLTL). We have the following statements in PNF

𝜙1𝖴𝜙2 ≢ 𝜙2 ∨ (𝜙1 ∧𝖮(𝜙1𝖴𝜙2)) 𝜙1𝖥𝜙2 ≢ 𝜙2 ∨ (𝜙1 ∧𝖠(𝜙1𝖥𝜙2))
𝜙1𝖶𝜙2 ≢ 𝜙2 ∨ (𝜙1 ∧𝖮(𝜙1𝖶𝜙2)) 𝜙1𝖳𝜙2 ≢ 𝜙2 ∨ (𝜙1 ∧𝖠(𝜙1𝖳𝜙2)).

Proof. We provide direct counterexamples for the until 𝜙1𝖴𝜙2 and until-forall 𝜙1𝖥𝜙2 cases, the weak until 𝜙1𝖶𝜙2 and then 𝜙1𝖳𝜙2
cases obviously following.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

10

https://archive.softwareheritage.org/swh:1:cnt:ef0c7deed2710df335511994b74dfb57539416da;origin=https://github.com/iwilare/qltl-pnf;visit=swh:1:snp:c87315cde6c3208c0d4dba447e65e174584763d3;anchor=swh:1:rev:7dc3264b12885b0cba761d13ce67c05c122a999b;path=/Functional/Negation.agda
https://archive.softwareheritage.org/swh:1:cnt:ef0c7deed2710df335511994b74dfb57539416da;origin=https://github.com/iwilare/qltl-pnf;visit=swh:1:snp:c87315cde6c3208c0d4dba447e65e174584763d3;anchor=swh:1:rev:7dc3264b12885b0cba761d13ce67c05c122a999b;path=/Relational/Conversion.agda
https://archive.softwareheritage.org/swh:1:cnt:ef0c7deed2710df335511994b74dfb57539416da;origin=https://github.com/iwilare/qltl-pnf;visit=swh:1:snp:c87315cde6c3208c0d4dba447e65e174584763d3;anchor=swh:1:rev:7dc3264b12885b0cba761d13ce67c05c122a999b;path=/Relational/Equivalences.agda

F. Gadducci, A. Laretto and D. Trotta

Fig. 4. A counterexample model where, in the case of counterpart relations, we have that B(𝑥)𝖴R(𝑥) ≢ R(𝑥) ∨ (B(𝑥) ∧𝖮(B(𝑥)𝖴R(𝑥))).

Fig. 5. A counterpart model where B(𝑥)𝖥R(𝑥) ≢ R(𝑥) ∨ (B(𝑥) ∧𝖠(B(𝑥)𝖥R(𝑥))).

Consider the until case with the formula B(𝑥)𝖴R(𝑥). In the model shown in Fig. 4 we have that 𝜎,{𝑥 ↦ 𝑎0} ⊨ B(𝑥)𝖴R(𝑥) since
there is a counterpart after two steps with R(𝑥) and for all worlds before it there is a counterpart with B(𝑥). However, clearly 𝑎0 does
not satisfy the expanded formula since neither 𝜎1,{𝑥↦ 𝑎1}⊭ B(𝑥)𝖴R(𝑥) nor 𝜎1,{𝑥↦ 𝑏1}⊭ B(𝑥)𝖴R(𝑥).

Consider the until-forall case with the formula B(𝑥)𝖥R(𝑥). In the model shown in Fig. 5 we have that 𝑎0 satisfies the expanded
formula, since the one-step counterparts 𝑎1 and 𝑏1 are such that both 𝜎,{𝑥↦ 𝑎0} ⊨ B(𝑥)𝖥R(𝑥) and 𝜎,{𝑥↦ 𝑎0} ⊨ B(𝑥)𝖥R(𝑥), with the
world where all counterparts satisfy R(𝑥) being reached after two and one steps, respectively. However, we have that 𝜎,{𝑥↦ 𝑎0}⊭
𝖠(B(𝑥)𝖥R(𝑥)) since there is no single world 𝜔𝑛 where all counterparts after 𝑛 steps satisfy R(𝑥). □

Similarly as with Proposition 2.3, we can recover the expansion laws by restricting ourselves to the case of partial functions as
counterpart relations.

Proposition 2.6 (Expansion laws for partial functions). (Functional.ExpansionLaws)
The following equivalences hold in PNF if we restrict ourselves to traces where each counterpart relation 𝐶𝑖 is a partial function 𝐶𝑖 ∶𝐷(𝑤𝑖)⇀
𝐷(𝑤𝑖+1)

𝜙1𝖴𝜙2 ≡ 𝜙2 ∨ (𝜙1 ∧𝖮(𝜙1𝖴𝜙2)) 𝜙1𝖥𝜙2 ≡ 𝜙2 ∨ (𝜙1 ∧𝖠(𝜙1𝖥𝜙2))
𝜙1𝖶𝜙2 ≡ 𝜙2 ∨ (𝜙1 ∧𝖮(𝜙1𝖶𝜙2)) 𝜙1𝖳𝜙2 ≡ 𝜙2 ∨ (𝜙1 ∧𝖠(𝜙1𝖳𝜙2)).

Remark 2.6 (Temporal operators as fixed points). Consider the same counterpart models with partial functions of Proposition 2.6:
contrary to the relational case, we recover that the until 𝜙1𝖴𝜙2 and until-forall 𝜙1𝖥𝜙2 operators correspond to least fixed points of
their expansion shown in Proposition 2.6, and weak until 𝜙1𝖥𝜙2 and then 𝜙1𝖳𝜙2 correspond to greatest fixed points.

Remark 2.7 (Functional counterparts collapse the semantics). As briefly mentioned in Remark 2.3, when our counterpart model is
restricted to relations that are total functions we actually have that the pairs of operators previously introduced collapse and provide
the same semantics and dualities of the classical operators. In particular, we obtain that 𝖮𝜙 ≡ 𝖠𝜙, 𝜙1𝖴𝜙2 ≡ 𝜙1𝖥𝜙2, 𝜙1𝖶𝜙2 ≡ 𝜙1𝖳𝜙2,
and this fact in turn allows us to obtain a notion of trace similar to the one classically presented in LTL.

3. Categorical semantics

In this chapter we provide a categorical presentation of the logic introduced in Section 2, by generalising both its models and
semantics through the use of relational presheaves, counterpart  -models, and classical attributes.

3.1. Relational presheaves models

The crucial definition of Kripke frame presented in Definition 2.1 admits a natural generalisation in the categorical setting. Given
a category  , its objects 𝐴,𝐵,𝐶,… can be considered as worlds or instants of time, and the arrows 𝑓 ∶ 𝐴 → 𝐵 of the category
represent the Kripkean notion of temporal developments or ways of accessibility. Notice that in the usual definition of Kripke frame the
accessibility relation 𝑅 is a binary relation on the set 𝑊 of worlds. Two worlds can thus be connected with at most one possible
evolution from one world to another. This is an undesirable constraint from the point of applications, where one might be interested
in having multiple different ways to evolve to a next world. Categories naturally generalise this by allowing an arbitrary set of
morphisms between worlds in the model.

Following this correspondence in the context of category theory, the definition of counterpart model could be represented with
the notion of presheaf 𝐷 ∶𝑜𝑝 → Set on the desired category  . The use of the opposite category 𝑜𝑝 in the definition of presheaf
stems from its traditional use in the setting of categorical logic and hyperdoctrines [25,26].

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

11

https://archive.softwareheritage.org/swh:1:cnt:ef0c7deed2710df335511994b74dfb57539416da;origin=https://github.com/iwilare/qltl-pnf;visit=swh:1:snp:c87315cde6c3208c0d4dba447e65e174584763d3;anchor=swh:1:rev:7dc3264b12885b0cba761d13ce67c05c122a999b;path=/Functional/ExpansionLaws.agda

F. Gadducci, A. Laretto and D. Trotta

Fig. 6. An example of a relational presheaf 𝑋 on a category .

Concretely, a presheaf assigns to each world 𝜔 ∈  a set 𝐷(𝜔) of individuals, and to each time development 𝑓 ∶ 𝜔→ 𝜎 a function
𝐷(𝑓) ∶𝐷(𝜎)→𝐷(𝜔) in the opposite direction between the individuals in the two worlds. From the counterpart perspective, given two
elements 𝑎 ∈𝐷(𝜔) and 𝑏∈𝐷(𝜎), the equality 𝑎 =𝐷(𝑓)(𝑏) intuitively represents the fact that 𝑏 is a future development of 𝑎 with respect
to 𝑓 . In other words, a presheaf represents the categorification of a counterpart model whose counterpart relation is functional. In practice,
this means that each individual in the target world 𝜔 is forced to have a counterpart in the previous world 𝜎, thus disallowing the
creation of new elements. Considering a standard covariant functor 𝐷 ∶ → Set would similarly allow for the creation of elements
to be modelled, but not their deallocation, since the morphisms in Set are taken to be total functions.

To adequately capture the notion of counterpart model from the categorical perspective, we therefore generalise presheaves to
the case of relations instead of functions, thus introducing the notion of relational presheaf.

Definition 3.1 (Relational presheaf). Given a category , a relational presheaf is a functor 𝐷 ∶ 𝑜𝑝 → Rel, where Rel is the category
of sets and relations.

Given a relational presheaf 𝐷 and a temporal development 𝑓 ∶ 𝜔→ 𝜎, we can consider the relation 𝐷(𝑓) ⊆ 𝐷(𝜎) ×𝐷(𝜔) as the
counterpart relation associated to the evolution step 𝑓 . In this context, given two elements 𝑎 ∈𝐷(𝜔) and 𝑏 ∈𝐷(𝜎) we say that 𝑏 is a
future development of 𝑎 with respect to 𝑓 whenever ⟨𝑏, 𝑎⟩ ∈𝐷(𝑓).

Example 3.1. We present in Fig. 6 a pictorial example of relational presheaf on a category .

With the notion of relational presheaf, we can redefine counterpart models in the categorical setting.

Definition 3.2 (Counterpart  -model). A counterpart  -model is a pair 𝑀 = ⟨ ,𝐷⟩ such that

•  is a category of worlds;

• 𝐷 ∶𝑜𝑝 → Rel is a relational presheaf on  .

A crucial difference with classical counterpart models is that counterpart  -models introduce considerably more morphisms than
those that might be desirable. In particular, categories are required to always have identity morphisms: this practically means that,
for each world, there must be an idle time development remaining in the same world where no entity is either created or destroyed.
Similarly, having all compositions in a category means that one can always directly skip to a world if a path of time evolutions can
be constructed to reach it.

In order to adequately restrict the models to only a specific set of desirable arrows, the notion of temporal structure is introduced.

3.2. Temporal structures

Definition 3.3 (Temporal structure). A temporal structure 𝑇 on a category  is a class of selected morphisms of  .

The intuition behind temporal structures is that they select only the atomic transitions, or indecomposable operations of  , and are
precisely the arrows we consider as relevant in the semantics of our logic. Temporal structures and categories can be bundled up
together to form a specific kind of model which we call temporal counterpart  -model.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

12

F. Gadducci, A. Laretto and D. Trotta

Fig. 7. An example of temporal counterpart  -model ⟨ ,𝐷,𝑇 ⟩.

Definition 3.4. A temporal counterpart  -model is defined as a tuple ⟨ ,𝐷,𝑇 ⟩, where ⟨ ,𝐷⟩ is a counterpart  -model and 𝑇
is a temporal structure on  .

Example 3.2 (Temporal counterpart  -model). We introduce a concrete example of temporal counterpart  -model in Fig. 7.

Temporal counterpart  -models are sufficiently flexible to express and obtain as particular instance the classical models of LTL
and CTL, for example retrieving the usual notion of trace described in Definition 2.5, which we employ in Definition 3.10 for the
semantics of our logic.

Definition 3.5 (Paths). Notationally, given a temporal structure 𝑇 we denote by path(𝑇 ,𝜔) the class of possible sequences of arrows
𝑡 = (𝑡0, 𝑡1, 𝑡2,…) such that 𝑡𝑖 ∈ 𝑇 and cod(𝑡𝑖) = dom(𝑡𝑖+1) for any 𝑖 ≥ 0, with the sequence starting with dom(𝑡0) = 𝜔. Whenever the
path 𝑡 ∈ path(𝑇 ,𝜔) is clear from the context, we indicate with 𝜔𝑖 = cod(𝑡𝑖) the 𝑖-th world of the path.

Equipping counterpart  -models with temporal structures allows to formally link classical counterpart models with their cate

gorical version.

Proposition 3.1. Given a classical counterpart model ⟨𝑊 ,𝐷,⟩, one can construct a temporal counterpart  -model ⟨ ,𝐷,𝑇 ⟩ as follows

•  is the category with Obj() ∶= 𝑊 as objects and whose arrows are freely generated (i.e. adding identities and compositions) by
introducing a morphism 𝑟 ∶ 𝜔1 → 𝜔2 for each relation 𝑅∈ ⟨𝜔1,𝜔2⟩;

• 𝐷 is the relational presheaf 𝐷 ∶𝑜𝑝 → Rel defined as 𝐷(𝜔) ∶= 𝑑(𝜔), and assigning to each arrow 𝑟 ∶ 𝜔1 → 𝜔2 its generating relation
𝑅 ∈ ⟨𝜔1,𝜔2⟩ with 𝐷(𝑟) ∶=𝑅 (it is straightforward to verify that this is indeed a functor);

• 𝑇 is the temporal structure identifying as class of morphisms all arrows 𝑟 ∶ 𝜔1 → 𝜔2 given by the one-step relations 𝑅 ∈ ⟨𝜔1,𝜔2⟩ of the
model.

Proposition 3.2. Given a temporal counterpart  -model ⟨ ,𝐷,𝑇 ⟩, one can construct a classical counterpart model ⟨𝑊 ,𝐷,⟩ as follows

• 𝑊 ∶= Obj() is the set of worlds given by the objects of the category;

• 𝑑(𝜔) ∶=𝐷(𝜔) is a function assigning to each 𝜔∈𝑊 the action on objects of the relational presheaf 𝐷;

•  is the function assigning to each tuple ⟨𝜔1,𝜔2⟩ the set of relations ⟨𝜔1,𝜔2⟩ ∶= {𝐷(𝑟) | 𝑟 ∶ 𝜔1 → 𝜔2 ∧ 𝑟 ∈ 𝑇 }, where each morphism
𝑟 of  must be selected by the temporal structure 𝑇 .

Remark 3.1. We remark how these two constructions are not one the inverse of the other, e.g., going from a temporal counterpart
 -model ⟨ ,𝐷,𝑇 ⟩ to a classical one loses information about morphisms which are not part of the temporal structure. However, we
will recover in Proposition 3.3 how these notions of model are equivalent with respect to the semantics of the logic.

3.3. Presheaf semantics for QLTL

Having introduced the categorical perspective on counterpart models, we now give the definitions required to present the semantics
in the categorical setting by means of relational presheaves and classical attributes.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

13

F. Gadducci, A. Laretto and D. Trotta

3.3.1. Classical attributes

In Definition 2.11 and Definition 2.13, we associated a meaning to each formula using an inductively defined logical relation. In
the context of our categorical semantics, the satisfiability of a formula is instead denoted by assigning to each formula 𝜙 a classical
attribute [16,27]: the intuition is that a classical attribute is simply a family of sets indexed on worlds, associating to each world 𝜔
the subset of individuals in 𝜔 that satisfy a given property.

Definition 3.6 (Classical attributes). Let 𝑋 ∶ 𝑜𝑝 → Rel be a relational presheaf. A classical attribute on 𝑋 is a family of sets
𝐴 ∶= {𝐴𝜔}𝜔∈ such that 𝐴𝜔 ⊆𝑋(𝜔) for any 𝜔 ∈ . The set of all classical attributes on 𝑋 is denoted with  (𝑋) ∶= {{𝐴𝜔}𝜔∈ | 𝐴𝜔 ⊆

𝑋(𝜔)}.

