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e Many ways of categorifying automata theory in category theory
[Adamek-Trnkova, 1990], [Rutten, 2000], [Jacobs, 2006]

e Very long tradition, with some works already from the 1970s
[Ehrig et al. 1974], [Naudé, 1977], [Guitart, 1980]

e We want to study the completeness of categories of F-automata

e This is known in the literature for the case F:= — @ I[Ehrig, 1974]:
we present a generalization based on a more conceptual approach.

e We formalize some of our results in the Agda proof assistant.



Automata in monoidal categories

e Qur setting: automata in a monoidal category (K, ®, 1)
e Take two fixed I, O € K, representing input and output objects.

Definition
A Moore automata (£, d, s) in IC is an object E with morphisms d, s:

E<% E®I: E—2>0

Definition
A morphism of Moore automata between (E, d, s) and (T, d’, ) is a
morphism f: E — T making the following diagrams commute:

E<~% EQI E—°+0
I e
T<7T®[ T4>0

® We denote the category of Moore automata as Moore(Z, O).



Mealy automata

Definition
A Mealy automata in K is a span of two morphisms d and s

E<~%* EeI—* >0

Definition
A morphism of Mealy automata between (E, d, s) and (T, d’, ') is a
morphism f: E — T making the following diagram commute:

EéE@]HO

|

T<— T®I—>O

e Mealy automata arrange into categories Mealy (7, O), which are
actually the hom-categories of a bicategory!!
I [Boccali, Laretto, Loregian, Luneia, 2023]



F-Moore and F-Mealy

e A natural generalization: replace — ® I'in the domain with a
generic endofunctor F: K — K acting on the states.
e |dea: imagine F as providing an action context for the automaton.

Definition
A morphism of F-automata between (F, d, s) and (T, d’, §') is a
morphism f: E — T making the following diagrams commute:

E<% FE E—=0 E<% FE_ .0
Moore: fl iFf fl Mealy: fi \LF}‘

® We denote the category of F-Moore automata by F~-Moore(O).
e A Moore machine is an F-Moore machine where F': K — K is the
functor - I =F— E® I



e Different choices of F'lead to different notions of automata
(e.g., sequential/tree/linear automata) [Adamek-Trnkova, 1990].

e |n particular, we take into consideration the case
where F has a right adjoint R.

E<% FE—*- 0,
RE<%_ E—*s RO.

e |n the case where F:= I® —, this corresponds to the internal hom
R :=[I,—], thus associating a "transition map” to each state.



Completeness of categories of categorical automata

e \\Ve are interested in the following question:
When is the category of F-automata (co)complete?

e Our contribution: a conceptual proof that F~Moore(0) and
F-Mealy(0) are (co)complete when K is, based on the theory of
2-pullbacks in Cat and basic facts about limit-preserving functors.

e Proof sketch:

@ Present F-Moore(0) and F-Mealy(0) as 2-pullbacks in Cat.

@® Theorem [Mac Lane, 1998]: if the functors of the pullback satisfy
some conditions, then we can compute limits in the pullback.

© The functors characterizing F~Moore(O) and F-Mealy(O) satisfy the
conditions, along with the fact that F'is a left adjoint.

O Hence, the categories are complete when the base category K also is.



Characterization of F~Moore and F-Mealy

Theorem

The categories F-Moore(O) and F-Mealy(O) can be characterized
as the following strict 2-pullbacks in Cat:

F-Moore(0) —2 (K, 0) F-Mealy(0) —Z= (F | 0)
Vi J \Ldom V\L J \Ldom
Alg(F) ———>K Alg(F) ——

e Alg(F) is the category of algebras of Fin K.
e forget is the canonical forgetful functor of F-algebras.
® (K,0) Is the slice category of K over O.

e dom is the forgetful functor of slicccomma categories on the
domain.

® (F| O) is the comma category defined by F and the constant
functor on the object O. 8



Intuition, F-Mealy as pullback

® [ntution for the characterization of F-Mealy(0) as pullback in Cat:

E<* FE_*.0

T

/ d s \
E<% FE E FE—> 0
Alg(F) fl lFf — fl — iFf (Fl0)



Basic notions on limits

Definition

A functor F: A — B preserves limits of shape J: Z — A when,
given a limit zin A, then F(z) is the limit of the composite diagram
15458

Definition

A functor F': A — B reflects limits of shape J: Z — A when, given
a cone zin A such that F(z) is the limit of the composite diagram
7 % AL B, then zwas already a limit of Jin A.

Definition
A functor F': A — B creates limits of shape J:Z — A when it both
preserves and reflects them.



Pullbacks in Cat and limits

Theorem (Mac Lane 1998, V.6, Ex. 3)
Given a pullback diagram in Cat:

H
—

Y
G’J/ - iG
T>Z

If H creates limits of shape [J and G preserves them,
then H' also creates limits of shape J.

X

Proposition (Riehl 2016, Prop. 3.3.8)

® The functor forget : Alg(F) — K creates limits.
e The functor dom : K,, — K creates colimits and connected limits.

Proposition (Borceux 1994, Vol. 2, Prop. 4.3.2)

® Since F'is a left adjoint, forget : Alg(F) — K creates colimits.
M



Completeness of categories of automata

Theorem

e |et K admit colimits of shape .J.
Then F~-Moore(O) and F-Mealy(O) also admit them,
and they are computed as in K.

e [et K admit connected limits.
Then F-Moore(O) and F-Mealy(0) also admit them,
and they are computed as in K.

Proof. Immediate using the characterizations of F-Mealy/F-Moore.

