
Università degli Studi di Torino
Dipartimento di Informatica

Corso di Laurea Triennale in Informatica

Formalizations of the
Church-Rosser Theorem in Agda

Relatore:
Prof. Ugo de’ Liguoro
Correlatore:
Dott. Riccardo Treglia

Candidato:
Andrea Laretto

Anno Accademico 2019/2020

Abstract

In this thesis we present and explore the various concepts in computer-assisted
formalizations of the Church-Rosser theorem for β-reduction in the untyped λ-
calculus. Using the dependently-typed programming language and proof assis-
tant Agda, we expose four different proof approaches for this theorem along
with their complete formalization. The proofs we considered reutilize and ex-
ploit the potentiality of an existing infrastructure presented by Wadler et al.
[WK19], where they implement λ-calculus and substitutions using de Bruijn in-
dices and the σ-calculus by Abadi et al. [Aba+91]. The above-mentioned authors
also present a confluence proof for β-reduction, employing the classic Tait and
Martin-Löfmethodwith parallel reduction. After presenting this proof, we firstly
expose a small improvement of this development using Takahashi translation
to prove the diamond lemma for parallel reduction, as described in Takahashi
[Tak95]. We then present the main contribution of the thesis, which is a com-
plete formalization of the confluence of β-reduction with the methods recently
developed by Komori et al. [KMY14]. The refinements they present do not em-
ploy parallel reduction, and instead focus on an iterated Takahashi translation.
This method allows them to obtain an even simpler proof of confluence which
also sharpens and quantifies the previous results. Finally, we show that some of
the theorems introduced in this last proof can be used to directly formalize an-
other approach presented by Nagele et al. [NOS16] in Isabelle/HOL, where the
confluence of β-reduction is derived through the use of the so-called Z-property
due to Dehornoy et al. [DO08].

Contents

1 Introduction 1
1.1 Formalization . 3
1.2 Related work . 5
1.3 Chapter overview . 6
1.4 File structure . 7

2 Introduction to Agda 8
2.1 Comparison with other proof assistants 8
2.2 Interactivity . 10
2.3 Constructive type theory . 10
2.4 Agda . 13

2.4.1 Datatypes . 13
2.4.2 Syntactic constructs . 14
2.4.3 Functions . 16
2.4.4 Equality . 18
2.4.5 Postulates . 22
2.4.6 Existence . 23
2.4.7 Modules . 24

3 De Bruijn indices and the σ-calculus 25
3.1 Perspective . 25
3.2 De Bruijn indices . 27

3.2.1 Comparison with the original development 30
3.3 Substitution . 31

3.3.1 Substitutions as functions 31
3.4 σ-calculus . 34

3.4.1 σ-calculus equations . 36
3.4.2 Fundamental theorems 37

4 The Church-Rosser Theorem 40
4.1 β-reduction . 40
4.2 Substitutivity of β∗-reduction 43

4.2.1 Pointwise β∗-reduction 44
4.2.2 β∗-reduction and renamings 46

4.3 Church-Rosser Theorem . 48

5 The Tait/Martin-Löf proof and parallel reduction 50
5.1 Main idea . 50
5.2 Proof overview . 50
5.3 Parallel reduction . 52
5.4 Relations between parallel reduction and β-reduction 55
5.5 Diamond lemma for parallel reduction 57
5.6 Strip lemma . 58
5.7 Confluence of parallel reduction 60
5.8 Confluence of β-reduction . 61

6 Takahashi translation 62
6.1 Definition . 62

6.1.1 Pattern overloading in Agda 63
6.2 Revisiting the confluence of parallel reduction 64

6.2.1 Diamond lemma for parallel reduction 65
6.3 Comparison with the previous proof 65

7 The Komori-Matsuda-Yamakawa proof 66
7.1 Proof overview . 66
7.2 Main concepts . 68
7.3 Fundamental theorems for confluence 69
7.4 Confluence of β-reduction . 71
7.5 Central theorems . 73

7.5.1 Lemma 3.3 . 73
7.5.2 Lemma 3.5 . 74
7.5.3 Proving Theorem 3.8 . 74
7.5.4 Proving Lemma 3.5 . 75

7.6 Lemma 3.4 . 77
7.7 Takahashi translation for substitutions 79

7.7.1 Generalized Lemma 3.4 79
7.7.2 Lemma 3.4 for applications 82

7.7.3 Takahashi translation and renamings 83
7.7.4 Special case of 0-indexed substitution 84

7.8 Proof remarks . 85

8 The Z-property proof 86
8.1 Generic reflexive transitive closure 86
8.2 Semi-confluence . 87
8.3 Z-property . 89
8.4 Z-property for β-reduction . 92
8.5 Comparison with the Komori-Matsuda-Yamakawa proof 93
8.6 Proof overview . 93

9 Conclusion 95
9.1 Theoretic perspective . 95
9.2 Implementation . 96
9.3 Future work . 97

Chapter 1

Introduction

λ-calculus is considered to be one of the greatest formal systems in theoretical
computer science. Its simplicity, usefulness, and importance ranges from foun-
dational aspects of mathematics to the most concrete problems in computer sci-
ence and programming language theory. Since its introduction in the 1930s by
the American mathematician Alonzo Church, this elegant formalism still man-
ages to influence and guide the design of modern programming languages, while
maintaining to this day its relevance as the topic of novel mathematical results.
The Church-Rosser theorem is arguably the most fundamental theorem regard-
ing λ-calculus and its central relation, β-reduction. We define it as follows:

Theorem (Church-Rosser theorem). Given a term M such that M →∗
β A and

M →∗
β B, there exists a term N such that A →∗

β N and B →∗
β N .

This theorem states the confluence of β-reduction, and expresses the fact that
given any two different reduction orders there always exists a common term
reuniting them. We can also denote this property with a commutative diagram:

M

A B

∃N

∗∗

∗ ∗

1

Since the first proof in 1936 by Church and J. Barkley Rosser [CR36], many other
approaches for this theorem have been established, and one of the first major
improvements was presented by William Tait and Per Martin-Löf around 1972.
Their proof can be found in [HS86] and [Bar85], and it is now considered to be
one of the most well-known proofs of this fundamental property. The idea is to
define the concept of a parallel reduction, which can contract multiple redexes at
the same time and for which confluence is easier to prove. This development has
since been improved by Masako Takahashi in 1989 [Tak95], with the introduc-
tion of Takahashi translation to explicitly provide a confluent term for parallel
reduction. The term provided is independent on the form of the reductions, and
this results in an even more direct confluence proof. A more detailed account of
the history of λ-calculus and the Church-Rosser theorem can be found in [CH09].