Intuitively, the base relational presheaf 𝑋 ∶𝑜𝑝 → Rel provides a common universe of elements that can be reasoned about, while
a classical attribute gives a specific subset of elements in each world 𝑋(𝜔) for which a property is satisfied. Thus, given a relational
presheaf 𝑋 ∶𝑜𝑝 → Rel and a classical attribute 𝐴 ∈  (𝑋), whenever an element 𝑠 ∈𝑋(𝜔) is such that 𝑠 ∈ 𝐴𝜔, we can say that in
the world 𝜔 the individual 𝑠 satisfies the property 𝐴.

For any relational presheaf 𝑋 ∶𝑜𝑝 → Rel, the set  (𝑋) of classical attributes has a natural structure of complete boolean algebra
with respect to inclusion, where the top element is given by ⊤ = {𝑋(𝜔)}𝜔∈ and the bottom element by ⊥ = {∅}𝜔∈ .

Remark 3.2 (Classical attributes are presheaves). A classical attribute can alternatively be considered as a (relational) presheaf 𝑋 ∶
𝑜𝑝 → Rel in the intuitive way, since it assigns sets to worlds of the category. However, to be consistent with the Agda formalization
and for our restricted purpose of providing a categorical semantics for QLTL, we simply consider a classical attribute as a family of
sets indexed by the worlds of the category  , and we highlight this difference notationally by using a subscript for classical attributes
𝐴𝜔 and using function application for presheaves 𝑋(𝜔).

3.3.2. Semantics with classical attributes

Having fixed a relational presheaf 𝑋 ∶𝑜𝑝 → Rel, we can define the temporal operators of our logic as operators that combine
classical attributes and return other classical attributes. This mirrors the intuition that the set of individuals satisfying a composite
formula 𝜙1𝖴𝜙2 is obtained by knowing which elements satisfy the subformulae 𝜙1, 𝜙2 composing it.

Definition 3.7 (Temporal operators on classical attributes). Let 𝑋 ∶𝑜𝑝 → Rel be a relational presheaf and 𝑇 a temporal structure on
 . Let 𝐴 ∈  (𝑋) and 𝐵 ∈  (𝑋) be two classical attributes on 𝑋. Given a world 𝜔 ∈ and an element 𝑠 ∈ 𝑋(𝜔), we define the
following temporal classical attributes

• 𝑠 ∈ (𝖮𝐴)𝜔 if for any arrow 𝑟 ∶ 𝜔→ 𝜎 of 𝑇 there is an element 𝑧 ∈𝑋(𝜎) such that ⟨𝑧, 𝑠⟩ ∈𝑋(𝑟) and 𝑧 ∈𝐴𝜎 ;

• 𝑠 ∈ (𝖠𝐴)𝜔 if for any arrow 𝑟 ∶ 𝜔→ 𝜎 of 𝑇 and element 𝑧 ∈𝑋(𝜎) such that ⟨𝑧, 𝑠⟩ ∈𝑋(𝑟) we have that 𝑧 ∈𝐴𝜎 ;

• 𝑠 ∈ (𝐴𝖴𝐵)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) there is an 𝑛̄ ≥ 0 such that

1. for any 𝑖 < 𝑛̄ there is 𝑧𝑖 ∈𝑋(𝜔𝑖) such that ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) and 𝑧𝑖 ∈𝐴𝜔𝑖
;

2. there is 𝑧𝑛̄ ∈𝑋(𝜔𝑛̄) such that ⟨𝑧𝑛̄, 𝑠⟩ ∈𝑋(𝑡≤𝑛̄) and 𝑧𝑛̄ ∈ 𝐵𝜔𝑛̄
.

• 𝑠 ∈ (𝐴𝖥𝐵)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) there is an 𝑛̄ ≥ 0 such that

1. for any 𝑖 < 𝑛̄ and 𝑧𝑖 ∈𝑋(𝜔𝑖) such that ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) we have that 𝑧𝑖 ∈𝐴𝜔𝑖
;

2. for any 𝑧𝑛̄ ∈𝑋(𝜔𝑛̄) such that ⟨𝑧𝑛̄, 𝑠⟩ ∈𝑋(𝑡≤𝑛̄) we have that 𝑧𝑛̄ ∈𝐵𝜔𝑛̄
.

• 𝑠 ∈ (𝐴𝖶𝐵)𝜔 if one of the following holds

– the same conditions for 𝑠 ∈ (𝐴𝖴𝐵)𝜔 apply;

– for any 𝑖 there is 𝑧𝑖 ∈𝑋(𝜔𝑖) such that ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) and 𝑧𝑖 ∈𝐴𝜔𝑖
.

• 𝑠 ∈ (𝐴𝖳𝐵)𝜔 if one of the following holds

– the same conditions for 𝑠 ∈ (𝐴𝖥𝐵)𝜔 apply;

– for any 𝑖 and 𝑧𝑖 ∈𝑋(𝜔𝑖) with ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) we have that 𝑧𝑖 ∈𝐴𝜔𝑖
.

Remark 3.3 (Eventually and always). Given a relational presheaf 𝑋 ∶𝑜𝑝 → Rel, a temporal structure 𝑇 on  and a classical attribute
𝐴 ∈  (𝑋) on 𝑋, it is easy to see that the semantics of our derived temporal operators always and eventually can be given directly as

• 𝑠 ∈ (◊𝐴)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) there is an 𝑛̄ ≥ 0 and an element 𝑧𝑛̄ ∈𝑋(𝜔𝑛̄) such that ⟨𝑧𝑛̄, 𝑠⟩ ∈𝑋(𝑡≤𝑛̄) and 𝑧𝑛̄ ∈𝐴𝜔𝑛̄
;

• 𝑠 ∈ (◊∗𝐴)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) there is an 𝑛̄ ≥ 0 for which any element 𝑧𝑛̄ ∈𝑋(𝜔𝑛̄) with ⟨𝑧𝑛̄, 𝑠⟩ ∈𝑋(𝑡≤𝑛̄) is such that 𝑧𝑛̄ ∈𝐴𝜔𝑛̄
;

• 𝑠 ∈ (□𝐴)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) and 𝑖 ≥ 0 there is an element 𝑧𝑖 ∈𝑋(𝜔𝑖) such that ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) and 𝑧𝑖 ∈𝐴𝜔𝑖
;

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

14

F. Gadducci, A. Laretto and D. Trotta

• 𝑠 ∈ (□∗𝐴)𝜔 if for any 𝑡 ∈ path(𝑇 ,𝜔) and 𝑖 ≥ 0 any element 𝑧𝑖 ∈𝑋(𝜔𝑖) with ⟨𝑧𝑖, 𝑠⟩ ∈𝑋(𝑡≤𝑖) is such that 𝑧𝑖 ∈𝐴𝜔𝑖
.

We have presented this semantics in full generality by quantifying over all possible time development traces 𝑡 ∈ path(𝑇 ,𝜔) provided
by the model: notice, however, that the positive normal form equivalences for QLTL and PNF expressed in Section 2.3.2 clearly only
hold in the case where the temporal structure 𝑇 forms a linear order, hence implicitly induces a QLTL trace.

We will use these temporal operators on classical attributes when providing the full semantics of the logic in Definition 3.10.

3.3.3. Semantics of QLTL
We can now show how the semantics of formulae-in-context is provided in our categorical models. Throughout the rest of this

section we consider a fixed temporal counterpart  -model ⟨ ,𝐷,𝑇 ⟩.

To introduce the categorical semantics of formulae through classical attributes we provide the following intuition: given a formula
𝜙 with a single free variable, there is an associated classical attribute 𝐴𝜙 which assigns to each world 𝜔 the set of individuals in 𝜔 that
satisfy the formula. In fact, classical attributes are the categorical generalisation of the notion of assignment presented in Definition 2.9.
Similarly, given a formula with 𝑛 free variables, we consider classical attributes that assign to each world 𝜔 the set of 𝑛-tuples of
individuals in 𝜔 such that the formula is satisfied. Notice how this is a subset of elements among all possible tuples given by the
𝑛-iterated cartesian product of 𝐷(𝜔), which is a set, and is therefore in line with the notion of classical attribute. A relatively minor
difference with assignments is that variable names in a formula are assumed to refer to indices in the tuple, instead of the proper
names given by an assignment, hence a context Γ is properly described as a list of variables.

To make this intuition precise, we introduce products and a terminal object for relational presheaves.

Definition 3.8 (Product of presheaves). Given two relational presheaves 𝑋,𝑌 ∶𝑜𝑝 → Rel, the product of relational presheaves
𝑋 × 𝑌 ∶ 𝑜𝑝 → Rel is defined as the relational presheaf that uses point-wise the standard set product on worlds. The action on
objects is defined as (𝑋 × 𝑌)(𝜔) ∶= 𝑋(𝜔) × 𝑌 (𝜔), and for a given morphism 𝑟 ∶ 𝜔1 → 𝜔2 we define the relation (𝑋 × 𝑌)(𝑟) =
{⟨⟨𝑥, 𝑦⟩, ⟨𝑥′, 𝑦′⟩⟩ | ⟨𝑥,𝑥′⟩ ∈𝑋(𝑟) ∧ ⟨𝑦, 𝑦′⟩ ∈ 𝑌 (𝑟)}.

Definition 3.9 (Terminal relational presheaf). The terminal relational presheaf ⊥ ∶𝑊 𝑜𝑝 → Rel is defined as the relational presheaf
⊥(𝜔) = {∗} assigning the singleton set {∗} to all worlds 𝜔 ∈𝑊 , and assigning the identity relation on {∗} to every morphism.

Notation 3.1 (Relational presheaf of a context). For any context 𝛤 = [𝑥1,… , 𝑥𝑛] as presented in Definition 2.7, we indicate with ⟦𝛤 ⟧

the presheaf defined by

⟦𝛤 ⟧ =𝐷 ×⋯ ×𝐷
⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟

𝑛 times

where × denotes the product of relational presheaves given in Definition 3.8. If the context is empty, we define ⟦∅⟧ ∶= ⊥. Given a
variable 𝑥 ∈ 𝛤 , we indicate with 𝜋𝑥 ∶ ⟦𝛤 ⟧ →𝐷 the corresponding set-based projection on the 𝑥-th variable.

As we mentioned, the intuition is that a classical attribute on a product of presheaves identifies tuples of individuals that satisfy a
given property.

Remark 3.4 (Classical attribute on a singleton). Consider the terminal relational presheaf ⊥ ∶𝑜𝑝 → Rel. Then each classical attribute
𝐴 on ⊥ has only two possible assignments for any given world 𝜔 ∈ by either having 𝐴(𝜔) = {∗} or 𝐴(𝜔) = {}, thus indicating
that either 𝐴 holds or does not for the entire world. In light of Notation 3.1, classical attributes on ⊥ correspond with the semantics of
closed formulae.

The interpretation of a formula-in-context [𝛤]𝜙 is given by a classical attribute ⟦[𝛤]𝜙⟧ on the relational presheaf ⟦𝛤 ⟧ where the
formula is defined.

Definition 3.10 (Satisfiability of a formula). Given a formula-in-context [𝛤]𝜙 and an interpretation 𝑃 (𝜔) ⊆ 𝐷(𝜔) for each unary
predicate 𝑃 ∈  and world 𝜔, the classical attribute ⟦[𝛤]𝜙⟧ on ⟦𝛤 ⟧ is a function defined by induction on the formula [𝛤]𝜙 as follows

• ⟦[𝛤]𝖿𝖺𝗅𝗌𝖾⟧𝜔 ∶= ∅;

• ⟦[𝛤]𝗍𝗋𝗎𝖾⟧𝜔 ∶= ⟦𝛤 ⟧(𝜔);
• ⟦[𝛤]𝑃 (𝑥)⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | 𝜋𝑥(𝑎) ∈ 𝑃 (𝜔)};

• ⟦[𝛤]𝑥 = 𝑦⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | 𝜋𝑥(𝑎) = 𝜋𝑦(𝑎)};

• ⟦[𝛤]¬𝜓⟧𝜔 ∶= ⟦𝛤 ⟧(𝜔) ⧵ ⟦[𝛤]𝜓⟧𝜔;

• ⟦[𝛤]𝜙1 ∨ 𝜙2⟧𝜔 ∶= ⟦[𝛤]𝜙1⟧𝜔 ∪ ⟦[𝛤]𝜙2⟧𝜔;

• ⟦[𝛤]𝜙1 ∧ 𝜙2⟧𝜔 ∶= ⟦[𝛤]𝜙1⟧𝜔 ∩ ⟦[𝛤]𝜙2⟧𝜔;

• ⟦[𝛤]∃𝑥.𝜙⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | ∃𝑏 ∈𝐷(𝜔).⟨𝑎, 𝑏⟩ ∈ ⟦[𝛤 ,𝑥]𝜙⟧𝜔};

• ⟦[𝛤]∀𝑥.𝜙⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | ∀𝑏 ∈𝐷(𝜔).⟨𝑎, 𝑏⟩ ∈ ⟦[𝛤 ,𝑥]𝜙⟧𝜔}.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

15

F. Gadducci, A. Laretto and D. Trotta

Fig. 8. Examples of three Gr-algebras G0 (left), G1 (middle), G2 (right).

In the case of temporal operators, the classical attribute ⟦[𝛤]𝜙⟧ is given directly by the operators defined in Definition 3.7

• ⟦[𝛤]𝖮𝜙⟧ ∶=𝖮⟦[𝛤]𝜙⟧;

• ⟦[𝛤]𝜙1𝖴𝜙2⟧ ∶= ⟦[𝛤]𝜙1⟧𝖴⟦[𝛤]𝜙2⟧;
• ⟦[𝛤]𝜙1𝖶𝜙2⟧ ∶= ⟦[𝛤]𝜙1⟧𝖶⟦[𝛤]𝜙2⟧.

Since the definitions of temporal operators are given for any relational presheaf 𝑋, we take here a specific case where the base
presheaf 𝑋 is simply given by the product of presheaves ⟦𝛤 ⟧.

The categorical semantics of QLTL is equivalent to the classical semantics given in Definition 2.11 and Definition 2.13 in the
following sense.

Proposition 3.3. For every classical counterpart model ⟨𝑊 ,𝐷,⟩ with a trace 𝜎 the temporal counterpart  -model ⟨ ′,𝐷′, 𝑇 ′⟩ constructed
in Proposition 3.1 is such that for every formula 𝜑, assignment 𝜇 and index 𝑖

𝜎𝑖, 𝜇 ⊧
⟨𝑊 ,𝐷,⟩

QLTL
𝜙 ⟺ 𝜇 ∈ ⟦[𝛤]𝜙⟧

⟨𝑊 ′ ,𝐷′ ,𝑇 ′⟩
𝜔𝑖

for each world 𝜔𝑖 in the 𝑖-th position of 𝜎.

By following the construction in Proposition 3.2, the above correspondence similarly holds in the case where a temporal 𝑊

counterpart model ⟨ ,𝐷,𝑇 ⟩ is given with a path 𝑡 ∈ path(𝑇 ,𝜔) for some world 𝜔.

3.4. Multi-sorted algebra models

In this section we consider a specialisation of counterpart  -models to the case where states are algebras on a signature Σ. This
considerably increases the expressiveness of our logic and, by considering for example the signature of graphs, extends it to the case
of graph logics. We briefly recall in this section the fundamentals of multi-sorted algebras and signatures.

Definition 3.11 (Signature). A many-sorted signature Σ is a pair ⟨Σ𝑆 ,Σ𝐹 ⟩ where

• Σ𝑆 = {𝜏1,… , 𝜏𝑚} is a set of sorts;

• Σ𝐹 = {𝑓 ∶ 𝜏1 ×⋯ × 𝜏𝑛 → 𝜏 | 𝜏𝑖, 𝜏 ∈ Σ𝑆} is a set of function symbols typed over Σ∗
𝑆

.