Theorem

e |et K admit countable products and pullbacks.
Then F-Moore(O) and F-Mealy(O) admit products of any finite
cardinality (in particular, a terminal object),
but they are not computed as in K.

— We must define discrete limits explicitly! (Terminal and products)



Behaviour extension

e |f (K,®,1) has countable coproducts preserved by each — ® I, a
Moore automata can be extended to a span:

E<—d*E®I*L>O,

where I* := 3", o, I" is the freely generated monoid from ],
and the morphisms d*, s* are defined inductively from components

dp,8p: ExI"— E, O forn>0.
Similarly, Mealy automata can be extended to I := - -, I" as

EJE@)I*LO.

e |ntuition: extend the automata to act on strings of symbols
instead of single inputs.



Behaviour extension of a F-automata

® An F-Moore automata (F, d, s) can be similarly extended; given
E<% FE ; E—>0
we define the family of morphisms s,, : F*E — O for n> 0 as the
composites
SO = Ei> 0]
ss =FE%ES O
ss =FFELSFES ES 0
sn = FEZ A poip PP ppp T pp d g s g
® |n our assumption where F - R, each map is equivalent to its mate
Sp: F"E— O
5, F— R"O
obtained by iterating the adjunction structure.

forn>0

14



Skip and behaviour maps

e Fach morphism obtained like this
5,: E— R"O

is called the n-th skip map, since it gives the dynamics of a state
after skipping n input steps.

® |n case K has countable products, the family of all n-th skip maps
(sn | n € N>g) is equivalent to a single map

behg : E — H R™O
n>0

called the behaviour map of the automata E := (FE, d, s).



Terminal object

® The behaviour map has a specific universal property:

Theorem (Terminal object of F~-Moore)
The category F-Moore has a terminal object

0 = (Ooo, Sn0, doo), Where Os = H RO
n>0

Explicitly, for any other F-Moore automata E := (E, d, s), the
behaviour map behg : E— O is the unique morphism maRing the
following diagrams commute:

E<~* FE E—50

behgi lFbehE behgl



Terminal object, explicitly

e The terminal object O, in a category of machines tends to be
"big” since it can be obtained by Adamek’s theorem as the
terminal coalgebra for the functor

A~ Ox RA for F-Moore(0),
A~ ROx RA for F-Mealy(0).

e The morphism d., is defined using the universal property of the
product by combining the family (d; | ¢ > 0), given as

[0 R"0 > RiH10
di = - ) doc : F(ano RnO) - ano RO

Tit1

F(I],5o R"0) — RO

and ss is simply the first projection:
S00 = [Ln>0 R"0-—"%0

® Intuition: d, advances the behaviour by one step, and s, outputs.



Products in F-Moore and F-Mealy

Theorem (Products of F-automata)
Given F-Moore automata E := (E, d, s), T := (T, d, §'), the pullback

Po——T

F— O
behg
exhibits the carrier of an F-Moore automata p := (P, dp, sp) that
has the universal property of the product of E and T in F-Moore(O).

® |ntuition: P is the set of pairs of states (a, 8) € E x T such that
for every string of inputs behg(a) = behr(3), i.e., their behaviour
coincides: P, corresponds to a bisimulation object.



Adjoints to behaviour functors

e Our approach generalizes the one of Naudé [1977, 1979]:

Definition

Call an endofunctor F': K — K an input process if the forgetful
functor U: Alg(F) — K has a left adjoint G, in simple terms, an
input process allows to define free F-algebras.

e Naudé [1977, 1979] concentrates on building an adjunction between
a category of machines and a category of their behaviours

L : Beh(F) L= Mach(F) : E

where Mach(F) is the category obtained from the pullback

Mach(F) K7 x K~
l J J/domxcod
Alg(F) ——> K —5—> K x K

and Beh(F) is a certain comma category on G. 19



Adjoints to behaviour functors

® This theorem is conceptual enough to carry over to any category of
automata that can be presented as strict 2-pullback in Cat of
sufficiently well-behaved functors.

Theorem
There exist functors B and L, as follows:
B: Alg(F)/(0..,dw) <L _ F-Moore(O) : L

where (O, dso) s the terminal (behaviour) F-algebra given.

Theorem
This is part of a longer chain of adjoints obtained as follows:

G _ L
K/o. <{7Alg( F) /(0udoo) EB — 1 F-Moore(0),
U

where we denote with G : KivasSHya: U the “local” adjunction

obtained from G : K < H : U, with U(FA,f: FA — A) = Uf .



Agda formalization

We have formalized the more technical parts of our ////
work in Agda, a dependently typed programming
language and proof assistant.
Formalization work:

e Characterization of F-Moore(O)/F-Mealy(0) as pullbacks in Cat.

® Products and terminal objects in F~Moore(0), explicitly.

® Adjoints to behaviour functors, generalizing Naudé's approach.
Mealy (I, O) are the hom-categories of the bicategory Mealy.

We use the agda-categories library as a foundation to capture the
basic notions of category theory.

(Almost 2000 lines of code!)
e Formalization is freely available online:

https://github.com/iwilare/categorical-automata

21



Conclusion and Future work

e Characterizing categories of structures as composition of simpler
categories can be a useful technique to compute limits.

e Bigger picture: the technology of category-theoretic approaches is
rapidly shifting towards 2-dimensional categories as foundations
for complex systems [Spivak et al. 2019], [Myers, 2021]

e Generalize other aspects of automata theory from the point of
view of higher category theory (e.g. Krohn-Rhodes theorem).

e Formalizing these results in a proof assistant might pave the way
for more concrete applications, where proofs act as programs to
produce and convert automata in a provably correct way.

22



Thank you!