The Komori-Matsuda-Yamakawa proof

Some of the most recent results include the methods presented in 2014 by Yuichi
Komori, Naosuke Matsuda, and Fumika Yamakawa in [KMY14]. Their work
solely focuses on iterated Takahashi translation, where it is quantitatively re-
lated to β-reduction and βη-reduction. As stated by the authors, this can be
useful to prove confluence of those systems where parallel reduction is harder
to treat. Their approach also allows them to obtain even more precise conflu-
ence results, which we summarize in the following two theorems. In terms of
notation, we use →n

β to indicate n steps of β-reduction and M∗n for Takahashi
translation iteratively applied n times:

Theorem 3.8 . Given two λ-termsM and N :

M →n
β N =⇒ N →∗

β M∗n

Theorem 3.9 (Confluence). Given any two β-reductionsM →n
β A andM →m

β B,
the termM∗max{n,m} is a confluent term for the two reductions. That is, we have
that A →∗

β M∗max{n,m} and B →∗
β M∗max{n,m}.

These results evenmore precisely quantify the advancements presented by Taka-
hashi, and they can be obtained without the use of parallel reduction. The two
final reductions still do not rely on the specific form of the reduction steps ap-
plied, and jointly specify the confluent term.

2

The Z-property proof

Another important approach which directly relates β-reduction to confluence is
that presented in 2016 by Patrick Dehornoy and Vincent van Oostrom [DO08],
where they define the so-called Z-property. We can state its definition as follows:

Definition (Z-property). A relation→ on T is said to have the Z-property if there
exists a map ∗ : T → T such that A → B implies B →∗ A∗ and A∗ →∗ B∗, for
any A and B.

The name of this property comes from the fact that its statement, expressed in a
schematic form, resembles the letter Z:

A B

A∗ B∗

∗

∗

It can be shown that the Z-property directly implies semi-confluence, and there-
fore confluence. The Church-Rosser theorem is then obtained by showing that
Takahashi translation is a map that respects the Z-property for β∗-reduction.
In this thesis we present a complete formalization of the main advancements
introduced by Komori et al. [KMY14], and then relate the two proofs by also
showing how some of these results can be used to directly satisfy the Z-property.

1.1 Formalization
With the birth of modern computers and computer-assisted mathematics in the
1970s, the importance of the Church-Rosser theorem has been further empha-
sized by the surprising number of machine-checked proofs aimed at its formal-
ization. Many theorem provers have been employed, and we here quote some of
the most important formal developments that can be found in the literature:

• Boyer/Moore theorem prover (Shankar, 1988 [Sha88])
• Elf (Pfenning, 1992 [Pfe92])
• LEGO (McKinna and Pollack, 1999 [MP99])

3

• Coq (Huet, 1994 [Hue94], Schäfer, Tebbi, Smolka, 2015 [STS15])
• Isabelle/ZF (Rasmussen, 1995 [Ras95])
• Isabelle/HOL (Nipkow, 1996 [Nip96], Vestergaard and Brotherston, 2001 [VB01])
• HOL (Homeier, 2001 [Hom01])
• Nominal Isabelle (Nagele, van Oostrom, Sternagel, 2016 [NOS16])
• Abella (Accattoli, 2012 [Acc12])
• Agda (Copello, Szasz, Tasistro, 2017 [CST17],Wadler, Kokke, et al. 2019 [WK19])

The formalizations described in this thesis have been constructed using the
dependently-typed programming language and interactive theoremproverAgda,
initially developed by Ulf Norell and Catarina Coquand in 1999 [BDN09].
In order to formally present theorems about the λ-calculus, an adequate repre-
sentation method for λ-terms and the concept of substitution is first required.
In mathematical proofs this is usually done by referencing the Barendregt Vari-
able Convention [Bar85], which can be used to solve the fundamental problems
regarding capturing of free variables, substitution and α-equivalence. In a for-
mal setting, however, these informal conventions must also be adequately rep-
resented, and in such a way that formal proofs can follow the approaches in-
dicated by the pen-and-paper ones. Accurately implementing variable binders
and non-capturing substitutions turns out to be a particularly tricky and well-
known problem in the literature. Many representation methods have been pre-
sented, starting with the introduction by Nicolaas G. de Bruijn in 1972 of the con-
cept of de Bruijn indices for his automatic prover AUTOMATH [Bru72]. Other
important formalization techniques are the Nominal approach implemented in
Isabelle/HOL [Urb08], the Locally Nameless method [Ayd+08], and the Higher-
Order Abstract Syntax representation [How10]. An entire project and challenge
focusing on the formal correctness of programming language semantics and type
systems, where these methods for the treatment of binders can be compared, is
the POPLMark challenge. [Ayd+05] This also goes to show how relevant these
issues can be in the formalization of more general systems related to λ-calculus.
In this thesis we have decided, after initially exploring the other possibilities,
to reutilize the Agda implementation based on de Bruijn indices provided by
Wadler et al. in [WK19], which constitutes a solid foundation to experiment
with λ-calculus and its variations. This also presents us with the possibility of
testing an already existing infrastructure and verifying how efficiently it can be
interfaced with further constructions.

4

1.2 Related work
To our knowledge, no formal proof of the results by Komori et al. [KMY14] has
yet been presented. The Z-property proof introduced by Dehornoy et al. [DO08],
on the other hand, has been formalized in Isabelle/HOL by Julian Nagele, Vincent
van Oostrom, and Christian Sternagel in [NOS16] using Nominal Isabelle.
Wadler et al. [WK19] also describe their own development inAgda of the Church-
Rosser theorem, by formalizing parallel reduction and the Tait/Martin-Löf proof
with their infrastructure based on de Bruijn indices. We present these results in
Chapter 5 in order to analyze and then compare them with our own proof.
Another important approach available in Agda is the one established by Copello
et al. [CST17]. The authors managed to construct an induction principle based
on α-equivalence that directly expresses the Barendregt Variable Convention,
where freshness of variables can always be assumed. This method effectively
allows them to mimic the classic informal proofs, and enables the use of named
variables instead of de Bruijn indices. After proving some lemmas regarding
substitutions, they show confluence of β-reduction by following the Takahashi
approach with parallel reductions. This development establishes a similar tech-
nique as that employed by Nominal Isabelle, with this latter system also provid-
ing a high degree of automation both in proof searching and in the automatic
application of these tactics.
The libraryAutosubst presented by Steven Schäfer, Tobias Tebbi, andGert Smolka
[STS15] implements parallel substitutions and λ-terms in Coq, and it provides
automation tactics to easily solve those cases where substitutions are directly
involved. The authors themselves then use the library to also prove the Church-
Rosser theorem as a case study. This infrastructure does not use a nominal rep-
resentation, and instead employs de Bruijn indices by referencing the σ-calculus
and the concept of parallel substitutions established by Abadi et al. [Aba+91].
This paper is in turn referenced by Wadler et al. [WK19] for the implementa-
tion of their fundamental work, and its main concepts are also introduced and
employed in this thesis.

5

1.3 Chapter overview

In Chapter 2 we briefly introduce the dependently-typed programming language
Agda, by presenting the main elements of its syntax and constructs. While com-
paring it to other proof assistants, we also provide an overview of the theory
behind its use as an interactive theorem prover.

In Chapter 3 we show the usefulness of de Bruijn indices as a formalization tool
for λ-calculus, and describe the main infrastructure provided by [WK19] in Agda
for this representation method. This foundation constitutes the starting point
on which we further develop the higher-level theorems about β-reduction and
Takahashi translation.