Definition 3.12 (Algebra). A many-sorted algebra S with signature Σ, i.e. a Σ-algebra, is a pair ⟨𝑆,𝐹 ⟩ where

• 𝑆 = {S𝜏}𝜏∈Σ𝑆
is a family of sets for each sort in Σ𝑆 ;

• 𝐹 ∶= {𝑓A ∶ S𝜏1
×⋯ × S𝜏𝑛

→ S𝜏 | 𝑓 ∈ Σ𝐹 ∧ 𝑓 ∶ 𝜏1 ×⋯ × 𝜏𝑛 → 𝜏} is a set of typed functions for every function symbol 𝑓 ∈ Σ𝐹 .

Example 3.3 (Signature of graphs). The signature of graphs Gr = ⟨Gr𝑆 ,Gr𝐹 ⟩ is given by

• Gr𝑆 = {N,E};

• Gr𝐹 = {𝑠 ∶ E → N, 𝑡 ∶ E → N}, representing the source and target functions on edges.

Example 3.4 (Example of graph). Concretely, an algebra on the signature of graphs (Gr-algebra) is a directed graph. We present as an
example a graphical representation of three Gr-algebras on the signature of graphs in Fig. 8. Similarly, a relational homomorphism of
Gr-algebras is exactly a homomorphism of directed graphs where the relation between nodes and edges does not need to be functional.

Definition 3.13 (Relational homomorphism of algebras). Given two algebras A and B, a relational homomorphism of algebras 𝜌 is
a family of relations 𝜌 ∶= {𝜌𝜏 ⊆A𝜏 ×B𝜏 | 𝜏 ∈ Σ𝑆} typed over Σ𝑆 such that, for every function symbol 𝑓 ∶ 𝜏1 ×⋯× 𝜏𝑛 → 𝜏 and every
list of elements (𝑎1,… , 𝑎𝑛) ∈ A𝜏1

×⋯ ×A𝜏𝑛
and (𝑏1,… , 𝑏𝑛) ∈ B𝜏1

×⋯ ×B𝜏𝑛
we have that

(∀𝑖 ∈ [1..𝑛].⟨𝑎𝑖, 𝑏𝑖⟩ ∈ 𝜌𝜏𝑖) ⟹ ⟨𝑓A(𝑎1,… , 𝑎𝑛), 𝑓B(𝑏1,… , 𝑏𝑛)⟩ ∈ 𝜌𝜏 .

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

16

F. Gadducci, A. Laretto and D. Trotta

Fig. 9. Graphical representation of an algebraic counterpart  -model.

In our example with the signature of graphs, this amounts to requiring that whenever an edge 𝑒 has a counterpart 𝑒′ in the next
world, the source nodes (and target nodes) of 𝑒 and 𝑒′ must also be in counterpart relation. A relational homomorphism can similarly
be considered as a partial homomorphism whenever there is at most a single counterpart in the codomain.

To introduce the notion of term on an algebra, we redefine the notion of context since variables are now typed over a set of sorts
given by the signature. Finally, we give an inductive definition of terms defined in a typed context.

Definition 3.14 (Typed context). Given a denumerable set of variables 𝑋, a typed context 𝛤 over a signature Σ is a finite subset
[𝑥1 ∶ 𝜏1,… , 𝑥𝑛 ∶ 𝜏𝑛] of pairs (𝑥𝑖, 𝜏𝑖) ∈𝑋 × Σ𝑆 such that 𝑥1,… , 𝑥𝑛 are distinct.

Definition 3.15 (Term-in-context). Let 𝛤 be a typed context over a multi-sorted signature Σ. A term-in-context [𝛤] 𝑡 ∶ 𝜏 is inductively
generated by the rules

(𝑥 ∶ 𝜏) ∈ 𝛤

[𝛤] 𝑥 ∶ 𝜏
𝑓 ∶ 𝜏1 ×⋯ 𝜏𝑛 → 𝜏 ∈ Σ𝐹 [𝛤] 𝑡1 ∶ 𝜏1 ⋯ [𝛤] 𝑡𝑛 ∶ 𝜏𝑛

[𝛤] 𝑓 (𝑡1,… , 𝑡𝑛) ∶ 𝜏
where 𝑓 ∶ 𝜏1 ×⋯ × 𝑡𝑛 → 𝜏 is a function symbol of Σ𝐹 .

We show now how to extend the categorical presentation of counterpart models with relational presheaves to the setting of states
as algebras.

3.5. Algebraic counterpart  -models

The intuition to extend our models to the algebraic setting is to consider a relational presheaf for each sort of the algebra: the
algebra associated to each world 𝜔 is then taken to be the family of sets given by each presheaf on 𝜔. For each function symbol,
algebras also provide a notion of set functions sending the product of sets to a single set. Similarly, to capture algebra functions
categorically we need to send the product of relational presheaves to a single relational presheaf using set functions. We capture this
idea with the general definition of relational morphism between any two relational presheaves.

Definition 3.16 (Relational morphisms). A relational morphism between two relational presheaves 𝑋,𝑌 ∶𝑜𝑝 → Rel is a family of
set functions 𝜂 = {𝜂𝜔 ∶𝑋(𝜔)→ 𝑌 (𝜔)}𝜔∈𝑊 such that for every morphism 𝑓 ∶𝐴→ 𝐵 of the base category we have that

⟨𝑎, 𝑏⟩ ∈𝑋(𝑓) ⟹ ⟨𝜂𝐴(𝑎), 𝜂𝐵(𝑏)⟩ ∈ 𝑌 (𝑓).

Definition 3.17 (Algebraic counterpart  -model). Let Σ be a many-sorted signature. An algebraic counterpart  -model on the
signature Σ is a tuple ⟨ , 𝑇 , ,⟩ such that

•  is a category of worlds;

• 𝑇 is a temporal structure on  ;

•  = {⟦𝜏⟧ ∶𝑜𝑝 → Rel}𝜏∈Σ𝑆
is a set of relational presheaves on  , assigning a relational presheaf to each sort in Σ𝑆 ;

•  = {(𝑓) ∶ ⟦𝜏1⟧×⋯× ⟦𝜏𝑛⟧ → ⟦𝜏⟧}𝑓∈Σ𝐹
is a set of relational morphisms, assigning a relational morphism to each function symbol

𝑓 ∶ 𝜏1 ×⋯ × 𝑡𝑛 → 𝜏 given in Σ𝐹 by the signature Σ.

Example 3.5 (Example of algebraic counterpart  -model). Following Example 3.4, we provide in Fig. 9 our running example of alge

braic counterpart  -model on the signature of graphs Gr. We use blue dashed and green dash-dotted lines to distinguish 𝑓1 and 𝑓2,
respectively.

We provide the categorical data given by the model by describing explicitly each component. A concrete perspective of our model
is shown in Fig. 10.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

17

F. Gadducci, A. Laretto and D. Trotta

Fig. 10. Explicit categorical data given by Example 3.5.

• The category  is given as the free category on the following graph

𝜔0

𝑓0

𝜔1

𝑓2

𝜔2

𝑓1

𝑓3

• The temporal structure 𝑇 is a family of morphisms that selects all one-step arrows of the graph, i.e. 𝑇 = {𝑓0, 𝑓1, 𝑓2, 𝑓3};

• The relational presheaves associated to the sorts {E,N} are given by the following data. We first consider the action on objects

⟦E⟧(𝜔0) = {𝑒0, 𝑒1, 𝑒2}, ⟦N⟧(𝜔0) = {𝑛0, 𝑛1, 𝑛2};
⟦E⟧(𝜔1) = {𝑒3, 𝑒4}, ⟦N⟧(𝜔1) = {𝑛3, 𝑛4};
⟦E⟧(𝜔2) = {𝑒5}, ⟦N⟧(𝜔2) = {𝑛5}.

By considering the action on morphisms, we define the assignments

⟦E⟧(𝑓0) = {(𝑒4, 𝑒0), (𝑒3, 𝑒1)}, ⟦N⟧(𝑓0) = {(𝑛4, 𝑛0), (𝑛3, 𝑛1), (𝑛4, 𝑛2)};
⟦E⟧(𝑓1) = {(𝑒5, 𝑒4)}, ⟦N⟧(𝑓1) = {(𝑛5, 𝑛3), (𝑛5, 𝑛4)};
⟦E⟧(𝑓2) = {(𝑒5, 𝑒3)}, ⟦N⟧(𝑓2) = {(𝑛5, 𝑛3), (𝑛5, 𝑛4)};
⟦E⟧(𝑓3) = {(𝑒5, 𝑒5)}, ⟦N⟧(𝑓3) = {(𝑛5, 𝑛5)}.

• The relational morphisms associated to each function symbol {𝑠, 𝑡} of the signature are given in the intuitive way, and one can
easily check that these are indeed relational morphisms

(𝑠)𝜔0
= {(𝑒0 ↦ 𝑛0), (𝑒1 ↦ 𝑛1), (𝑒2 ↦ 𝑛2)},

(𝑡)𝜔0
= {(𝑒0 ↦ 𝑛1), (𝑒1 ↦ 𝑛2), (𝑒2 ↦ 𝑛0)};

(𝑠)𝜔1
= {(𝑒3 ↦ 𝑛3), (𝑒4 ↦ 𝑛4)},

(𝑡)𝜔1
= {(𝑒3 ↦ 𝑛4), (𝑒4 ↦ 𝑛3)};

(𝑠)𝜔2
= {(𝑒5 ↦ 𝑛5)},

(𝑡)𝜔2
= {(𝑒5 ↦ 𝑛5)}.

3.6. Semantics of algebraic QLTL

We can now leverage the algebraic structure of the models to increase the expressiveness of our logic QLTL. We briefly summarise
the crucial differences between the non-algebraic and algebraic case with respect to the syntax and semantics of our logic

• formulae are now defined in typed contexts instead of untyped contexts;

• instead of having an atomic formula 𝑥 = 𝑦 that models standard equality of individuals in the world, we can directly equate two
terms 𝑠 =𝜏 𝑡 in a world, with the terms 𝑠, 𝑡 both having type 𝜏 ∈ Σ𝑆 in the signature Σ;

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

18

F. Gadducci, A. Laretto and D. Trotta

• similarly, predicates 𝑃𝜏 are now typed over a generic sort 𝜏 ∈ Σ𝑆 of the signature, and well-typed terms can appear as arguments
of predicates;

• existence of individuals ∃𝑥.𝜙 is typed over a generic sort ∃𝜏𝑥.𝜙.

In this section we assume to be working with a fixed algebraic counterpart  -model ⟨ , 𝑇 , ,⟩. We start by generalising
Notation 3.1 and similarly provide the interpretation of typed contexts as relational presheaves.

Notation 3.2 (Typed contexts as relational presheaves). Given a typed context 𝛤 = [𝑥1 ∶ 𝜏1,… , 𝑥𝑛 ∶ 𝜏𝑛], we indicate with ⟦𝛤 ⟧ the
relational presheaf

⟦𝛤 ⟧ ∶= ⟦𝜏1⟧ ×⋯ × ⟦𝜏𝑛⟧

where × denotes the product of relational presheaves in Definition 3.8.

Definition 3.18 (Interpretation of a term). Given a typed context 𝛤 and a term [𝛤] 𝑡 ∶ 𝜏 , we define the interpretation ⟦𝑡⟧ as the
relational morphism given by induction on the structure of the derivation of the term, as following

• if 𝑡 = 𝑥𝑖 with (𝑥𝑖, 𝜏𝑖) ∈ 𝛤 , then ⟦𝑡⟧ is given by the relational morphism

⟦𝛤 ⟧
𝜋𝑖

←←→ ⟦𝜏⟧

where 𝜋𝑖 is the 𝑖-th projection out of the product of relational presheaves;

• if 𝑡 = 𝑓 (𝑡1,… , 𝑡𝑛), then ⟦𝑡⟧ is given by the composition of relational morphisms

⟦𝛤 ⟧
⟨⟦𝑡𝑖⟧,… , ⟦𝑡𝑛⟧⟩

←←←→ ⟦𝛤 ′⟧
(𝑓)

←←→ ⟦𝜏⟧

where ⟨⟦𝑡𝑖⟧,… , ⟦𝑡𝑛⟧⟩ denotes the 𝑛-ary product of relational presheaves, intuitively mapping the relational morphisms ⟦𝑡𝑖⟧ to each
component of the product.

Finally, we extend the interpretation of QLTL in the algebraic setting by generalising formulae-in-context to typed contexts.

Definition 3.19 (Algebraic QLTL). Given a set of denumerable variables  with 𝑥 ∈  , a family of (unary) predicates  ∶= {𝑃𝜏}𝜏∈Σ𝑆

indexed by sorts 𝜏 , the syntax of algebraic QLTL formulae-in-context is given by

𝜓 ∶= 𝗍𝗋𝗎𝖾 ∣ 𝑠 =𝜏 𝑡 ∣ 𝑃𝜏 (𝑠) 𝜙 ∶= 𝜓 ∣ ¬𝜙 ∣ 𝜙1 ∨ 𝜙2 ∣ ∃𝜏𝑥.𝜙 ∣𝖮𝜙 ∣ 𝜙1𝖴𝜙2 ∣ 𝜙1𝖶𝜙2

where [𝛤] 𝑠 ∶ 𝜏 and [𝛤] 𝑡 ∶ 𝜏 are terms defined in the context 𝛤 of the formula with 𝜏 ∈ Σ𝑆 . We will omit subscripts whenever the
type used in an operator can be inferred from the context.

We now provide only the semantic rules for which their interpretation differs from the non-algebraic case.

Definition 3.20 (Semantics of algebraic QLTL). Given the semantic interpretation of QLTL formulae in Definition 3.10, by extending
the interpretation to typed predicates 𝑃𝜏 (𝜔) ⊆ ⟦𝜏⟧(𝜔) for each sort 𝜏 , predicate symbol 𝑃𝜏 ∈  , and world 𝜔, we can consider the
following additional definitions

• ⟦[𝛤]𝑃𝜏 (𝑠)⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | ⟦𝑠⟧𝜔(𝑎) ∈ 𝑃𝜏 (𝜔)};

• ⟦[𝛤]𝑠 = 𝑡⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | ⟦𝑠⟧𝜔(𝑎) = ⟦𝑡⟧𝜔(𝑎)};

• ⟦[𝛤]∃𝜏𝑥.𝜙⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ⟧(𝜔) | ∃𝑏 ∈ ⟦𝜏⟧(𝜔).⟨𝑎, 𝑏⟩ ∈ ⟦[𝛤 ,𝑥 ∶ 𝜏]𝜙⟧𝜔}.

The intuitive semantics for the first rule is that it identifies the set of assignments in the context such that the typed (unary)
predicate 𝑃𝜏 (𝑠) holds for the term 𝑠 with type 𝜏 in the world 𝜔.

Notice how the definitions of temporal operators given in Definition 3.7 to deal with the temporal operators 𝖮−, −𝖴−, −𝖶− and
their universally quantified counterparts remain unchanged, since the base relational presheaf 𝑋 is simply the relational presheaf
associated to a typed context ⟦𝛤 ⟧(𝜔).

3.7. Examples

We provide some examples of satisfiability for simple algebraic QLTL formulae on the running example in Fig. 9. Taking for
example the formulae

present𝜏 (𝑥) ∶= ∃𝜏𝑦.𝑥 =𝜏 𝑦,

nextStepPreserved𝜏 (𝑥) ∶= present𝜏 (𝑥) ∧𝖮present𝜏 (𝑥),
nextStepDeallocated𝜏 (𝑥) ∶= present𝜏 (𝑥) ∧ ¬𝖮present𝜏 (𝑥),

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

19

F. Gadducci, A. Laretto and D. Trotta

we obtain the set of edges of graphs G1,G2,G3 surviving at the next step

⟦[𝑥 ∶ E] nextStepPreserved(𝑥)⟧𝑤0
= {𝑒0, 𝑒1}

⟦[𝑥 ∶ E] nextStepPreserved(𝑥)⟧𝑤1
= {}

⟦[𝑥 ∶ E] nextStepPreserved(𝑥)⟧𝑤2
= {𝑒5}

Notice that no edge is nextStepPreserved in the second case, since the development ⟦E⟧(𝑓1) deallocates the edge 𝑒4 and, similarly,
⟦E⟧(𝑓2) deallocates the edge 𝑒3. Following the semantics presented in Definition 3.7, we require that a given property has to hold for
every time development of length one.

By considering deallocations we have the following

⟦[𝑥 ∶ E] nextStepDeallocated(𝑥)⟧𝑤0
= {𝑒2}

⟦[𝑥 ∶ E] nextStepDeallocated(𝑥)⟧𝑤1
= {}

⟦[𝑥 ∶ E] nextStepDeallocated(𝑥)⟧𝑤2
= {}

In the second case, we have that again no edge is fully deallocated since it is present in some temporal developments. On nodes we
have that

⟦[𝑥 ∶ N] nextStepPreserved(𝑥)⟧𝑤0
= {𝑛1, 𝑛2}

⟦[𝑥 ∶ N] nextStepPreserved(𝑥)⟧𝑤1
= {𝑛3}

⟦[𝑥 ∶ N] nextStepPreserved(𝑥)⟧𝑤2
= {𝑛5}

We can define formulae that exploit the algebraic structure of worlds and combine them with the temporal operators to consider
their evolution in time. For example, we can construct a formula modelling if an edge 𝑒 is a loop or a node 𝑛 possesses a loop, the
existence of a loop in the current graph, and finally if an edge 𝑒 will become a loop after at least one step

loop(𝑒) ∶= 𝑠(𝑒) =N 𝑡(𝑒),
nodeHasLoop(𝑛) ∶= ∃E𝑒.𝑠(𝑒) =N 𝑛 ∧ loop(𝑒)

hasLoop ∶= ∃E𝑒.loop(𝑒)
willBecomeLoop(𝑒) ∶= ¬loop(𝑒) ∧◊loop(𝑒)

We can verify that the only node having a loop is 𝑛5

⟦[𝑥 ∶ N] nodeHasLoop(𝑥)⟧𝑤0
= {}

⟦[𝑥 ∶ N] nodeHasLoop(𝑥)⟧𝑤1
= {}

⟦[𝑥 ∶ N] nodeHasLoop(𝑥)⟧𝑤2
= {𝑛5}

We can also express this by stating that the loop belongs to the entire world

⟦∅ hasLoop⟧𝑤0
= {}

⟦∅ hasLoop⟧𝑤1
= {}

⟦∅ hasLoop⟧𝑤2
= {∗}

Since hasLoop is a closed formula, the classical attribute only provides binary information either with the empty set or the singleton
set, as described in Remark 3.4.

Notice that again there is no node that becomes a loop after some steps, since we require that this is the case for all temporal
developments

⟦[𝑥 ∶ N] willBecomeLoop(𝑥)⟧𝑤0
= {}

⟦[𝑥 ∶ N] willBecomeLoop(𝑥)⟧𝑤1
= {}

⟦[𝑥 ∶ N] willBecomeLoop(𝑥)⟧𝑤2
= {}

Finally, we consider whether a node will develop a new loop after some time. Since all nodes have a counterpart in the next world,
they all converge to the case of 𝑛5, which already has a loop

⟦[𝑥 ∶ N] ¬nodeHasLoop(𝑥) ∧◊nodeHasLoop(𝑥)⟧𝑤0
= {𝑛0, 𝑛1, 𝑛2}

⟦[𝑥 ∶ N] ¬nodeHasLoop(𝑥) ∧◊nodeHasLoop(𝑥)⟧𝑤1
= {𝑛3, 𝑛4}

⟦[𝑥 ∶ N] ¬nodeHasLoop(𝑥) ∧◊nodeHasLoop(𝑥)⟧𝑤2
= {}

3.8. Remarks on second-order extensions

We conclude this section by discussing a possible second-order extension of QLTL and, in particular, its semantics.

First, recall that having a second-order logic allows us to reason about, quantify, and prove properties of subsets of elements.
Such an expressiveness would be relevant and useful in the formal setting of QLTL, as it would provide us with a formal way to
deal with statements like ``there exists a set of nodes that are always connected'' or ``there exists a subset of nodes such that they are
all connected and after one step they will be all not connected''. In other words, this would allow us to formally reason about local
properties of our graphs and their preservation over time.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

20

F. Gadducci, A. Laretto and D. Trotta

While it is straightforward to extend the syntax and set-based semantics of QLTL with second-order features, extending our
categorical presentation along this line is quite challenging.

In general, the problem of dealing with second (or higher) order features via category theory is that this requires introducing a
suitable power object, i.e. an object that satisfies the universal properties holding for the powerset in Set. The leading example of a
category with power objects is that of a topos, e.g. Set and the category of presheaves over Set. However, in our context the problem
of higher-order features is non-trivial because the category relational presheaves (on a given category) rarely have such a topos-like
structure, as observed in [28]. This is due to the fact that the category Rel is not a topos, but just an power-allegory [29]. For the
formal definition and the proof that Rel is a power-allegory we refer the reader to [29, Prop. 2.414].

Therefore, since we can not employ the formal categorical notion of power object, if we want to properly deal with higher-order
features we have to devise a suitable relational presheaf playing a similar role.

We briefly discuss how one can define such a power-set relational presheaf P(𝑋) ∶ 𝑜𝑝 → Rel of a given presheaf 𝑋 ∶ 𝑜𝑝 → Rel, and
how this can be used to interpreted a second-order extension of QLTL. To this purpose, we employ the known equivalence between
relations and Galois connections (or maps) on power-sets [30], i.e. the equivalence between Rel and Map(𝐏𝐨𝐰), where the latter
denotes the category of maps on power-sets.

Recall from [30, Ex. 2] that once we have a relation 𝑅⊆𝐴×𝐵, we can define a function 𝒫𝑅 ∶𝒫(𝐵)→𝒫(𝐴) (preserving arbitrary
unions) by assigning 𝒫𝑅(𝑆) ∶= {𝑎 ∈ 𝐴 |∃𝑏 ∈ 𝑆 ∶ 𝑎𝑅𝑏} to every subset 𝑆 ⊆ 𝐵. Moreover, given the equivalence Rel ≡Map(𝐏𝐨𝐰),
and using the fact that 𝐏𝐨𝐰 = (𝐏𝐨𝐰𝑜𝑝)𝑜𝑝, we can immediately conclude that the assignment 𝑅 ↦ 𝒫𝑅 preserves compositions and
identities.

Definition 3.21. Let 𝑋 ∶ 𝑜𝑝 → Rel be a relational presheaf. The relational power-set presheaf P(𝑋) ∶ 𝑜𝑝 → Rel is the functor
defined as

• for every object 𝜎 ∈ , P(𝑋)(𝜎) ∶=𝒫(𝑋𝜎) is the power-set of 𝑋𝜎 ,

• for every arrow 𝑓 ∶ 𝜎 → 𝜔 of  the relation P(𝑋)𝑓 ⊆ P(𝑋)𝜔 × P(𝑋)𝜎 is defined as P(𝑋)𝑓 ∶=𝒫𝑋𝑓
.

The relational presheaf P(𝑋) ∶ 𝑜𝑝 → Rel is thus an ordinary presheaf over 𝐒𝐞𝐭. Finally, given a relational presheaf 𝑋 ∶ 𝑜𝑝 → Rel

we define the epsiloff relational presheaf ∈𝑋∶ 𝑜𝑝 → Rel, following the idea and notation in [29].

Definition 3.22. Let 𝑋 ∶ 𝑜𝑝 → Rel be a relational presheaf. The epsiloff relational presheaf is the functor ∈𝑋∶ 𝑜𝑝 → Rel defined
as

• for every 𝜎 ∈ , ∈𝑋 (𝜎) ∶= {(𝑎,𝐴) ∈𝑋𝜎 × P(𝑋)𝜎 | 𝑎 ∈𝐴},

• for every 𝑓 ∶ 𝜎 → 𝜔, (∈𝑋)𝑓 is the relation given by ⟨(𝑏,𝐵), (𝑎,𝐴)⟩ ∈ (∈𝑋)𝑓 if ⟨𝑏, 𝑎⟩ ∈ 𝑋𝑓 and P(𝑋)𝑓 (𝐵) = 𝐴 where 𝐵 ⊆ 𝑋𝜔 and
𝐴⊆𝑋𝜎 .

These relational presheaves allow us to interpret, for examples, the following second-order extension of QLTL (which is based
on the logics considered in [13,14]): the syntax is now equipped with a set of second order (typed) variables  , a set of (atomic)
predicates 𝜓 including the predicates 𝜀 ∈𝜏 𝜒 (where 𝜀 is a first-order variable and 𝜒 is a second-order variable, both of sort 𝜏), and
𝜙 with second order quantifier ∃𝜏𝜒.𝜓 . Following the previous notation, we denote by [Γ,Δ] the contexts where Γ is the context of
first-order variables, while Δ represents the second-order context.

In this setting, we can interpret (with respect to a fixed counterpart  -model as in the previous section) a second order context
Δ as

⟦Δ⟧ ∶= P(⟦𝜏1⟧) ×⋯ × P(⟦𝜏𝑛⟧)

and then a context [Γ,Δ] as

⟦Γ,Δ⟧ ∶= ⟦Γ⟧ × ⟦Δ⟧

The interpretation of the second-order formulae at a given world is as follows

• ⟦[𝛤 ,Δ]𝜀 ∈𝜏 𝜒⟧𝜔 ∶= ⟨𝜋𝜀, 𝜋𝜒 ⟩
∗
𝜔
(∈⟦𝜏⟧ (𝜔)) where ⟨𝜋𝜀, 𝜋𝜒 ⟩ ∶ ⟦𝛤 ,Δ⟧ → ⟦𝜀 ∶ 𝜏,𝜒 ∶ 𝜏⟧ denotes the opportune projection of relation

presheaves;

• ⟦[𝛤 ,Δ]∃𝜏𝜒.𝜙⟧𝜔 ∶= {𝑎 ∈ ⟦𝛤 ,Δ⟧(𝜔) | ∃𝑏 ∈ P(⟦𝜏⟧)(𝜔).⟨𝑎, 𝑏⟩ ∈ ⟦[𝛤 ,𝜒 ∶ 𝜏,Δ]𝜙⟧𝜔}.

Therefore, even if the category of relational presheaves is not equipped with power objects, we can define suitable relational
presheaves allowing us to provide a meaningful interpretation of second-order extension of QLTL.

Again, we stress the fact that this is just a possible solution to the problem of the absence of power objects, and other possible
solutions could be adopted. Defining and studying the properties of other powerset-like relational presheaves is an interesting line of
investigation for future works.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

21

F. Gadducci, A. Laretto and D. Trotta

4. Agda formalisation

In this chapter we present an overview of an additional contribution of this work, a formalisation of the categorical semantics
presented in Section 3 using the dependently typed programming language and proof assistant Agda [20]. We introduce here just a
part of the formalised codebase, and we focus on the most important structures and definitions by providing the semantics of our
logic directly with algebraic counterpart  -models. The full code of the categorical formalisation is available at [31], whereas the
code for the set-based formalization for positive normal forms is available at [23].

We assume in this chapter that the reader is familiar with Agda and its notation, but we believe that most of the definitions
presented in the following sections can be understood even with little or no familiarity with the language and its syntax. For a
complete introduction to Agda we refer to [32].

4.1. Formalisation aspects

Our formalisation work consists in the mechanisation of all the aspects presented so far: we start by defining the notions of
counterpart relations and traces of relational morphisms as models of the logic, and provide a representation for (well-typed and
well-scoped) syntax for formulae of QLTL and PNF along with their satisfiability semantics. Then, we provide a conversion function
from QLTL to PNF along with proofs of correctness and completeness of the procedure; finally, using the defined framework, we prove
among other equivalences the relevant expansion laws introduced in Section 2.3.2 for the functional setting. The implementation is
general enough to consider the case of algebras over any generic multi-sorted signature. In practice, this means that by specifying a
suitably defined signature the class of models (and formulae) considered by the logic can be extended to the case of any graphical
formalism that admits an algebraic representation on a multi-sorted signature, such as trees, hypergraphs, and so on.

Moreover, given the constructive interpretation of the formalisation, proving that the correctness and completeness of PNF with
respect to QLTL also doubles-down as a concrete procedure that can convert formulae into their positive normal form version, while
at the same time providing a proof of the correctness of the conversion.

We describe now how the main components provided by our formalisation can be employed by the user to interact with the proof
assistant.

• Signature definition. Exploiting the definitions given in our formalisation, the user can write their own algebraic signature that will
be used to represent the system of interest as algebras on the signature. For example, by defining the signature of graphs Gr the
user can reason on the temporal evolution of graphs, using (relational) graph homomorphisms as counterpart relations between
worlds.

• Formula construction. After having provided the signature of interest, the user can construct formulae using the full expressiveness
of QLTL and can reason on equality of terms constructing according to the signature. This allows the user to express properties
that combine both logical quantifiers as well as exploiting the specific structure of the system, possibly composing and reusing
previously defined formulae. The infrastructure provided by the formalisation is such that the formulae constructed by the user are
inherently checked to be well-scoped and well-typed with respect to the sorts of the signature, e.g. edges and nodes in the case of
graphs. The user can freely use negation in formulae, and can (optionally) use the procedures we defined to automatically convert
formulae to their PNF, which we have seen in Section 2.3 how can be particularly counterintuitive in the counterpart setting with
respect to standard temporal logics.

• Model definition. The models of the system at various time instances can be constructed by the user, following again the signature
provided. Then, the user specifies a series of symbolic worlds and indicates the possible transitions that can be taken by defining
a relation on the worlds. Then, an algebra of the signature must be assigned to each world, and the connection between worlds
is translated into a morphism between the algebras provided by the user. The transitions of the models are checked by Agda
to preserve the algebraic structure of the worlds considered, thus corresponding to the notion of graph morphisms; this step is
relatively straightforward as the automation available in Agda helps with proving the structure-preservation of the maps. Traces
between worlds are given using a coinductive definition of traces using sized types [33], allowing for infinite (repeating) traces to
be modelled and defined by the user.

• Validation of formulae in the model. Using the library the user can prove that a specific model satisfies a given formula; our formali

sation automatically simplifies the goal that must be proven to verify the formula, and the user is guided by the proof assistant by
automatically constructing the skeleton of the proof term.

4.2. Logics in a constructive proof assistant

In our setting, some crucial usability issues need to be mentioned. Agda is a proof assistant based on the Curry-Howard corre

spondence, where types are connected with propositions and elements of a type are viewed as its proofs [34]. This paradigm gives an
intuitionistic interpretation of mathematics, where proving a theorem amounts to being able to show a concrete witness of its validity.
In practice, this means that some useful logical principles often used in the setting of temporal logics, such as the law of excluded
middle, double negation elimination, or the De Morgan laws to switch connectives and quantifiers whenever negation appears in sub

formulae, are not provable in the system. Consequently, both implementer and user would not be able to prove that for example in our
logic QLTL the formula ¬¬𝜙 ⟹ 𝜙 always holds for any choice of models and formula 𝜙, since it is not provable in the metalanguage
provided by the proof assistant. Thus, without explicitly assuming any other logical principle, the embedding of our temporal logic is

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

22

F. Gadducci, A. Laretto and D. Trotta

actually restricted to the intuitionistic fragment of QLTL. In practice, this is not particularly problematic since classical reasoning can
simply be assumed as axiom, and allows the equivalences previously mentioned to be recovered: this however would be undesirable
from the user’s perspective, as they would have to explicitly use these classical axioms in their proofs.