In Chapter 4we formally present β-reduction, confluence, and the Church-Rosser
theorem. We prove here one of the first important lemmas about β-reduction
later used in proofs, the substitutivity of β∗-reduction.

In Chapter 5 we introduce the proof approach developed by Tait-Martin Löf
based on parallel reduction. We then include and explain the Agda formaliza-
tion constructed by [WK19] in order to present its main ideas and later compare
this proof with our own.

In Chapter 6 we define the concept of Takahashi translation exposed in [Tak95],
and show its usefulness in improving the Tait-Martin Löf proof described in the
previous chapter. Takahashi translation represents the central concept on which
Chapter 7 and Chapter 8 later derive their confluence proofs without the use of
parallel reduction.

In Chapter 7 we present the complete formalization of the confluence proof for
β-reduction using the methods described by [KMY14]. This development consti-
tutes the main result of this thesis, and the theorems here proven subsequently
provide the foundational properties on which Chapter 8 further elaborates.

In Chapter 8 we formalize the concept of Z-property in Agda as presented by
[DO08] and formalized in Isabelle/HOL by [NOS16]. After proving that the Z-
property implies confluence for any given generic reduction, we show how some
of the fundamental results previously formalized in Chapter 7 can be used to
immediately obtain the Z-property for β-reduction, and therefore conclude an
even more direct proof of confluence.

6

1.4 File structure
The files presenting the development of this thesis are publicly available at
https://github.com/iwilare/church-rosser, and have been organized as
follows:

Beta.agda Contains the basic definitions for
β-reduction and β∗-reduction.

BetaSubstitutivity.agda Contains the substitutivity property
for β∗-reduction.

ConfluenceParallel.agda Contains the Tait/Martin Löf proof for-
malized by Wadler et al. [WK19].

ConfluenceParallelTakahashi.agda Contains the improvement provided by
Takahashi [Tak95] to the Tait/Martin Löf
proof.

ConfluenceTakahashi.agda Contains the full formalization of the
proof presented by Komori et al. [KMY14]
for β-reduction.

ConfluenceZ.agda Contains the confluence proof based on
the Z-property byDehornoy et al. [DO08],
formalized in Agda by reusing the proper-
ties of the proof by Komori et al. previ-
ously proven.

DeBruijn.agda Contains the definition of λ-terms with de
Bruijn indices by Wadler et al.

Parallel.agda Contains the definition and theorems for
parallel reduction by Wadler et al.

Substitution.agda Contains the fundamental properties for
σ-calculus by Wadler et al.

Takahashi.agda Contains the definition of Takahashi
translation.

Z.agda Contains the statement in Agda of the Z-
property presented byDehornoy et al. and
the relations with confluence and semi-
confluence.

7

https://github.com/iwilare/church-rosser

Chapter 2

Introduction to Agda

In this chapter we present a very general introduction to the language and the
way it helps in formalizing mathematical proofs using constructive type theory.
For a more detailed introduction to its syntax and features, see [WK19].
Agda is a dependently-typed functional programming language and interactive
theorem prover originally developed at Chalmers University by Ulf Norell et al.
and first described in his Ph.D. thesis [Nor07]. It can be used as a full-fledged
strict programming language with a syntax similar to Haskell, and it has back-
ends that allow compiling programs to JavaScript and GHC Haskell.
What makes Agda stand out from other programming languages is its power-
ful type system, which is based on dependent types and takes inspiration from
Martin-Löf’s intuitionistic type theory. In a dependent type system, types can
be parameterized according to values (such as concrete integers or strings) and
not just to other types, as it would instead happen in the generics system imple-
mented by Java or in the parametric polymorphism on which Haskell is based.
As it will be explained in Section 2.3, Agda’s expressive type system is precisely
what enables its use as a proof assistant, where propositions are expressed as
types and proofs as well-typed programs.

2.1 Comparison with other proof assistants
Agda is a relatively new addition to the landscape of interactive theorem provers,
having been initially implemented in 1999 by Catarina Coquand and Ulf Norell
and then rewritten from scratch in 2007. [BDN09] It sharply contrasts with
other proof assistants, such as Isabelle/HOL and Coq, which approach the pro-

8

cess of theorem proving in profoundly different ways. Isabelle/HOL uses the
HOL (Higher Order Logic) language and library to construct proofs. In a simi-
lar fashion with its predecessor system LCF, it defines in the ML programming
language an abstract data type representing theorems and formulas, and a small
kernel of trusted functions that operate on them. These functions correspond
to inference rules in higher-order logic and constitute the only possible way to
prove new theorems, implementing a sort of symbolic manipulation framework.
Therefore, as long as the core functions are correctly implemented, the resulting
theorems will also be sound. Isabelle/HOL also comes with both a procedural
and a declarative style through which one can write proofs, with the latter being
the preferredmethod. In the procedural style, one only specifies the names of the
tactics to be applied, whereas the declarative style uses the proof language Isar
to describe a more natural and human-readable explanation of the goals and the
results proven. A more detailed and thorough description of the Isabelle/HOL
system can be found in [Pau94].
Coq, on the other hand, exploits and uses just as Agda the intuitionistic rela-
tionship between proofs and types, and its type system is based on Coquand’s
Calculus of (Co)Inductive Constructions. [Coq] It also provides like Isabelle/HOL
an extensive system to automate theorem proving and try to automatically find
proofs. However, Coq uses alongside the programming language Gallina a sep-
arate tactic language for writing proof scripts that the programmer has to sepa-
rately learn and integrate.1 As it is however noted in [KS15], this approach seems
at odds with the spirit of type theory, where a single language is used for both
proof and computation.
Even though the usefulness of automatic theorem proving has been one of the
main drivers behind the use of Coq and Isabelle/HOL in the formalization of
modern mathematics, Agda does not use by construction any tactic language
nor intrinsically built-in automation and instead solely relies on user input to
provide proofs and well-typed terms. However, some interactive automation
mechanisms do exist, such as the one described in [KS15], and have been some-
times utilized to close some proofs in this paper.

1There are other more technical differences regarding their respective type structures. For
example, Coq has the impredicative universe Prop, distinct from Set, while Agda only has the
latter. For a more detailed discussion, consult [BDN09].

9

2.2 Interactivity
It is possible to use either the Emacs or the Atom text editors as interactive front-
ends to exploit the full user interaction and assistance of Agda, enabling function-
alities such as trying to automatically find a proof, displaying the current goal,
evaluating expressions and their types, etc. It is also an established practice in
Agda to frequently use Unicode characters in the names of definitions and theo-
rems, as can be also seen in [WK19], [CST17], and in the Agda standard library
itself. Emacs also supports this, by enabling a sort of auto-completion method
to type Unicode characters with a standard keyboard. This practice allows the
user to better express the concepts used and develop a sort of domain-specific
language for the mathematical context that one is proving theorems in. Even
though it can sometimes come at the cost of making proofs harder to read for
newcomers, we have adopted this style in order to more closely follow the es-
tablished notation used in papers and proofs related to the domain here treated.