The negation of logical connectives can also be cumbersome to handle practically. In constructive mathematics, negation is defined
as the implication ¬𝜙 ∶= 𝜙 ⟹ ⊥, where ⊥ indicates the empty type, i.e. falsity. This forces the user to always apply a reductio

ad-absurdum technique to prove the validity of any proposition involving negation, first assuming that the formula is valid and then
deriving a contradiction. On the other hand, it is often desirable to directly express the negation of a formula using other formulae
available in the logic that are easier to manipulate, while still maintaining the full expressivity of the original logic with no additional
power. This is a core use case of positive normal forms such as the one presented in Section 2.3.

As an example specific to our logic, consider the case where we try to prove

𝜎,𝜇 ⊨QLTL ¬(¬𝜙1𝖴¬𝜙2)

In order to prove this in the constructive setting, one needs to show that a contradiction can be derived by assuming there exists
an 𝑛 with the desired properties. It can often be easier to directly work with its negated formula

𝜎,𝜇 ⊨QLTL 𝜙2𝖶(𝜙1 ∧ 𝜙2)

since, by construction, directly provides two cases to be analysed where either 𝜙2 always holds or a concrete 𝑛 is given where both
formulae are satisfied.

Working with the negation of simple connectives such as ¬(𝜙1 ∨ 𝜙2) can also be problematic, since converting disjunctions
in conjunctions uses the classical direction of the De Morgan law which implicitly relies on double negation elimination. A similar
mechanism happens with first-order quantifiers, such as those used in our logic, as well as in the case of temporal operators.

In order to tackle these usability issues and the treatment of negation in the intuitionistic setting, we take the following approach:
the formulae of the logic are expressed in Agda using a full positive normal form similar to the one presented in Section 2.3, giving the
user complete accessibility over the extended set of quantifiers. This lifts the user from having to deal with negation in subformulas,
which can be problematic as we mentioned. On the other hand, the positive normal form is supported by the equiexpressivity results
shown in Theorem 2.1, which, to be formally proven in Agda, do require classical principles to be postulated. This effectively shifts
the burden of dealing (classically) with negation from the user to the implementer, while providing a theoretical guarantee that no
expressive power is either gained or lost in the presentation of the logic.

4.2.1. Automation

Embedding a temporal logic in a proof assistant allows the user to exploit the assistant aspect of the tool, e.g. by aiding the user
in showing (or even proving automatically) that a certain formula in a model is satisfied or not.

In Agda, this automation aspect is limited, especially if compared to proof assistants where automation and the use of tactics
is a core aspect of the software environment, such as Coq [35], Lean [36], and Isabelle [37]. The Agda synthesizer Agsy [38] is
the main helper tool in Agda implementing a form of automated proof search. Unfortunately, Agsy only provides general-purpose
searching procedures and its theorem proving capabilities are nowhere near those of specialised model checking algorithms. Still, the
goal-oriented interactivity available in Agda is an invaluable tool in proving theorems step-by-step and manually verify formulae in
our setting, and the assisted introduction of constructors allows the user to quickly generate the proof structure needed to validate
temporal formulae.

4.2.2. Category theory

The agda-categories library [21] is a category theory library implemented in Agda, using proof-relevance and setoid-based
reasoning as core design choices. In our context of temporal logics, we show that the library provides a solid foundation to use
category-theoretical notions even in a practical context that does not necessarily touch upon the theoretical aspects of category
theory, but where the categorical perspective is simply used to provide the appropriate data for our models. We will explain the
notation used in agda-categories whenever required, but we do not provide details ifor the definitions and structures offered by
the library.

5. Agda code

In the following sections we present more in detail the main components of our formalisation work. A preliminary part which
captures multi-sorted signatures and algebras is left in Appendix A, and we focus here only on the formalisation of the categorical
semantics. We start by describing the formalisation of relational presheaves and algebraic counterpart  -models, highlighting the
constructions that allow to convert the categorical models into classical ones and viceversa. After showing how we formalise the
notion of classical attribute, we introduce the syntax and semantics of our quantified temporal logic, and formalise the examples
shown in Section 3.7. The code presented in this chapter has been structured and checked as an Agda literate file and we will omit
for simplicity several details, imports, and proofs.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

23

https://archive.softwareheritage.org/swh:1:rev:ef96c8b657b9b9cc261dd5b01c6237701a75085e;origin=https://github.com/agda/agda-categories;visit=swh:1:snp:7f400967c84d441d29085226f4dcbdc1736b3132
https://archive.softwareheritage.org/swh:1:rev:ef96c8b657b9b9cc261dd5b01c6237701a75085e;origin=https://github.com/agda/agda-categories;visit=swh:1:snp:7f400967c84d441d29085226f4dcbdc1736b3132

F. Gadducci, A. Laretto and D. Trotta

5.1. Relational presheaves

We start by formally capturing the notion of relational presheaf on a given category C, which we provide by parameterising the
RelPresheaves module with respect to any category C:

module RelPresheaves {co c𝓁 ce } (C : Category co c𝓁 ce) where

A relational presheaf is simply a presheaf with the category of sets and relations Rels as target:

RelPresheaf : Set (suc𝓁 co ⊔ suc𝓁 c𝓁 ⊔ ce)
RelPresheaf = Presheaf C (Rels co c𝓁)

Given two relational presheaves, a relational morphism between them is given by the pointwise map between their sets 𝜂, along
with an imply property stating that target elements are related by Y whenever they were related by X at the source. For any given
functor X, the functions X.0 and X.1 refer to the action on objects and morphisms, respectively. The notation C [𝜔1 , 𝜔2] refers to
the type of morphisms in the category C between 𝜔1 and 𝜔2.

record RelPresheaf⇒ (X : RelPresheaf) (Y : RelPresheaf)
: Set (co ⊔ c𝓁) where

private
module X = Functor X
module Y = Functor Y

open Category C

field
𝜂 : ∀ {𝜔 } → X.0 𝜔 → Y.0 𝜔
imply : ∀ {𝜔1 𝜔2 t s } {f : C [𝜔1 , 𝜔2] }

→ X.1 f t s
→ Y.1 f (𝜂 t) (𝜂 s)

Finally, relational presheaves and relational morphisms form a category where identity and composition are defined in the in

tuitive way. We omit the proofs of associativity and identity required to prove that RelPresheaves is a Category since they follow
definitionally.

RelPresheaves : Category _ _ _
RelPresheaves = record

{ Obj = RelPresheaf
; _⇒_ = RelPresheaf⇒
; _≈_ = 𝜆 F G → ∀ {𝜔 } x → F.𝜂 {𝜔 } x ≡ G.𝜂 {𝜔 } x
; id =

record { 𝜂 = id
; imply = id
}

; _◦_ = 𝜆 F G →
record { 𝜂 = F.𝜂 ◦ G.𝜂

; imply = F.imply ◦ G.imply
}

}

5.2. Counterpart models

We now provide the definition of counterpart model from the non-categorical perspective. First, we define a standard counterpart
model, as given in Definition 2.2:

module CounterpartClassical {𝓁 } where
record LewisCounterpartModel : Set (suc𝓁 𝓁) where

field
W : Set 𝓁
D : W → Set 𝓁
R : Rel W 𝓁
C : ∀ {w1 w2 }
→ R w1 w2
→ REL (D w1) (D w2) 𝓁

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

24

F. Gadducci, A. Laretto and D. Trotta

The function C is to be interpreted as assigning a relation between two worlds whenever they are themselves connected using the
accessibility relation R. Note that this does not impose a restriction on having multiple counterpart relations between worlds since,
in Agda, the relation R can be inhabited with multiple witnesses for the same pair of worlds.

Having introduced the notions of algebras and relational homomorphisms, we now extend the standard version of counterpart
models to the algebraic case, using algebras as worlds and relational homomorphisms of algebras instead of counterpart relations:

record CounterpartModel (Σ : Signature {𝓁 }) : Set (suc𝓁 𝓁) where
field

W : Set 𝓁
d : W → Σ-Algebra Σ
⇝ : Rel W 𝓁
f : ∀ {w1 w2 }
→ w1 ⇝ w2
→ Σ-Rel (d w1) (d w2)

Similarly as with the case of a standard LewisCounterpartModel, this definition of CounterpartModel allows for worlds to be
connected through multiple relational homomorphisms.

5.3. Algebraic counterpart  -model

We now provide the definition of an algebraic counterpart  -model.

module CounterpartCategorical where

First, we need to define the relational presheaf associated to a context, which we again consider here as a Ctx. For simplicity, we
omit here the proofs of identity and functoriality of the presheaf defined, and we only show the actions on objects F0 and F1:

module ContextPresheaf {𝓁 } {W : Category 𝓁 𝓁 𝓁 } { : Set 𝓁 }
(⟦_⟧ :  → RelPresheaf W) where

⟦_⟧* : ∀ {n } → Vec  n → RelPresheaf W
⟦ Γ ⟧* =

record
{ F0 = 𝜆 𝜔 → mapT (𝜆 Σ → F0 (⟦ Σ ⟧) 𝜔) Γ
; F1 = 𝜆 f → zip (𝜆 {Σ } → F1 (⟦ Σ ⟧) f)
}

An algebraic counterpart  -model on a given signature is simply the collection of the three fields given in Definition 3.17: a
category W, a presheaf ⟦ 𝜏 ⟧ on W for each sort 𝜏 , and a family I of relational morphisms for each function symbol. Each relational
morphism I f has as source the relational presheaf associated to the product of input types of the function, and as target the relational
presheaf of the return type:

record CounterpartWModel {𝓁 } (Σ : Signature {𝓁 }) : Set (suc𝓁 𝓁) where
field

W : Category 𝓁 𝓁 𝓁
⟦_⟧ : ∀ (𝜏 : ) → RelPresheaf W
I : ∀ (f : ) → RelPresheaf⇒ ⟦ args f ⟧* ⟦ ret f ⟧

Given a counterpart  -model, we also obtain the following definitions associated to it. The projection relational morphism, which
corresponds exactly with the lookup operation in a context, is given by the following:

𝜋𝑖 : ∀ {n } {Γ : Ctx n }
→ (i : Fin n)
→ RelPresheaf⇒ (⟦ Γ ⟧*) ⟦ Vec.lookup Γ i ⟧

𝜋𝑖 i = record { 𝜂 = lookup i
; imply = lookup-zip i
}

Moreover, we have a relational morphism given by the uniqueness property of the cartesian product of a context. This essentially
allows us to apply a Vec of relational presheaves to each sort of a context Γ′ . This is given by induction on the structure of the context
Γ′ on which the mapping is applied:

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

25

F. Gadducci, A. Laretto and D. Trotta

⟨_⟩* : ∀ {n m } {Γ : Ctx n } {Γ′ : Ctx m }
→ mapT (𝜆 𝜏 → RelPresheaf⇒ (⟦ Γ ⟧*) ⟦ 𝜏 ⟧) Γ′
→ RelPresheaf⇒ (⟦ Γ ⟧*) (⟦ Γ′ ⟧*)

⟨_⟩* {Γ ′ = [] } * =
record { 𝜂 = 𝜆 _ → *

; imply = 𝜆 _ → *
}

⟨_⟩* {Γ ′ = _ ∶∶ _} (x , xs) =
let module x = RelPresheaf⇒ x

module xs = RelPresheaf⇒ (⟨ xs ⟩*)
in record { 𝜂 = < x.𝜂 , xs.𝜂 >

; imply = < x.imply , xs.imply >
}

Finally, following Definition 3.18 we have the relational morphism associated to a term, given by induction on the term structure.
We use the superscript 𝑡 to indicate that this is the semantic interpretation of terms.

⟦_⟧𝑡 : ∀ {i n 𝜏 } {Γ : Ctx n }
→ Γ ⊢ 𝜏 ⟨ i ⟩
→ RelPresheaf⇒ (⟦ Γ ⟧*) ⟦ 𝜏 ⟧

⟦ var i ⟧𝑡 = 𝜋𝑖 i
⟦ fun f x ⟧𝑡 = I f ◦ ⟨ map ⟦_⟧𝑡 x ⟩*

5.4. Temporal structure

The last piece of data for our models is the notion of temporal structure on a category W. A temporal structure is implemented as
a (unary) predicate of arrows of the category, thus selecting a specific family of one-step morphisms:

record TemporalStructure {co c𝓁 ce }
(W : Category co c𝓁 ce)
: Set (suc𝓁 (co ⊔ c𝓁)) where

constructor TStructure
open Category W

field
T : ∀ {A B } → Pred (A ⇒ B) c𝓁

For any given temporal structure T, we define a Path from some object A to be a coinductive datatype containing an arrow of the
category arr : A ⇒ B, an implicit proof arr ∈ T indicating that arr is selected by the temporal structure T, and a successor path. We
again use sized types and the Thunk comonad instead of coinductive records since we will need to pattern match on Paths and reason
by cases on the arrow A ⇒ B provided by the path:

data Path (A : Obj) (i : Size) : Set (co ⊔ c𝓁) where
→ : ∀ {B }

→ (arr : A ⇒ B)
→ {arr ∈ T}
→ Thunk (Path B) i
→ Path A i

Given a path we define some self-explanatory accessors on its components:

next : ∀ {A i } → Path A i → Obj
next (_→_ {B } _ _) = B

arr : ∀ {A } → (p : Path A ∞) → A ⇒ next p
arr (a → _) = a

tail : ∀ {A i } {j : Size< i } → (p : Path A i) → Path (next p) j
tail (_ → p) = p .force

We can take for any i the world given by the trace after i steps, and the arrow compose≤ p i obtained by composing the first i
arrows together, noting that this arrow is not necessarily part of the temporal structure.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

26

F. Gadducci, A. Laretto and D. Trotta

obj : ∀ {A } → Path A ∞ → ℕ → Obj
obj {A } p zero = A
obj p (suc i) = obj (tail p) i

compose≤ : ∀ {A } → (p : Path A ∞) → (n : ℕ) → A ⇒ obj p n
compose≤ p zero = id
compose≤ p (suc i) = compose≤ (tail p) i ◦ arr p

5.5. From classical to categorical models

A temporal counterpart  -model is simply the definition of CounterpartWModel endowed with an additional temporal structure
T on its category W:

record TemporalCounterpartWModel {𝓁 } (Σ : Signature {𝓁 }) : Set (suc𝓁 𝓁) where
field

M : CounterpartWModel Σ

open CounterpartWModel M public

field
T : TemporalStructure W

Given a classical CounterpartModel on algebras, we can obtain the corresponding categorical model by defining a procedure that
constructs a TemporalCounterpartWModel following Proposition 3.1. Since our logic QLTL is defined using the categorical presenta

tion with presheaf semantics, this procedure can be exploited to leverage the categorical semantics on classical models, which are
easier to describe and do not refer to presheaves:

module ClassicalToCategorical {𝓁 } {Σ : Signature {𝓁 }} where

open import Relation.Binary.Construct.Composition using (_;_)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive

using (Star; 𝜀; _⊲_; _⊲⊲_; _⊳⊳_)
open import Categories.Category.Construction.PathCategory

using (PathCategory)

The construction follows precisely the idea described in Proposition 3.1.

ClassicalToCategorical : CounterpartModel Σ
→ TemporalCounterpartWModel Σ

ClassicalToCategorical M =

We elucidate the four fields W, ⟦_⟧, I, and T provided by the construction. Given a classical model, the category W is given by the
free category (indicated here by PathCategory) induced by the set of worlds W of the model with the accessibility relation _⇝_ on
it:

record
{ M = record

{ W = PathCategory
record

{ Obj = W
; _⇒_ = _⇝_
; _≈_ = _≡_
; equiv = isEquivalence
}

For any sort 𝜏 , its corresponding presheaf ⟦ 𝜏 ⟧ takes each world 𝜔 to the set of objects of the algebra d 𝜔. Similarly, for any
function symbol  , the relational morphism I takes each world 𝜔 to the corresponding function given by the algebra d 𝜔 on the
symbol  . In order to show that this is a proper relational morphism, an additional lemma star-imply is shown later in this section
using the homomorphism property 𝜌-homo of relational homomorphisms between algebras:

; ⟦_⟧ =

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

27

F. Gadducci, A. Laretto and D. Trotta

𝜆 𝜏 →
record

{ F0 = 𝜆 𝜔 → S (d 𝜔) 𝜏
; F1 = StarRel
; identity = (𝜆 { refl → lift refl }) , 𝜆 { (lift refl) → refl }
; homomorphism = 𝜆 { {g = g } → star-homomorphism {f = g }}
; F-resp-≈ = star-resp-≈*
}

; I =
𝜆  →

record
{ 𝜂 = 𝜆 {𝜔 } → F (d 𝜔) 
; imply = 𝜆 { {f = f } → star-imply f }
}

}

The temporal structure T associated to this model is a simple predicate that returns the unit type ⊤ for all morphisms of the free
category with length exactly one. The empty type ⊥ representing falsity is given in the other cases:

; T = TStructure
𝜆 { 𝜀 → ⊥

; (_ ⊲ 𝜀) → ⊤
; (_ ⊲ (_ ⊲ _)) → ⊥
}

}

The action on arrows of the relational presheaf ⟦ 𝜏 ⟧ is given by the function StarRel, which lifts the arrows of the free category
to relations between the sets of the algebra, for any sort 𝜏 . This lifting is defined by cases on the length of the morphism of the free
category:

where
StarRel : ∀ {𝜏 A B }
→ Star _⇝_ B A
→ REL (S (d A) 𝜏) (S (d B) 𝜏) 𝓁
StarRel 𝜀 = _≡_
StarRel (B⇝C ⊲ C⇝*A) = StarRel C⇝*A ; flip (𝜌 (f B⇝C))

where the base case is the identity relation _≡_ and composition of relations _;_ is applied in the inductive case. The use of flip is
dictated by the fact that presheaves are functors in the opposite category W𝑜𝑝, thus the relation given by the counterpart model needs
to be inverted before composing it.

We briefly recap here the obligations that must be proved for the previous construction, omitting their proofs.

star-homomorphism : ∀ {𝜏 X Y Z } {g : Star _⇝_ Y X } {f : Star _⇝_ Z Y }
→ StarRel {𝜏 } (g ⊳⊳ f) ≈ StarRel {𝜏 } f ◦ StarRel {𝜏 } g

star-imply : ∀ { 𝜎 𝜏 t s } f
→ zip (StarRel f) t s
→ StarRel f (F (d 𝜏)  t) (F (d 𝜎)  s)

star-resp-≈* : ∀ {𝜏 } {A B } {f g : Star _⇝_ B A }
→ f ≈* g
→ Rels 𝓁 𝓁 [StarRel {𝜏 } f ≈ StarRel {𝜏 } g]

In these last lemmas the function _⊳⊳_ and the relation _≈*_ indicate composition and morphism equality in the PathCategory,
respectively.

5.6. Classical attributes

In order to define satisfiability, we introduce the notion of ClassicalAttribute. A classical attribute on a relational presheaf X is
defined as a (unary) predicate which identifies a subset of X in 𝜔, for each of the worlds 𝜔:

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

28

F. Gadducci, A. Laretto and D. Trotta

module ClassicalAttributes {co c𝓁 ce } (W : Category co c𝓁 ce)
(T : TemporalStructure W) where

ClassicalAttribute : RelPresheaf W → Set (suc𝓁 (co ⊔ c𝓁 ⊔ ce))
ClassicalAttribute X = ∀ {𝜔 } → Pred (X.0 𝜔) _

where module X = Functor X

The action of temporal operators on classical attributes for a given relational presheaf X is defined according to Definition 3.7. We
first provide some shorthands to capture the notion of existential and universal quantification of counterparts with a certain property
A after i steps:

module _ (X : RelPresheaf W) where
private module X = Functor X
-- Shorthand for:
-- ``There exists a counterpart for s in the
-- path p after i steps which satisfies A''
at∃ : ∀ {𝜔 } → Path 𝜔 ∞ → X.0 𝜔 → ClassicalAttribute X → ℕ → Set _
at∃ p s A i = ∃[z] X.1 (compose≤ p i) z s × z ∈ A

-- Shorthand for:
-- ``All counterparts of s in the path p
-- after i steps satisfy A''
at∀ : ∀ {𝜔 } → Path 𝜔 ∞ → X.0 𝜔 → ClassicalAttribute X → ℕ → Set _
at∀ p s A i = ∀ z → X.1 (compose≤ p i) z s → z ∈ A

The one-step classical attributes for the next 𝖮𝜙 and next-forall 𝖠𝜙 operators are defined in the intuitive way. Notice how we again
require as implicit argument a proof 𝜌 ∈ T that the morphisms considered by the two operators are part of the temporal structure:

XO : ClassicalAttribute X → ClassicalAttribute X
XO A s = ∀ {𝜎 }

→ (𝜌 : _ ⇒ 𝜎)
→ {𝜌 ∈ T}
→ ∃[z] X.1 𝜌 z s × s ∈ A

XA : ClassicalAttribute X → ClassicalAttribute X
XA A s = ∀ {𝜎 }

→ (𝜌 : _ ⇒ 𝜎)
→ {𝜌 ∈ T}
→ ∀ z → X.1 𝜌 z s → s ∈ A

We use a set of standard predicates inspired by LTL in order to make subsequent definitions more readable:

-- A holds for all i strictly before n steps
before : ∀ {𝓁 } (A : Pred ℕ 𝓁) → Pred ℕ 𝓁
A before n = ∀ i → i < n → i ∈ A

-- A holds until B is satisfied
until : ∀ {𝓁 } (A B : Pred ℕ 𝓁) → Set 𝓁
A until B = ∃[n] (A before n × n ∈ B)

-- A is always satisfied at each step
always : ∀ {𝓁 } (A : Pred ℕ 𝓁) → Set 𝓁
always A = ∀ i → i ∈ A

-- Either until or always hold
weakUntil : ∀ {𝓁 } (A B : Pred ℕ 𝓁) → Set 𝓁
A weakUntil B = A until B ⊎ always A

Finally, we define the classical attributes associated to each operator by combining the previous shorthands to provide any possibile
operator. The predicates at∃ p s A and at∃ p s A are curried over the number of steps i, and are thus viewed as predicates on integers
ℕ:

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

29

F. Gadducci, A. Laretto and D. Trotta

XU : ClassicalAttribute X → ClassicalAttribute X → ClassicalAttribute X
XU A B {𝜔 } s = ∀ (p : Path 𝜔 ∞) → (at∃ p s A) until (at∃ p s B)

XF : ClassicalAttribute X → ClassicalAttribute X → ClassicalAttribute X
XF A B {𝜔 } s = ∀ (p : Path 𝜔 ∞) → (at∀ p s A) until (at∀ p s B)

XW : ClassicalAttribute X → ClassicalAttribute X → ClassicalAttribute X
XW A B {𝜔 } s = ∀ (p : Path 𝜔 ∞) → (at∃ p s A) weakUntil (at∃ p s B)

XT : ClassicalAttribute X → ClassicalAttribute X → ClassicalAttribute X
XT A B {𝜔 } s = ∀ (p : Path 𝜔 ∞) → (at∀ p s A) weakUntil (at∀ p s B)

5.7. Syntax and semantics of QLTL

We now introduce the definition of QLTL formulae, which are intrinsically well-scoped and well-typed with respect to the algebra
signature. Following the positive normal form given in Section 2.3 and the issues discussed in Section 4.1, we present the syntax of
algebraic QLTL by explicitly providing the entire set of operators as well as negation:

module QLTL {𝓁 } {Σ : Signature {𝓁 }}
(M : TemporalCounterpartWModel Σ) where

The type of QLTL formulae QLTL carries the context Γ in which the formula is defined. We start with the standard cases of
formulae with constants, simple connectives and temporal operators:

data QLTL {n } (Γ : Ctx n) : Set 𝓁 where
true : QLTL Γ
false : QLTL Γ
!_ : QLTL Γ → QLTL Γ
∧ : QLTL Γ → QLTL Γ → QLTL Γ
∨ : QLTL Γ → QLTL Γ → QLTL Γ
O_ : QLTL Γ → QLTL Γ
A_ : QLTL Γ → QLTL Γ
F : QLTL Γ → QLTL Γ → QLTL Γ
U : QLTL Γ → QLTL Γ → QLTL Γ
W : QLTL Γ → QLTL Γ → QLTL Γ
T : QLTL Γ → QLTL Γ → QLTL Γ

Existential and universal quantification state explicitly the sort 𝜏 on which they quantify on. The context of the inner formula is
then extended with a new free variable with type 𝜏 , which allows the terms in the sub-formula to refer to it:

∃<_>_ : (𝜏 : )
→ QLTL (𝜏 ∶∶ Γ)
→ QLTL Γ

∀<_>_ : (𝜏 : )
→ QLTL (𝜏 ∶∶ Γ)
→ QLTL Γ

Finally, the elementary formulae for equality of terms considers the two terms in the context of the formula:

≡𝑡 : ∀ {i 𝜏 }
→ Γ ⊢ 𝜏 ⟨ i ⟩
→ Γ ⊢ 𝜏 ⟨ i ⟩
→ QLTL Γ

≢𝑡 : ∀ {i 𝜏 }
→ Γ ⊢ 𝜏 ⟨ i ⟩
→ Γ ⊢ 𝜏 ⟨ i ⟩
→ QLTL Γ

We can define the usual syntactic sugar for derived temporal operators:

◊_ : ∀ {n } {Γ : Ctx n } → QLTL Γ → QLTL Γ

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

30

F. Gadducci, A. Laretto and D. Trotta

◊ 𝜙 = true U 𝜙

□_ : ∀ {n } {Γ : Ctx n } → QLTL Γ → QLTL Γ
□ 𝜙 = 𝜙 W false

◊*_ : ∀ {n } {Γ : Ctx n } → QLTL Γ → QLTL Γ
◊* 𝜙 = true F 𝜙

□*_ : ∀ {n } {Γ : Ctx n } → QLTL Γ → QLTL Γ
□* 𝜙 = 𝜙 T false

The semantics of QLTL formulae is simply a function ⟨_⟩ that assigns a predicate to formulae in each world. Each predicate ⟨ 𝜙 ⟩
is defined to be true for a given tuple of elements a in a world 𝜔 whenever the formula 𝜙 is satisfied by that assignment of elements
a. This definition corresponds exactly to the notion of classical attribute, with the latter being considered on the relational presheaf
of the underlying context ⟦ Γ ⟧*.

⟨_⟩ : ∀ {n } {Γ : Ctx n } → QLTL Γ → ClassicalAttribute (⟦ Γ ⟧*)
⟨ true ⟩ a = ⊤
⟨ false ⟩ a = ⊥
⟨ ! 𝜙 ⟩ a = ¬ ⟨ 𝜙 ⟩ a
⟨ 𝜙1 ∧ 𝜙2 ⟩ a = ⟨ 𝜙1 ⟩ a × ⟨ 𝜙2 ⟩ a
⟨ 𝜙1 ∨ 𝜙2 ⟩ a = ⟨ 𝜙1 ⟩ a ⊎ ⟨ 𝜙2 ⟩ a
⟨ ∃< 𝜏 > 𝜙 ⟩ a = ∃[b] ⟨ 𝜙 ⟩ (b , a)
⟨ ∀< 𝜏 > 𝜙 ⟩ a = ∀ b → ⟨ 𝜙 ⟩ (b , a)
⟨ t1 ≡𝑡 t2 ⟩ a = 𝜂 (⟦ t1 ⟧𝑡) a ≡ 𝜂 (⟦ t2 ⟧𝑡) a
⟨ t1 ≢𝑡 t2 ⟩ a = 𝜂 (⟦ t1 ⟧𝑡) a ≢ 𝜂 (⟦ t2 ⟧𝑡) a
⟨ O 𝜙 ⟩ = XO (⟦ _ ⟧*) ⟨ 𝜙 ⟩
⟨ A 𝜙 ⟩ = XA (⟦ _ ⟧*) ⟨ 𝜙 ⟩
⟨ 𝜙1 U 𝜙2 ⟩ = XU (⟦ _ ⟧*) ⟨ 𝜙1 ⟩ ⟨ 𝜙2 ⟩
⟨ 𝜙1 F 𝜙2 ⟩ = XF (⟦ _ ⟧*) ⟨ 𝜙1 ⟩ ⟨ 𝜙2 ⟩
⟨ 𝜙1 W 𝜙2 ⟩ = XW (⟦ _ ⟧*) ⟨ 𝜙1 ⟩ ⟨ 𝜙2 ⟩
⟨ 𝜙1 T 𝜙2 ⟩ = XT (⟦ _ ⟧*) ⟨ 𝜙1 ⟩ ⟨ 𝜙2 ⟩

6. Conclusion

We have shown how a set-based semantics and a categorical semantics for a first-order linear temporal logic can be presented
in the counterpart setting. We have investigated some results on the positive normal forms of this logic in the case of relations and
partial functions, and argued for their usefulness both in practice and in the case of constructive proof assistants. Finally, we saw
how its models can be naturally extended to the algebraic setting, and how the notions and the categorical models presented in the
previous chapters can be formalised and practically experimented with in a proof assistant based on dependent type theory such as
Agda. We have investigated some results on the positive normal forms of this logic in the case of relations and partial functions, and
argued for their usefulness both in practice and in the case of constructive proof assistants.

6.1. Related work

Up to the early 2010s, a series of papers argued for the use of quantified logics for expressing properties of graphs and of graph
evolutions. Our models are inspired by the counterpart-based logics explored in the context of a 𝜇-calculus with fixed points in [13],
and we refer there for an overview of and a comparison with the by-then current proposals, all favouring an approach based on
universal domains. Missing there is [39] and follow-ups such as [40,41], which illustrate one of the relevant tools developed in the
graph community, GROOVE. To some extent, the present article and its companion [14], which introduces the categorical semantics
of QTL, are summarising a previous thread of research concerning counterpart models, including its implementation. Indeed, the
categorical semantics for counterpart models seems of interest in itself, as witnessed by the works surveyed in [14].

The formalisation of temporal logics in (constructive) proof assistants has a long history, see e.g. [42--44]. A practical application
and comparison with modern model checkers is in [45], and a fully verified one for LTL is implemented in the Isabelle theorem
prover. In [46], a verified proof-search program fro CTL is formalised in Agda, together with a toolbox to implement well-typed
proof-searching procedures; a similar embedding of constructive LTL in Agda is provided in [47] for the verification of functional
reactive programs. Our proof-of-concept implementation of QLTL witnesses the possibility to move towards the formalisation of
quantified temporal logics for proof assistants, an issue sparsely tackled in the literature.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

31

F. Gadducci, A. Laretto and D. Trotta

6.1.1. Comparison with graph computation formalisms

Section 3.4 shows how the counterpart paradigm allows for reasoning on the evolution of any formalism that can be presented
by a multi-sorted signature. As exemplified in Fig. 9, a case of particular interest is the signature of (directed) graphs, which allows
our proposal to be compared with formalisms that can express properties on graph topologies and their evolution.

The idea behind these graph computation formalisms (GCFs) is to use graph-specific definitions where syntactical statements on
nodes, edges, sources and targets of edges, and their equalities are first-class citizens. The field has been quite active in the last
decade, with a series of papers advocating quantified temporal logics for the specification of GCFs properties. We offer here a short
review of some of the most recent proposals, focussing on the dichotomy between the universal domains and the counterpart-based
approaches.