2.3 Constructive type theory
Theuse of Agda as a proof assistant comes from the Curry-Howard isomorphism,
a correspondence first noticed by the American mathematician Haskell Curry
and logician William Alvin Howard which delineates the direct relationship be-
tween computer programs, the types of such programs, and formal mathematical
proofs. Under this correspondence theorems are adequately expressed as types,
and proving a certain mathematical statement equates with being able to directly
construct a well-typed term (called witness, or proof) of such type. A more com-
plete treatment of this important relationship can be found in [GTL89].
The most well-known and extensively studied example of a sufficiently powerful
type theory is Martin-Löf type theory, which closely follows the principles of
mathematical constructivism. The Curry-Howard correspondence also partially
applies to type systems that computer scientistsmore commonlyworkwith, even
in mainstream languages. For example:

• Conjunction corresponds to the more familiar notion of product type, usually
known as a tuple: elements of the type A ∧ B, or equivalently (A,B), can be
constructed by providing a term/proof of type A, and a term/proof of type B.
The name ”product type” comes from the fact that given the finite types A and
B with n andm inhabitants respectively, the type (A,B) hasm∗n inhabitants
in total.

10

Logic Type Theory
Proposition Type
Proof of a given proposition Term of a given type
Structural induction Recursion with pattern matching
Implication Function type
Conjunction Product type (structs, tuples)
Disjunction Sum type (unions)
Universal quantification Dependent product type
Existential quantification Dependent sum type

Table 2.1: Main concepts in the Curry-Howard isomorphism between type theory
and logic

• Disjunction corresponds to a sum type, more commonly known as a (tagged)
union in C, or the Either datatype in Haskell: elements of the type A∨B can
be constructed either with an element of type A, appropriately ”injected” in
the union type, or with an element of typeB similarly extended. This injecting
function corresponds to the familiar constructors Left :: a -> Either a b
and Right :: b -> Either a b in Haskell. The name ”sum type” comes
from the same reasoning shown for the product type.

• Implication is interpreted as the function type: an element of the function type
A → B is an appropriate programming structure (typically a concrete func-
tion) that, given a term/proof of type A, gives in return a term/proof of type
B. The act of applying a function to a certain argument therefore naturally
corresponds to what is called in logic the modus ponens rule.

• Negation is represented with the intuitionistic interpretation of ¬A being de-
fined as the function type A → False, where False is a type that has no con-
structors.

If the type system in consideration is rich enough to have dependent types, where
types can be defined and depend on values (i.e.: those being quantified), we can
also express first-order logic constructs:

• Universal quantification becomes a more powerful version of the well-known
concept of polymorphism, with the fundamental difference that, contrary to
the concept of generics found for example in Javawhere the generic parameters
can only be other types, we can also have normal values and expressions (such

11

as strings or numbers) as parameters. This mechanism can be also interpreted
as ”abstracting” a part of a certain proposition and quantifying it as a symbol.
Notice how closely this follows the λ-calculus notion of λ-abstraction, with
function application as the elimination of such quantification. This construct
is also known as a dependent product type, usually denoted with Π.

• Existential quantification corresponds to being able to provide a pair of two
elements: a concrete object, or ”witness”, and a proof (another term) that says
that the desired proposition holds for the provided witness of the pair. This
construct is also known as a dependent sum type, usually denoted with Σ.
Note that the concept of pair reminds again to a product type: indeed, when
the type of the second element of the pair does not depend on the first, the re-
sulting type is again the familiar notion of a tuple. As it is described in [WK19,
Quantifiers], the name ”dependent sum type” comes from the fact that, given a
finite type A with values x1, . . . , xn, and a dependent function B with each of
the types B x1, . . . , B xn havingm1 , . . . ,mn distinct members, then the type
Σ[x ∈ A] B x hasm1 + · · ·+mn inhabitants. A similar reasoning can be
applied to the dependent product type previously described.

The construction explained in this last case is the main point of departure from
classical mathematics and classical logic because it rules out impredicative proofs
(i.e.: proofs that derive existence of a certain mathematical object from assum-
ing its non-existence and deriving a contradiction) since in such a scenario we do
not have to concretely provide themathematical object for which the proposition
holds. Furthermore, the principle of the excluded middle of classical logic does
not hold in this context, since in order to have a proof of a proposition or its nega-
tion one has to actually construct it. For these reasons, Martin-Löf type theory
is also called constructive type theory, or intuitionistic type theory, following
Brouwer’s notion of intuitionistic logic where the law of the excluded middle,
along with double negation elimination, purposefully do not hold. [Mar84] The
type system used by Agda is specifically based on Zhaohui Luo’s unified theory
of dependent types (UTT) [Luo94], a type theory close to Martin-Löf’s.

12

2.4 Agda
In this section we will concretely introduce Agda and its syntax, along with the
fundamental constructs necessary to understand the proofs presented in this
thesis.

2.4.1 Datatypes

The main system that makes it possible to formulate new definitions and con-
cepts in Agda is the concept of inductive datatypes. The basic example of this
mechanism is the inductive definition of natural numbers; we create here a new
term of typeN called zero, and a constructor sucwhich, given a natural, returns
another natural:

-- Inductive definition of naturals
-- Comments in Agda begin with a `--`
data N : Set where
zero : N
suc : N → N

Each inductive definition introduces zero or more concrete terms, called con-
structors, which are simply optionally dependent functions (or values, which are
simply nullary functions) that construct the type being defined. As it happens
with the majority of functional programming languages, function application
has always the highest precedence, and is expressed by simply specifying the
function and then separating arguments with spaces, such as suc zero, or f x
y, in a similar way as with Haskell. In this last example, we can also notice the
use of Set as the builtin type of other types.2
Being Agda a dependently-typed programming language, it is possible to con-
struct datatypes where the type being declared is dependent on values or more
complex terms. The classic example in dependent programming is the definition
of vectors whose size is statically known at compile time:

2In order to avoid Russell’s paradox, Agda uses a universe hierarchy where Set is actually
implicitly indexed by an integer. In this system, Seti : Seti+1, and Set is just a shorthand for
Set0.

13

infixr 5 _::_

data Vec (A : Set) : N → Set where
[] : Vec A zero
:: : ∀ {n : N} (x : A) (xs : Vec A n) → Vec A (suc n)

This example perfectly shows the main capabilities of Agda’s powerful depen-
dent type system, where the type Vec is itself in some sense a ”higher-order
function” that takes a type (also belonging to the type Set), a concrete number
(with type N), and returns a new type.
We can also employ implicit arguments, denoted by ”{” and ”}”, to avoid having to
specify those arguments considered uninteresting every time we use a construc-
tor or a function, in this case _::_ and the implicit argument {n : N}. Using im-
plicit arguments allows us to directly write expressions such as 0 :: 1 :: 2 :: []
without having to specify the size n each time. Each argument, however, still
fully represents a universally quantified parameter. This usefulmechanism forces
Agda to try inferring the value of omitted parameters by trying to solve the im-
plicit type constraints (provided by the context in which the expression is placed
and by other parameters) necessary to make the program type-check. It is some-
times necessary to make these parameters explicit in certain function applica-
tions where Agda cannot infer them by itself, and this is possible by also enclos-
ing the function arguments within curly braces, optionally specifying the name
of the implicit parameter.
The use of dependent functions becomes clear from the fact that parameters have
their own names in the type definition, so that they can be later used in the
type. In this case, the names x and xs are not strictly necessary, and are merely
descriptive; the implicit parameter n, however, requires a name so that it can be
successively referred to in the expressions Vec A n and Vec A (suc n).