Graph programs/flow graphs. The use of monadic-second order logics to prove properties of graph-based programming languages
has been advocated in [48,49], where the emphasis is placed on distilling post-conditions formulae from a graph transformation rule
and a precondition formula. A more abstract meta-model for run-time verification is proposed in [50,51], where a control flow graph
can be instantiated to concrete models and the properties are given by first-order formulae. Despite the differences, in both cases the
resulting analysis is akin to the adoption of a universal domain approach.

Metric logics, I. The use of traces and first-order specifications is a key ingredient of runtime verification. A relevant proposal is the
use of metric first-order temporal logic (MFOTL) [52,53], investigated with respect to the expressiveness of suitable fragments in [54]
or to duality results akin to our PNF in [55]. These logics allow to reason on the individual components of states, using (arbitrary)
sets of relations as models, which allows for different kinds of graphs to be encoded. The core difference with our line of work is
that, contrary to standard models of MFOTL, we allow for variable domains in the temporal structure and for nodes to be created
and destroyed.

Metric logics, II. A graph-oriented approach to MFOTL is given by Metric Temporal Graph Logic (MTGL) [56,57], which allows to
model properties on the structures and the attributes of the state and has been used in the context of formal testing [58]. Here traces
are pairs of injective spans representing a rule, and are equivalent to our partial graph morphisms. The syntax is tailored over such
rules, so that 𝜙𝐺 refers to a formula over a given graph 𝐺, and a one step ∃(𝑓,𝜙𝐻) is indexed over a mono 𝑓 ∶ 𝐺 → 𝐻 , roughly
representing the partial morphism induced by a rule. Identity and preservation/deletion of elements seem to be left implicit, and the
exploration of the connection with counterpart-based QLTL is among our future endeavours.

6.2. Future work

We identify a variety of possible expansions for our work.

Second-order. Our theoretical presentation and formalisation work focuses on the first-order aspects of QLTL. The semantics in
[13,14] allows also for the quantification over sets of elements. This is impractical in Agda due to the typical formalisation of
subsets as predicates, which would be cumbersome to present in concrete examples, e.g. when expressing universal quantification
and extensional equality over subsets of elements. A possible extension could be to investigate practical encodings and possible
automation techniques to introduce second-order quantification for counterpart-based temporal logics.

CTL and other logics. The quantified temporal logics presented here focus on providing a restricted yet sufficiently powerful set of
operators and structures. These logics could be extended to more expressive constructs and models, such as the case of CTL [7], by
considering branching models and building more complex temporal structures on the notion of category. We believe that working
along these lines would be a straightforward task, which might however cause a combinatorial explosion in the case of possible
temporal operators required to obtained a positive normal form of the logic.

Automation and solvers. We highlighted how the proofs required to validate temporal formulae need to be provided manually by the
user. Considerable amount of effort has been spent in interfacing proof assistants with external solvers and checkers to both reuse
existing work and algorithms and to provide more efficient alternatives to the automation given by proof assistants. The traditional
way of employing proof automation is through the use of internal and external solvers: the first technique uses the reflection capabilities
of Agda to allow a (verified) solver and proof-searching procedure to be written in Agda itself, in the spirit of [46,45,59]. The second
mechanism consists in writing bindings to external programs, such as external model checkers or SMT and SAT solvers, so that proving
the formula or providing a counterexample is offloaded to a more efficient and specialised program. A possible extension of this work
would be the implementation of either of these mechanisms to the setting of counterpart semantics.

Category theory. The category theoretical notions formalised in our work constitute a small part of the mechanisation, with categories
and relational presheaves being mainly used as data instead of proper structures on which theorems can be stated and shown. Recall
that the perspective given by categorical logic is to present the notion of syntax in terms of indexed categories and models as
morphisms between them: a future expansion of this work could be to also formalise our notions of models and assignments in terms
of morphisms between suitable indexed categories [26].

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

32

F. Gadducci, A. Laretto and D. Trotta

Finite traces. A current trend in artificial intelligence is the study of temporal formulas over finite traces [60], due to applications in
planning and reinforcement learning. Our models seem to be well-suited to tackle such a development, since each finite trace can be
thought of as an infinite one terminating with a cycle in an empty graph, thus inheriting all the issues we highlighted about positive
normal forms for our logic.

CRediT authorship contribution statement

Fabio Gadducci: Writing -- review & editing, Visualization, Validation, Supervision, Resources, Project administration, Method

ology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Andrea Laretto: Writing -- review &
editing, Writing -- original draft, Visualization, Validation, Software, Resources, Project administration, Methodology, Investigation,
Funding acquisition, Formal analysis, Data curation, Conceptualization. Davide Trotta: Writing -- review & editing, Visualization,
Validation, Supervision, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data
curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Signatures and algebras

We describe how we captured in Agda the notion of signature, algebra, and term. To give the definition of signature of an algebra,
we first package up the signature of a function, where  indicates a generic set of sorts:

module SortedAlgebra {𝓁 } where

record FunctionSignature ( : Set 𝓁) : Set 𝓁 where
constructor _↦_
field

{arity} : ℕ
𝜏* : Vec  arity
𝜏 : 

An algebra signature gives a set of sorts  , a set of function symbols  , and a function sign that associates a function signature
to each symbol in  :

record Signature : Set (suc𝓁 𝓁) where
field
 : Set 𝓁
 : Set 𝓁
sign :  → FunctionSignature 

args = 𝜏* ◦ sign
ret = 𝜏 ◦ sign

An algebra for a signature Σ amounts to providing a function S from symbols to sets and a function F from function symbols to
actual functions with type given by the signature:

record Σ-Algebra (Σ : Signature) : Set (suc𝓁 𝓁) where
field
 :  → Set 𝓁

argType :  → Set 𝓁
argType f = mapT S (args f)

retType :  → Set 𝓁
retType f = S (ret f)

field
F : ∀ (f : ) → argType f → retType f

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

33

F. Gadducci, A. Laretto and D. Trotta

Notice that args only gives us a Vec of symbols with type  . To consider the argument type of a concrete function given by the
algebra, we need to apply the action S on each symbol of the signature, and then consider the cartesian product of the concrete sets
obtained.

This is exactly the use of mapT, and we refer to lemmas and properties of types obtained this way as the module VecT. The unit
type ⊤ and its single element * is used in the case of the empty vector, and in the inductive case we combine the set f x given by the
function using the cartesian product ×

mapT : (A → Set 𝓁) → Vec A n → Set 𝓁
mapT f [] = ⊤
mapT f (x ∶∶ v) = f x × mapT f v

Given some (possibly heterogeneous) relation R, we can relate two Vecs obtained with mapT if they are point-wise related with R

zip : ∀ {v : Vec A n } {f g : A → Set 𝓁 ′ }
→ (∀ {x } → f x → g x → Set 𝓁)
→ mapT f v → mapT g v → Set 𝓁

zip {v = [] } R * * = ⊤
zip {v = _ ∶∶ _} R (x , xs) (y , ys) = R x y × zip R xs ys

We can define the type Σ-Rel of relational homomorphisms between algebras given in Definition 3.13. To specify the homomor

phism property 𝜌-homo, we use zip to relate point-wise the function arguments given by the two algebras

record Σ-Rel {Σ } (A : Σ-Algebra Σ) (B : Σ-Algebra Σ) : Set (suc𝓁 𝓁) where
open Signature Σ
private

module A = Σ-Algebra A
module B = Σ-Algebra B

field
𝜌 : ∀ {𝜏 } → REL (A.S 𝜏) (B.S 𝜏) 𝓁
𝜌-homo :
∀ (f : )
→ {as : A.argType f }
→ {bs : B.argType f }
→ zip 𝜌 as bs
→ 𝜌 (A.F f as) (B.F f bs)

A.1. Terms

Terms on a given signature are well-typed with respect to the algebra and use a well-scoped representation, with variables being
indices in a context

module Terms {𝓁 } (Σ : Signature {𝓁 }) where

We define a context simply as a Vec of sort symbols  with a known length

Ctx : ℕ → Set 𝓁
Ctx = Vec 

The type of terms-in-context _⊢_⟨_⟩ is given inductively and parameterised with both an underlying context Γ and with the type
of the term being defined. Variables are implemented as de Bruijn indices, where a variable term contains an index pointing to its
type in the context. In the var case, the type of the entire term is given using vector lookup to retrieve the type provided by the
context. In the case of functions fun, the type of the term corresponds with the return type given by the function symbol. The use
of sized types and the type Size is necessary in Agda to ensure that recursion on terms is terminating, but it is not essential to the
formalisation of our temporal logics

data _⊢_⟨_⟩ {n } Γ :  → Size → Set 𝓁 where
var : (i : Fin n)
→ Γ ⊢ Vec.lookup Γ i ⟨ ∞ ⟩

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

34

F. Gadducci, A. Laretto and D. Trotta

fun : ∀ {s }
→ (f : )
→ mapT (Γ ⊢_⟨ s ⟩) (args f)
→ Γ ⊢ ret f ⟨ ↑ s ⟩

A substitution from a context Γ to a context Δ amounts to being able to derive a new term t : Δ ⊢ 𝜏 for each sort 𝜏 ∈ Γ

Subst : ∀ {n m } → Ctx n → Ctx m → Set 𝓁
Subst Γ Δ = ∀ i → Δ ⊢ Vec.lookup Γ i ⟨ ∞ ⟩

Substitutions can be applied to terms, and this consists in reframing a term into a different context:

sub : ∀ {n m } {Γ : Ctx n } {Δ : Ctx m }
→ Subst Γ Δ
→ (∀ {s A } → Γ ⊢ A ⟨ s ⟩ → Δ ⊢ A ⟨ s ⟩)

sub 𝜎 (var x) = 𝜎 x
sub 𝜎 (fun f x) = fun f (map (sub 𝜎) x)

The identity substitution is given by replacing each variable with a term consisting of the same variable, and substitutions can be
suitably composed:

id : ∀ {n } {Γ : Ctx n } → Subst Γ Γ
id i = var i

◦ : ∀ {n m o } {A : Ctx n } {B : Ctx m } {C : Ctx o }
→ Subst B C → Subst A B → Subst A C

(f ◦ g) i = sub f (g i)

References

[1] C. Baier, J. Katoen, Principles of Model Checking, MIT Press, 2008.

[2] A. Pnueli, The temporal logic of programs, in: FOCS 1977, IEEE Computer Society, 1977, pp. 46--57.

[3] B. Courcelle, The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inf. Comput. 85 (1) (1990) 12--75.

[4] A. Dawar, P. Gardner, G. Ghelli, Expressiveness and complexity of graph logic, Inf. Comput. 205 (3) (2007) 263--310.

[5] P. Baldan, A. Corradini, B. König, A. Lluch-Lafuente, A temporal graph logic for verification of graph transformation systems, in: J.L. Fiadeiro, P. Schobbens
(Eds.), WADT 2006, in: LNCS, vol. 4409, Springer, 2006, pp. 1--20.

[6] H. Kastenberg, A. Rensink, Model checking dynamic states in GROOVE, in: A. Valmari (Ed.), SPIN 2006, in: LNCS, vol. 3925, Springer, 2006, pp. 299--305.

[7] E.A. Emerson, Temporal and modal logic, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, Elsevier
and MIT Press, 1990, pp. 995--1072.

[8] E. Franconi, D. Toman, Fixpoint extensions of temporal description logics, in: D. Calvanese, G. De Giacomo, E. Franconi (Eds.), DL 2003, in: CEUR Workshop
Proceedings, vol. 81, 2003.

[9] I.M. Hodkinson, F. Wolter, M. Zakharyaschev, Monodic fragments of first-order temporal logics: 2000-2001 A.D, in: R. Nieuwenhuis, A. Voronkov (Eds.), LPAR
2001, in: LNCS, vol. 2250, Springer, 2001, pp. 1--23.

[10] A. Hazen, Counterpart-theoretic semantics for modal logic, J. Philos. 76 (6) (1979) 319--338.

[11] F. Belardinelli, Quantified modal logic and the ontology of physical objects, Ph.D. thesis, Scuola Normale Superiore of Pisa, 2004--2005.

[12] D.K. Lewis, Counterpart theory and quantified modal logic, J. Philos. 65 (5) (1968) 113--126.

[13] F. Gadducci, A. Lluch-Lafuente, A. Vandin, Counterpart semantics for a second-order 𝜇-calculus, Fundam. Inform. 118 (1--2) (2012) 177--205.

[14] F. Gadducci, D. Trotta, A presheaf semantics for quantified temporal logics, in: A. Madeira, M.A. Martins (Eds.), WADT 2022, in: LNCS, vol. 13710, Springer,
2023, pp. 81--99.

[15] S. Ghilardi, G. Meloni, Modal and tense predicate logic: models in presheaves and categorical conceptualization, in: F. Borceux (Ed.), Categorical Algebra and
Its Applications, in: LNM, vol. 1348, Springer, 1988, pp. 130--142.

[16] S. Ghilardi, G. Meloni, Relational and partial variable sets and basic predicate logic, J. Symb. Log. 61 (3) (1996) 843--872.

[17] S. Huang, R. Cleaveland, A tableau construction for finite linear-time temporal logic, J. Log. Algebr. Methods Program. 125 (2022) 100743.

[18] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, M. Vardi, Regular vacuity, in: D. Borrione, W.J. Paul (Eds.), CHARME 2005, in: LNCS, vol. 3725, Springer,
2005, pp. 191--206.

[19] A. Corradini, T. Heindel, F. Hermann, B. König, Sesqui-pushout rewriting, in: A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, G. Rozenberg (Eds.), ICGT 2006,
in: LNCS, vol. 4178, Springer, 2006, pp. 30--45.

[20] U. Norell, Dependently typed programming in Agda, in: A. Kennedy, A. Ahmed (Eds.), TLDI 2009, ACM, 2009, pp. 1--2.

[21] J.Z.S. Hu, J. Carette, Formalizing category theory in Agda, in: C. Hritcu, A. Popescu (Eds.), CPP 2021, ACM, 2021, pp. 327--342.

[22] F. Gadducci, A. Laretto, D. Trotta, Specification and verification of a linear-time temporal logic for graph transformation, in: M. Fernández, C.M. Poskitt (Eds.),
ICGT 2023, in: LNCS, vol. 13961, Springer, 2023, pp. 22--42.

[23] A. Laretto, Positive normal forms for counterpart-based temporal logics, [Software] SWHID: swh:1:dir:b3429f420a16c1d05b31e14387c72d9986450b6b;

origin=https://github.com/iwilare/qltl-pnf;visit=swh:1:snp:c87315cde6c3208c0d4dba447e65e174584763d3;anchor=swh:1:rev:7dc3264b12885b0cba761d

13ce67c05c122a999b, 2022.

[24] P. Blackburn, J. van Benthem, F. Wolter (Eds.), Handbook of Modal Logic, vol. 3, North-Holland, 2007.

[25] F.W. Lawvere, Adjointness in foundations, Dialectica 23 (1969) 281--296.