2.4.2 Syntactic constructs

As shown in the previous example, Agda also allows the user to specify a so-
calledmixfix definition thatmakes it possible to easily and flexibly introduce new
syntactic constructs. This is specified by the use of underscores to indicate where
the extra arguments are syntactically positioned. This mechanism allows the
user to define constructs that can be either unary, binary, or even more complex
syntactic constructs. In the previous definition, the _::_ constructor (also called

14

cons) is defined with infixr to be a right-associative binary operator,3 with a
fine-tuned precedence number.
Using the propositions-as-types method, we can define types that encode simple
propositional logic. The following example denotes the concept of disjunction,
where A ∨ B can be proven by either providing a proof of A through the con-
structor inj1, or by providing a proof of B with inj2:

infixr 1 _⊎_

data _⊎_ (A : Set) (B : Set) : Set where
inj1 : A → A ⊎ B
inj2 : B → A ⊎ B

The constructors act as introduction mechanisms of the proposition, and pattern
matching is used to destruct them into their premises, as it will explained in
Section 2.4.3. Through the use of dependent types we can also express when a
given relation holds:

data _≤_ : N → N → Set where

z≤n : ∀ {n}

→ zero ≤ n

s≤s : ∀ {m n}
→ m ≤ n

→ suc m ≤ suc n

In this definition, z≤n is to be interpreted as a constructor (which just acts as
another function) that gets an implicit parameter n and returns a new term of
type ≤, as specified. The second constructor is a constructor with two implicit
parameters, which then accepts an explicit parameter of type m ≤ n. The type
checking for each parameter, explicit or not, is done according to the values of
the preceding ones. For example, m and n in this case determine the type of the
explicit parameter m ≤ n, in such a way that the expression also returns the

3The associativity of new operators can be expressed with infixr, infixl, or infix in the
case of operators for which no meaningful associativity can be defined.

15

appropriate type. Note that it is also possible to omit the type of parameters
if Agda can infer them from context. Here m and n are automatically inferred
to be instances of N from their use in the ≤ constructor. The type signature of
functions, contrary to other programming languages that employ type inference,
cannot however be omitted.
In this case, constructors are implemented as dependent functions that take as
arguments propositions (or other values) and give as result a proof that the re-
lation holds. New concepts and propositions are nothing but yet another type,
with no specific distinction from the datatype structures commonly found in pro-
gramming.
Note in the preceding example that two dashes -- are simply used to start a
comment. The line just serves as graphic aid to suggest that definitions can be
interpreted as inference rules, but it has no intrinsic meaning.

2.4.3 Functions

Agda is a functional programming language, and the main method to operate
on the previously defined inductive datatypes is precisely through the use of
functions. Functions can be defined through the use of pattern matching, which
allows the user to consider and decompose each possible case of the parameters
into their constructors, and then state the function value according to each case.

infixl 6 _+_

+ : N → N → N
zero + n = n
suc m + n = suc (m + n)

In order to preserve the consistency of the underlying type system, all Agda
function definitions must employ well-founded recursion, i.e.: always terminate.
Agda tries to check this by ensuring that all recursive calls have, as arguments,
terms that are structurally-smaller than the ones specified in the definition.4 For
example, if we were in a given function definition that pattern-matches on the
term (a, b), then a would be a valid argument on which to recursively call the
function since the argument is smaller than the original one. This mechanism,

4It is possible with the appropriate language pragma {-# TERMINATING #-} to override the
termination checks for a given function. It is obviously not recommended since Agda cannot
ensure that the definitions will not lead to logically unsound constructs.

16

when applied to the previously defined inductive datatype N, perfectly mirrors
the classic principle of induction on numbers: a function that operates on a nat-
ural number can pattern match with zero, the base case, or with the structure
(suc n). In this latter case, we can recursively call the function on the smaller
argument n, which acts as the inductive hypothesis. The use of recursion and
pattern matching in the general context of inductive datatypes corresponds to
the familiar concept of structural induction, and Agda exhaustively checks that
every single possible case has been covered. As it will be clear when treating
Takahashi translation in Chapter 6, this case-checking mechanism can occasion-
ally give rise to inconveniences.
In the definition of the addition function _+_, the recursive call is performed
on a syntactically smaller argument so the recursion is guaranteed to terminate.
Agda also requires that functions must always be declared before their use in
other constructs.5 Given these basic definitions we can already start proving
some simple theorems, such as the following:

+-ext : ∀ (x y) → x ≤ x + y
+-ext zero y = z≤n
+-ext (suc x) y = s≤s (+-ext x y)

It is also possible to use the with syntax to perform case analysis on an inter-
mediate argument. This powerful mechanism also has the effect of replacing the
specified expression inside of the goal in each case.

≤-total : ∀ (x y : N) → x ≤ y ⊎ y ≤ x
≤-total zero _ = inj1 z≤n
≤-total (suc _) zero = inj2 z≤n
≤-total (suc m) (suc n) with ≤-total m n
... | inj1 m≤n = inj1 (s≤s m≤n)
... | inj2 n≤m = inj2 (s≤s n≤m)

Note in the last example the use of the special pattern _, which can be employed
for those values that are not referenced later and that can be simply ignored.
It is important to remark that the order consideredwhen applying patternmatch-
ing is always first to last case. In interactive mode, Agda also helps the user by
signaling when some cases are ”overshadowed” by previous ones.

5There nevertheless exists a mechanism to support mutually recursive (but still terminating)
definitions.

17

As with any other functional programming language, Agda allows the use of
anonymous functions through the lambda operator. This also can be paired with
anonymous case splitting, used here to introduce other common syntactic con-
structs:

case_of_ : ∀ {A B} → A → (A → B) → B
case x of f = f x

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x :: xs) =
case p x of

λ { true → x :: filter p xs
; false → filter p xs
}

We can also see here a practical use of the mixfix syntax to introduce complex
syntactic constructs, which can be defined for datatypes as well as functions.
Another example directly taken from the Agda standard library is the follow-
ing function, showing the flexibility of the language in creating definitions that
can be easier to work with. This example can be interpreted as a construct to
decompose (non-dependent) disjunctions:

[_,_] : ∀ {A B C} → (A → C) → (B → C) → (A ⊎ B → C)
[f , g] (inj1 x) = f x
[f , g] (inj2 y) = g y

2.4.4 Equality

Contrary to many other theorem provers, propositional equality in Agda is not
an intrinsically primitive concept, and it can be perfectly defined within the lan-
guage itself:

infix _≡_ 4

data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x

Following the definition, the only way to construct a proof that two terms of a
given type are equal is through the use of the constructor refl.

18

Note how some simple theorems about equality can be easily proven by pattern
matching on the sole constructor refl: since refl requires both arguments to
be syntactically the same, Agda can match y with the same expression as x and
effectively simplify the goal.

sym : ∀ {A : Set} {x y : A}
→ x ≡ y

→ y ≡ x

sym refl = refl

trans : ∀ {A : Set} {x y z : A}
→ x ≡ y
→ y ≡ z

→ y ≡ z

trans refl refl = refl

cong : ∀ {A B : Set} (f : A → B) {x y : A}
→ x ≡ y

→ f x ≡ f y

cong f refl = refl

cong2 : ∀ {A B C : Set} (f : A → B → C) {u x : A} {v y : B}
→ u ≡ x
→ v ≡ y

→ f u v ≡ f x y

cong2 f refl refl = refl

+-suc : ∀ (m n) → m + suc n ≡ suc (m + n)
+-suc zero n = refl
+-suc (suc m) n = cong suc (+-suc m n)

19

This elegant equality mechanism also allows us to define an entire system of
equational reasoning within Agda itself:

infix 1 begin_
infixr 2 _≡⟨⟩_ _≡⟨_⟩_
infix 3 _■

begin_ : ∀ {A} {x y : A}
→ x ≡ y

→ x ≡ y

begin x≡y = x≡y

≡⟨⟩ : ∀ {A} (x : A) {y : A}
→ x ≡ y

→ x ≡ y

x ≡⟨⟩ x≡y = x≡y

≡⟨⟩_ : ∀ {A} (x : A) {y z : A}
→ x ≡ y
→ y ≡ z

→ x ≡ z

x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z

_■ : ∀ {A} (x : A)

→ x ≡ x
x ■ = refl

Thedifference between _≡⟨_⟩_ and _≡⟨⟩_ is that the former requires an ”external
justification” for the rewriting, as represented by the transitive use of equality. In
both cases, Agda always tries to apply the definitions of the functions involved
so that a common term can be reached.

20

Withoutmaking all the definitions explicit, we can show some practical examples
by proving equalities about naturals:

+-identityr : ∀ (m : N) → m + zero ≡ m
+-identityr zero =
begin

zero + zero
≡⟨⟩

zero
■

+-identityr (suc m) =
begin

suc m + zero
≡⟨⟩

suc (m + zero)
≡⟨ cong suc (+-identityr m) ⟩

suc m
■

+-comm : ∀ (m n : N) → m + n ≡ n + m
+-comm m zero =
begin

m + zero
≡⟨ +-identityr m ⟩

m
≡⟨⟩

zero + m
■

+-comm m (suc n) =
begin

m + suc n
≡⟨ +-suc m n ⟩

suc (m + n)
≡⟨ cong suc (+-comm m n) ⟩

suc (n + m)
≡⟨⟩

suc n + m
■

21

In the last examples, we need to use the congruence property for equality in order
to appropriately ”apply” the inductive hypothesis to the subterm inside the suc
constructor. Sometimes the termwewant to rewrite can be a deep subexpression,
and that would require us to apply congruence multiple times. As a shorthand
for this operation, Agda provides the syntactic sugar rewrite, which rewrites
the goal with a given equation.6 For example, we can easily prove the following
theorem without having to ”narrow down” the point where we want to apply
the rewriting rule:

suc-comm-eq : ∀ (m n k : N)
→ suc (m + n) ≡ k

→ suc (n + m) ≡ k

suc-comm-eq m n k eq rewrite +-comm m n = eq

Note again that the first four arguments to the function (theorem) suc-comm-eq
are, in order, m, n, k, and the evidence eq expressing the hypothesis that
suc (m + n) ≡ k holds.

2.4.5 Postulates

It is possible to temporarily postulate any principle in Agda using the postulate
syntax. This can be both used to temporarily assume theorems so that they can
be proved them later, or to add new axioms and principles altogether. An ex-
tremely useful principle unprovable in Agda that therefore needs to be provided
as a postulate is the extensionality principle, which states that if two functions
are pointwise equal for every possible argument, then they are effectively equal.7
Wadler et al. extensively use this principle in [WK19, Substitution] to prove the
results shown in Section 3.4.1, and we will also employ it in Section 7.7.3 to prove
the equivalence of two substitutions. This property can also be found in its more
powerful dependent version in the Axiom.Extensionality.Propositionalmod-
ule, and it can be expressed as follows:

6Internally, this uses the with notation previously described.
7Note that the converse of the extensionality principle, the η-expansion rule, does not require

a specific postulate in Agda and it can be trivially shown.

22

postulate
extensionality : ∀ {A B : Set} {f g : A → B}

→ (∀ (x : A) → f x ≡ g x)

→ f ≡ g

2.4.6 Existence

Existential quantification can be directly defined in Agda, mirroring the type-
theoretical notion of a pair:

data Σ (A : Set) (B : A → Set) : Set where
, : (x : A) → B x → Σ A B

This definition uses the underlying principle of dependent pairs, where the first
element is a concrete term and the second element is a proof for a proposition
applied to that term. Another equivalent way to express this is through the use
of records:

record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field

fst : A
snd : B fst

There are other convenient syntactic constructs defined in Data.Product used
to denote existence. These definitions are slightly easier to use since they do not
require the explicit use of functions to quantify propositions. We will employ
them to express the notion of confluence in Chapter 5 and Chapter 7, and to
formalize the Z-property presented in Chapter 8. We can briefly compare them
with the following example:

Σ-zero : Σ N (λ x → ∀ {y} → x ≤ y)
Σ-zero = zero , z≤n

Σ-syntax-zero : Σ[x ∈ N] ∀ {y} → x ≤ y
Σ-syntax-zero = zero , z≤n

∃-syntax-zero : ∃[x] ∀ {y} → x ≤ y
∃-syntax-zero = zero , z≤n

23

2.4.7 Modules

Agda provides a very well-organized module system that allows the user to im-
port, rename, and hide any desired function from the available modules. The
module structure directly follows the filesystem organization, with each names-
pace corresponding to a folder and each module mirroring its filename. All the
concepts presented with the previous definitions can be found in the Agda stan-
dard library, and can be imported as follows:

import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; cong2; sym)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _■)
open import Data.Nat using (N; zero; suc; _+_; _≤_; z≤n; s≤s)
open import Data.Product using (Σ; Σ-syntax; ∃; ∃-syntax; _×_; _,_)
open import Data.Sum using (_⊎_; inj1; inj2; [_,_])
open import Data.Nat.Properties using (+-assoc; +-identityr; +-suc; +-comm)
open import Axiom.Extensionality.Propositional using (Extensionality)

24

Chapter 3

De Bruijn indices and the σ-calculus

In this chapter we introduce the de Bruijn notation for λ-calculus, explain its
usefulness in elegantly formalizing and expressing lambda binders, and briefly
present the infrastructure implemented by [WK19] that we used as a foundation
on which to develop further theorems for untyped λ-calculus. This infrastruc-
tural part refers to a paper by Schäfer et al. [STS15], where a library in Coq to
automatically reason on de Bruijn terms and substitutions is implemented. This
work in turn uses the theoretical foundations presented by Abadi et al. [Aba+91],
which introduce the concept of explicit substitutions and the σ-calculus.
We will assume that the reader is familiar with the basic notions of λ-calculus,
such as substitution, binders, capturing, α-equivalence. For a more complete
treatment of λ-calculus we refer to [Bar85].