[26] B. Jacobs, Categorical Logic and Type Theory, North-Holland, 2001.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

35

http://refhub.elsevier.com/S2352-2208(25)00048-3/bib24DD2536CFC56C929C9CC985D79C0DCAs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib73D5AB59BE4870850179C8A1E624E9A2s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib12CF8A3D4BEA2436CCDED1FD188A8526s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib382076E19ED37D0ABC1D6AFA828DD372s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib7D5A6B509743CF21526C539FE81CA8BCs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib7D5A6B509743CF21526C539FE81CA8BCs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib64ADF61C7B6FDB91D84B63A2CAFF9497s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib1DCDC0737D7CBF770C81C10A4D778E7Fs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib1DCDC0737D7CBF770C81C10A4D778E7Fs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib56F09234F13A5C156CA157E1481B736Es1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib56F09234F13A5C156CA157E1481B736Es1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib84C3C59DAC2813925C3C62F4C1EF33A5s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib84C3C59DAC2813925C3C62F4C1EF33A5s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib55D7308DBBF538CE7E3254FACC0DEE95s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib3216DCF2D2B1E5F7723AA16C7EE69AF5s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib4DDD77C073210A9AE7D74862F5C6714Bs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib98A54E9D091205B560B90BEF1FC71D07s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibA3A61B21CBF88B4F9AD86854D6BCB822s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibA3A61B21CBF88B4F9AD86854D6BCB822s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib00456DCD1172CF575D0585E9D8F23A6Cs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib83ED91EDF8B0FFABA675821C050D3057s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibA9F24F91EECBD8C23327E34394FC2652s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibA9F24F91EECBD8C23327E34394FC2652s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib3187C3A66A8FD93072545F6A4D65C6A2s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib3187C3A66A8FD93072545F6A4D65C6A2s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib84F830A763D287683D5229E7200F1E5Fs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibAB52CFDD9EA7EEA8BB6049C6A672EAE6s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib6DDD32982151FF4A5FC051B0C48AF03Fs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib6DDD32982151FF4A5FC051B0C48AF03Fs1
https://archive.softwareheritage.org/swh:1:dir:b3429f420a16c1d05b31e14387c72d9986450b6b;origin=https://github.com/iwilare/qltl-pnf;visit=swh:1:snp:c87315cde6c3208c0d4dba447e65e174584763d3;anchor=swh:1:rev:7dc3264b12885b0cba761d13ce67c05c122a999b
https://archive.softwareheritage.org/swh:1:dir:b3429f420a16c1d05b31e14387c72d9986450b6b;origin=https://github.com/iwilare/qltl-pnf;visit=swh:1:snp:c87315cde6c3208c0d4dba447e65e174584763d3;anchor=swh:1:rev:7dc3264b12885b0cba761d13ce67c05c122a999b
https://archive.softwareheritage.org/swh:1:dir:b3429f420a16c1d05b31e14387c72d9986450b6b;origin=https://github.com/iwilare/qltl-pnf;visit=swh:1:snp:c87315cde6c3208c0d4dba447e65e174584763d3;anchor=swh:1:rev:7dc3264b12885b0cba761d13ce67c05c122a999b
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib53F9072ADA0D6AE29AC2C25D7D8C94D2s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib1C71D7250DAABBF1E59D769512D25059s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib140A0514B3B1014058818E6254688FA9s1

F. Gadducci, A. Laretto and D. Trotta

[27] S. Ghilardi, G. Meloni, Modal logics with n-ary connectives, Math. Log. Q. 36 (3) (1990) 193--215.

[28] S. Niefield, Lax presheaves and exponentiability, Theory Appl. Categ. 24 (12) (2010) 288--301.

[29] P. Freyd, A. Scedrov, Categories, Allegories, Elsevier, 1990.

[30] P. Gardiner, C. Martin, O. de Moor, An algebraic construction of predicate transformers, Sci. Comput. Program. 22 (1) (1994) 21--44.

[31] A. Laretto, Categorical semantics for counterpart-based temporal logics, [Software] SWHID: swh:1:dir:3517d066ed55e949b02871da83d44093af1f6548;

origin=https://github.com/iwilare/categorical-qtl;visit=swh:1:snp:52feb0fe5667635f0247622e0b0ceff33b69a326;anchor=swh:1:rev:133b359b68cdee3f98

24f266ab43886484b817b5, 2022.

[32] P. Wadler, W. Kokke, J.G. Siek, Programming language foundations in Agda, https://plfa.inf.ed.ac.uk/, 2022.

[33] N.A. Danielsson, Up-to techniques using sized types, in: POPL 2018, ACM, 2018, pp. 43:1--43:28.

[34] J. Girard, Y. Lafont, P. Taylor, Proofs and Types, Cambridge University Press, 1989.

[35] Coq Development Team, the Coq Proof Assistant Reference Manual, 2016.

[36] L. de Moura, S. Ullrich, The Lean 4 theorem prover and programming language, in: A. Platzer, G. Sutcliffe (Eds.), CADE 2021, in: LNCS, vol. 12699, Springer,
2021, pp. 625--635.

[37] T. Nipkow, L.C. Paulson, M. Wenzel, Isabelle/HOL - a Proof Assistant for Higher-Order Logic, LNCS, vol. 2283, Springer, 2002.

[38] F. Lindblad, M. Benke, A tool for automated theorem proving in Agda, in: J. Filliâtre, C. Paulin-Mohring, B. Werner (Eds.), TYPES 2004, in: LNCS, vol. 3839,
Springer, 2006, pp. 154--169.

[39] A.H. Ghamarian, M. de Mol, A. Rensink, E. Zambon, M. Zimakova, Modelling and analysis using GROOVE, Int. J. Softw. Tools Technol. Transf. 14 (1) (2012)
15--40.

[40] W. Smid, A. Rensink, Class diagram restructuring with GROOVE, in: P.V. Gorp, L.M. Rose, C. Krause (Eds.), TTC 2013, in: EPTCS, vol. 135, 2013, pp. 83--87.

[41] E. Zambon, A. Rensink, Recipes for coffee: compositional construction of JAVA control flow graphs in GROOVE, in: P. Müller, I. Schaefer (Eds.), Principled
Software Development, Springer, 2018, pp. 305--323.

[42] S. Coupet-Grimal, An axiomatization of linear temporal logic in the calculus of inductive constructions, J. Log. Comput. 13 (6) (2003) 801--813.

[43] C. Sprenger, A verified model checker for the modal 𝜇-calculus in Coq, in: B. Steffen (Ed.), TACAS 1998, in: LNCS, vol. 1384, Springer, 1998, pp. 167--183.

[44] D. Zanarini, C. Luna, L. Sierra, Alternating-time temporal logic in the calculus of (co)inductive constructions, in: R. Gheyi, D.A. Naumann (Eds.), SBMF 2012, in:
LNCS, vol. 7498, Springer, 2012, pp. 210--225.

[45] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, J. Smaus, A fully verified executable LTL model checker, in: N. Sharygina, H. Veith (Eds.), CAV
2013, in: LNCS, vol. 8044, Springer, 2013, pp. 463--478.

[46] L. O’Connor, Applications of applicative proof search, in: J. Chapman, W. Swierstra (Eds.), TyDe@ICFP 2016, ACM, 2016, pp. 43--55.

[47] A. Jeffrey, LTL types FRP: linear-time temporal logic propositions as types, proofs as functional reactive programs, in: K. Claessen, N. Swamy (Eds.), PLPV 2012,
ACM, 2012, pp. 49--60.

[48] G.S. Wulandari, D. Plump, Verifying graph programs with monadic second-order logic, in: F. Gadducci, T. Kehrer (Eds.), ICGT 2021, in: LNCS, vol. 12741,
Springer, 2021, pp. 240--261.

[49] C.M. Poskitt, D. Plump, Monadic second-order incorrectness logic for GP 2, J. Log. Algebr. Methods Program. 130 (2023) 100825.

[50] M. Búr, K. Marussy, B.H. Meyer, D. Varró, Worst-case execution time calculation for query-based monitors by witness generation, ACM Trans. Embed. Comput.
Syst. 20 (6) (2021) 107:1--107:36.

[51] K. Marussy, O. Semeráth, A.A. Babikian, D. Varró, A specification language for consistent model generation based on partial models, J. Object Technol. 19 (3)
(2020) 1--22.

[52] J. Schneider, D. Basin, S. Krstić, D. Traytel, A formally verified monitor for metric first-order temporal logic, in: B. Finkbeiner, L. Mariani (Eds.), RV 2019, in:
LNCS, vol. 11757, Springer, 2019, pp. 310--328.

[53] J. Schneider, D. Traytel, Formalization of a monitoring algorithm for metric first-order temporal logic, Arch. Formal Proofs 2019 (2019).

[54] F. Hublet, D. Basin, S. Krstić, Real-time policy enforcement with metric first-order temporal logic, in: V. Atluri, R. Di Pietro, C.D. Jensen, W. Meng (Eds.), ESORICS
2022, in: LNCS, vol. 13555, Springer, 2022, pp. 211--232.

[55] J. Huerta y Munive, Relaxing safety for metric first-order temporal logic via dynamic free variables, in: T. Dang, V. Stolz (Eds.), RV 2022, in: LNCS, vol. 13498,
Springer, 2022, pp. 45--66.

[56] H. Giese, M. Maximova, L. Sakizloglou, S. Schneider, Metric temporal graph logic over typed attributed graphs, in: R. Hähnle, W. van der Aalst (Eds.), FASE
2019, in: LNCS, vol. 11424, Springer, 2019, pp. 282--298.

[57] S. Schneider, L. Sakizloglou, M. Maximova, H. Giese, Optimistic and pessimistic on-thefly analysis for metric temporal graph logic, in: F. Gadducci, T. Kehrer
(Eds.), ICGT 2020, in: LNCS, vol. 12150, Springer, 2020, pp. 276--294.

[58] S. Schneider, M. Maximova, L. Sakizloglou, H. Giese, Formal testing of timed graph transformation systems using metric temporal graph logic, Int. J. Softw.
Tools Technol. Transf. 23 (3) (2021) 411--488.

[59] W. Kokke, W. Swierstra, Auto in Agda - Programming proof search using reflection, in: R. Hinze, J. Voigtländer (Eds.), MPC 2015, in: LNCS, vol. 9129, Springer,
2015, pp. 276--301.

[60] G.D. Giacomo, M.Y. Vardi, Synthesis for LTL and LDL on finite traces, in: Q. Yang, M.J. Wooldridge (Eds.), IJCAI 2015, AAAI Press, 2015, pp. 1558--1564.

Journal of Logical and Algebraic Methods in Programming 148 (2026) 101082

36

http://refhub.elsevier.com/S2352-2208(25)00048-3/bib8A68F6A92A0EF40B91B91113B1ED0098s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib8D348912FDD3F9B78B98F32C96CEC3DEs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib44D425E8C2DC64699C03DBAA39FE8D9Bs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib3EE993C8117FE9CBDB6AC1D7E99713C4s1
https://archive.softwareheritage.org/swh:1:dir:3517d066ed55e949b02871da83d44093af1f6548;origin=https://github.com/iwilare/categorical-qtl;visit=swh:1:snp:52feb0fe5667635f0247622e0b0ceff33b69a326;anchor=swh:1:rev:133b359b68cdee3f9824f266ab43886484b817b5
https://archive.softwareheritage.org/swh:1:dir:3517d066ed55e949b02871da83d44093af1f6548;origin=https://github.com/iwilare/categorical-qtl;visit=swh:1:snp:52feb0fe5667635f0247622e0b0ceff33b69a326;anchor=swh:1:rev:133b359b68cdee3f9824f266ab43886484b817b5
https://archive.softwareheritage.org/swh:1:dir:3517d066ed55e949b02871da83d44093af1f6548;origin=https://github.com/iwilare/categorical-qtl;visit=swh:1:snp:52feb0fe5667635f0247622e0b0ceff33b69a326;anchor=swh:1:rev:133b359b68cdee3f9824f266ab43886484b817b5
https://plfa.inf.ed.ac.uk/
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib94B51DF563D483EB3C18A8C9FBB3B342s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib1CC922C1BB447E1F944E56FE438F2F61s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib4ADAD5C26E91A2B49728830A6B7BECE4s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib4ADAD5C26E91A2B49728830A6B7BECE4s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib201575A3AB8D83393BC8C7DA44A3F2A6s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibBBA927C89B4EA22923E91BC51924F57Es1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibBBA927C89B4EA22923E91BC51924F57Es1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib7E8B1F55C1124ECFA461FBDB8F4E5E81s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib7E8B1F55C1124ECFA461FBDB8F4E5E81s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib61B254B6A792F61DF5E834E7CC6F29EEs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib446022EABA3B26BB10142A47041D1164s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib446022EABA3B26BB10142A47041D1164s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib3E2FADF9A31120A4D09A855801F6F10As1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib1D5F36214E17A407554FD3CEC0778AB5s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibD930A7C5B4BC1D798879CBB7DC85CCABs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibD930A7C5B4BC1D798879CBB7DC85CCABs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib2A7466BBAF308EFF616D9266EBC56680s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib2A7466BBAF308EFF616D9266EBC56680s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib6E52ADD7C852E5A7C7BF578C4FF2CEB3s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib2CE707FFA8D2A4EA73A2DE1B18222348s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib2CE707FFA8D2A4EA73A2DE1B18222348s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib842C056881DE4411D61CD1DCFB8043F2s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib842C056881DE4411D61CD1DCFB8043F2s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib26627432BEA4CDAB1107E3661D9740A3s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibF95C52A979BE5DF6D999609ECCCD7150s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibF95C52A979BE5DF6D999609ECCCD7150s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib7F1C11F41B49AF4C42C6B15CBECB962Es1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib7F1C11F41B49AF4C42C6B15CBECB962Es1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib2DE54EE9EABA9831E228CA23A46E0684s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib2DE54EE9EABA9831E228CA23A46E0684s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib6FD430901294EC1DCF0ABF595B9142ABs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib012D85BF027AAA79AD067D2F9A8BA2F5s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib012D85BF027AAA79AD067D2F9A8BA2F5s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibF229476A6F892DA4977A51BF8D8CB0CDs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibF229476A6F892DA4977A51BF8D8CB0CDs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib9D4E9B222E0D0FF503E5DD874B40920Cs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib9D4E9B222E0D0FF503E5DD874B40920Cs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibD9F3C918DDD35621310364E221C280CEs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibD9F3C918DDD35621310364E221C280CEs1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibD79E3E2AF2A9407797ACE587A70E7096s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibD79E3E2AF2A9407797ACE587A70E7096s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibB61C81F45EFBB3625758E30F89A88562s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bibB61C81F45EFBB3625758E30F89A88562s1
http://refhub.elsevier.com/S2352-2208(25)00048-3/bib01100EF0DCA8DBF9B0D3A0E795045CBAs1

	Counterpart-based Quantified Temporal Logics
	1 Introduction
	1.1 Quantified temporal logics
	1.2 Counterpart semantics
	1.3 Contributions
	1.4 Comparison with previous works

	2 Quantified Temporal Logics
	2.1 Counterpart semantics
	2.1.1 Temporal structures

	2.2 Quantified linear temporal logic
	2.2.1 Syntax and semantics of QLTL
	2.2.2 Contexts and assignments
	2.2.3 Satisfiability

	2.3 Positive normal form for QLTL
	2.3.1 Semantics of PNF
	2.3.2 Negation of QLTL and PNF

	3 Categorical semantics
	3.1 Relational presheaves models
	3.2 Temporal structures
	3.3 Presheaf semantics for QLTL
	3.3.1 Classical attributes
	3.3.2 Semantics with classical attributes
	3.3.3 Semantics of QLTL

	3.4 Multi-sorted algebra models
	3.5 Algebraic counterpart -models
	3.6 Semantics of algebraic QLTL
	3.7 Examples
	3.8 Remarks on second-order extensions

	4 Agda formalisation
	4.1 Formalisation aspects
	4.2 Logics in a constructive proof assistant
	4.2.1 Automation
	4.2.2 Category theory

	5 Agda code
	5.1 Relational presheaves
	5.2 Counterpart models
	5.3 Algebraic counterpart -model
	5.4 Temporal structure
	5.5 From classical to categorical models
	5.6 Classical attributes
	5.7 Syntax and semantics of QLTL

	6 Conclusion
	6.1 Related work
	6.1.1 Comparison with graph computation formalisms
	Graph programs/flow graphs.
	Metric logics, I.
	Metric logics, II.

	6.2 Future work

	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Signatures and algebras
	A.1 Terms

	References