3.1 Perspective
When formalizingλ-calculus, the first fundamental choice tomake is selecting an
appropriate representation for λ-terms and the concept of substitution, crucial in
implementing β-reduction. This problem reduces to finding the most reasonable
and effective method to implement a famously hard to formalize concept in λ-
calculus and the theory of programming languages in general: name binders
and how to avoid the capturing of free variables in substitutions. The first main
theoretical approach to this problem is represented by the Barendregt’s Variable
Convention, which considers λ-terms up to renaming of bound variables in such
a way that no capturing can occur. This greatly simplifies avoiding capturing
substitutions and the treatment of binders in proofs.

25

We here quote the main points of the convention, as stated in [Bar85]:

Convention. Terms that areα congruent are identified. So nowwewrite λx.x ≡
λy.y, etc.
Variable convention. If M1, . . . ,Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound variables are chosen to be
different from the free variables.

These two conventions jointly allow to address the main points that an appro-
priate representation for λ-terms should provide:

• Identify two terms if each can be transformed into the other by a renaming of
its bound variables.

• Consider a λ-term as a representative of its equivalence class.

• Interpret substitution M [x := N] as an operation on the equivalence classes
ofM andN . This operation can be performed using representatives, provided
that the bound variables are named properly according to the variable conven-
tion above.

One of the major problems in formalizing mathematical theorems with proof
assistants is precisely capturing these informal conventions, which are usually
introduced to aid both expositions and proofs of mathematical concepts. Even
though these mechanisms lift the mathematician from the burden of having to
consider these important but fundamentally tedious details, they unfortunately
cannot be omitted in formally-verified proofs. The most-well known mechanism
to conveniently formalize and solve these problems inmachine-checked proofs is
the concept of de Bruijn indices [Bru72], which we present in this chapter along
with their formalization in Agda developed by Wadler et al. [WK19].
Other important formalization techniques include the Locally Nameless method
[Cha12], the Higher-Order Abstract Syntax representation [How10], the Nomi-
nal library implemented in Isabelle/HOL [Urb08], and the approaches presented
in Agda by [CST17]. These two latter developments explicitly try to mirror pen-
and-paper proofs by providing similar constructions and induction principles as
those presented by the Barendregt Variable Convention. Another relevant pa-
per on these topics is [Ayd+08], which further describes the Locally Nameless
technique while also giving a survey of the other representation methods.

26

Classic notation de Bruijn indices
λx.x λ0
λx.λy.xy λλ10
(λx.x)(λf.ff) (λ0)(λ00)
λx.λy.(λz.xy)y λλ(λ21)0
λa.λb.λc.abb λλλ211
λx.x(λy.λf.yx(ff)x) λ0(λλ12(00)2)
λf.(λx.f)(λy.(λr.ryf)yf) λ(λ1)(λ(λ012)01)
λf.(λx.f(xx))(λx.f(xx)) λ(λ1(00))(λ1(00))

Table 3.1: Some examples of λ-terms with de Bruijn indices

3.2 De Bruijn indices
Historically, the first attempt to adequately solve these problems regarding binders
and variable capturing for λ-calculus has been the work developed by Nicolaas
G. de Bruijn [Bru72] for his automated theorem prover AUTOMATH, one of the
first examples of automated computer-assisted theorem proving. This has given
rise to the concept of de Bruijn indices, which essentially act as notation to rep-
resent λ-calculus terms without having to give names to bound variables. Using
this mechanism as a representation method lifts the prover from the many issues
of variable renamings and capturing, and makes it easier to implement substitu-
tions. Instead of using symbolic names, variables using the de Bruijn notation1

are simply expressed through the use of numbers which, intuitively, indicate to
the number of λ-abstractions one has to skip to get to the binder that introduces
the variable. Note that this is not the same as simply using numbers instead
of identifiers: the catch is that λ-abstractions do not express any variable name
altogether, therefore also slightly sacrificing the readability of terms. The most
important advantage of this notation, however, is that α-equivalent terms be-
come syntactically equal, with the concept of α-conversion and the problems
related to binders and capturing variable names disappearing altogether.
The way we represent λ-terms in Agda is clearly through the use of a datatype.
However, instead of adopting a naïve approach where de Bruijn indexes are rep-
resented by plain natural numbers, we can exploit dependent types in such a way
the type of each term also reflects the number of free variables that it can refer

1We will refer to this mechanism as ”de Bruijn notation”, not to be confused with another
representation method that bears a similar name where applications are written in the reverse
order and next to the abstraction binder.

27

to. The idea is that Term 0 is going to be the type of terms with no free variables
(i.e.: closed terms), Term 1 the set of terms that can refer to one variable above
the outermost, and so on. This method also allows us to be more specific in our
term representation, since the number of free variables can be known at compile-
time. Its use as a natural way to express λ-terms will become clear in Section 3.3
when introducing the concept of parallel substitution of free variables.
Let us indicate2 with #i the variable with de Bruijn index i. We say that a term
can refer to up to n free variables in the following cases:

• If the term is a variable #i, then i must be a number 0 ≤ i < n.

• If the term is a λ-abstraction, then the body of the abstraction is a term that
can refer up to n+ 1 free variables, since it can also use the newly-introduced
variable #0. In accordance with de Bruijn notation, all the indices inside the
body of the abstractionwill increase by onewhen referring to outside variables,
since they will have to skip the initial abstraction.

• Lastly, if the term is an application, then both subterms must refer to up the
same number of free variables.

Note that terms referring to up to n free variables can be also ”interpreted” as
referring to n+ k more variables with k ≥ 0, since we need not necessarily use
all the available indices in our term. We can express this concept of delimited
indices with the Fin datatype, which is the type of finite types.

data Fin : N → Set where
zero : ∀ {n : N} → Fin (suc n)
suc : ∀ {n : N} (i : Fin n) → Fin (suc n)

For instance:

• The type Fin 0 contains no inhabitant terms.

• The type Fin 1 contains the term zero.

• The type Fin 2 contains the terms zero, suc zero.

• The type Fin 3 contains the terms zero, suc zero, suc (suc zero).

• …

2Even though the original notation as expressed by de Bruijn started from one, we will use
here the zero-indexed notation.

28

Agda also provides in the standard library the syntactic sugar 0F, 1F, 2F, etc. to
indicate the corresponding Fin terms. Note that zero can belong to any Fin n, as
it precisely expressed by the definition. This feature, similar to a sort of polymor-
phic behaviour, is provided by the fact that the quantified parameter n remains
implicit and gets automatically inferred byAgda according to the context. For ex-
ample, by setting n as 0we have 0F : Fin (suc 0), 0F : Fin (suc (suc 0)),
and similarly with other values.
Given this definition, we can now express the type of λ-terms as follows:

infix 9 #_
infixl 7 _·_
infix 6 ň_

data Term : N → Set where
#_ : ∀ {n : N} → Fin n → Term n
ň_ : ∀ {n : N} → Term (suc n) → Term n
· : ∀ {n : N} → Term n → Term n → Term n

It is necessary to name the constructor for λ-abstraction with ”ň” so that it does
not conflict with the ”λ” already used in Agda for the usual function abstraction.
Here are some examples of valid λ-terms with our definition:

_ : Term 0
_ = ň # 0F
_ : Term 1
_ = ň ň ň # 3F
_ : Term 0
_ = (ň # 0F) · (ň # 0F · # 0F)
_ : Term 2
_ = ň # 1F · (ň ň # 4F)
_ : Term 0
_ = ň # 0F · (ň ň # 1F · # 2F · (# 0F · # 0F) · # 2F)
_ : Term 2
_ = ň (ň # 3F) · (ň (ň # 0F · # 4F · # 3F) · # 0F · # 1F)
_ : Term 4
_ = ň (ň # 1F · (# 5F · # 5F)) · (ň # 0F · (# 4F · # 4F))

29

In a similar way as with the type Fin, we can identify terms with multiple ap-
propriate types:

_ : Term 0
_ = ň # 0F
_ : Term 5
_ = ň # 0F

To make these definitions work, Agda is again inferring under the hood the ap-
propriate implicit parameter so that the definition typechecks with the specified
type. Agda also informs us that it cannot automatically resolve those cases where
the terms do not reflect their expected types:

-- The following terms are ill-typed
_ : Term 1
_ = ň # 2F
_ : Term 2
_ = ň # 1F · (ň # 4F)

The fact that terms always belong in a sufficiently large context for their free
variables is therefore intrinsically checked at compile-time by the type of their
constructors. Note that any term with type Term 0 (the type of closed terms)
must necessarily be either a λ-abstraction or an application, since the variable
0 has type at least Term (suc n), for any n. This is due to the fact that
0F : ∀ {n : N} → Fin (suc n), which forces us to use a λ-abstraction to
”lower” the size of the Fin parameter so that the term can overall have size zero.

3.2.1 Comparison with the original development

Instead of directly employing the library constructed by Wadler et al. [WK19],
we chose to simplify their development in order to describe de Bruijn indices
in a more direct fashion. The original architecture is more general, and uses
the concept of intrinsically-typed terms where the type Fin represents contexts
and terms correspond to a typing judgment with only one possible type. For
our specific purposes, we decided to identify a simpler but isomorphic structure,
represented by the Fin and Term datatypes, and we then re-purposed their ar-
chitecture to mirror these less general but easier to read definitions.

30

3.3 Substitution
We can finally introduce the concept of parallel substitutions for λ-terms de-
scribed bt Schäfer et al. [STS15] in Coq and implemented in Agda by Wadler et
al. [WK19]. We present here the fundamental ideas and lemmas.
Substitution for de Bruijn terms behaves differently than the standard named
representation for λ-terms. For example, substituting an index n requires us
to refer to the index n + 1 when entering a λ-abstraction, since all the indices
shift accordingly to the fact that we need to account the new λ-abstraction. This
operation can be done through the concept of extending a substitution, which
effectively applies the substitution to indices starting from 1 instead of 0. In
practical use, however, there is usually no syntactic need to specify the variable
being substituted, since in the context of λ-calculus the variable with index 0 is
the one being substituted in β-redexes.
There are other important semantic differences that need to be accounted for
because of this representation. For instance, if a term that gets substituted inside
an abstraction body refers to some free variable n, that variable indexwill have to
be appropriately increased in order to maintain the reference to the same binder.

λ0(λ01) [(λ12(λ01))] = (λ12(λ01))(λ0(λ23(λ01)))

We provide here an example of β-reduction, with (λ12(λ01)) as the term being
substituted for. Here, we can immediately notice that the two variables 1 and
2 on the left are free since they do not refer to any previously introduced λ-
abstraction, and that 0 and 1 on the right are instead bound. We have underlined
the two occurrences where this term gets replaced in the term on the left. When
substituting, the two free indices have to be incremented accordingly to the fact
that they are being inserted within a new abstraction. Therefore, our substitution
function will need to incorporate some concept of ”shifting”, or extending, in
such a way that the meaning and reference of free variables is preserved.

3.3.1 Substitutions as functions

In the context of λ-terms, it is both useful and necessary to generalize the concept
of a substitution to that of a function associating de Bruijn indices to terms. This
is precisely what allows us to easily introduce the previously mentioned concept
of extension of a substitution, which considers n + 1 indices instead of n inside
λ-abstractions.

31

This interpretation of substitutions as functions can be used to imagine a generic
substitution as a linear sequence of terms, associating each de Bruijn index with
a corresponding term. The substitution is then performed in a parallel fashion,
where each index considered is simultaneously substituted in the term.
We can now define both the type of substitutions and the substitution function
as follows:

Subst : N → N → Set
Subst n m = Fin n → Term m

subst : ∀ {n m} → Subst n m → (Term n → Term m)
subst σ (# x) = σ x
subst σ (ň M) = ň (subst (exts σ) M)
subst σ (M · N) = subst σ M · subst σ N

Here, exts refers to the extension of a substitution, which formalizes the two
operations we previously described. It is defined as follows:

exts : ∀ {n m} → Subst n m → Subst (suc n) (suc m)
exts σ zero = # zero
exts σ (suc x) = rename suc (σ x)

The pattern matching makes it so that the extended substitution ”ignores” the
case of the zero-variable, which would be the one being introduced by the λ-
abstraction; by pattern matching on (suc x) and then applying the substitution
to x, it also makes it so that the substitution operates on a decremented index.
This is what mirrors the fact that the extension of substitution should be applied
on indices starting from one instead of zero. The rename function, finally, ap-
propriately shifts by one (through suc) all the indices of the free variables of the
resulting term σ x, in order to preserve their reference. In this context, the ex-
tension of a substitution is effectively an extension of both its domain (in terms
of indices that a substitution can take) and its codomain (in terms of the possible
range of indices that the substituted terms can refer to). This fact is perfectly
mirrored in the type signature of the exts function, where both n and m are in-
cremented by one.
We can now present the definition of the rename function, along with the type
of renamings. A renaming is a function from a given set of de Bruijn indices,
bounded by n, to another set of indices bounded by m. One such example of a
renaming is the suc function, which simply increments all indices by one. The
definitions are straightforward:

32

Rename : N → N → Set
Rename n m = Fin n → Fin m

rename : ∀ {n m} → Rename n m → (Term n → Term m)
rename ρ (# x) = # (ρ x)
rename ρ (ň M) = ň (rename (ext ρ) M)
rename ρ (M · N) = rename ρ M · rename ρ N

Applying a renaming through the function rename effectively alters the number
of free variables that a term can refer to, which is why we get Term m from Term
n. Similarly to the case of substitutions, we also have a concept of extension of a
renaming:

ext : ∀ {n m} → Rename n m → Rename (suc n) (suc m)
ext ρ zero = zero
ext ρ (suc x) = suc (ρ x)

This extension accounts for the fact that renamings can be applied inside the body
of a λ-abstraction, thus explaining its use in rename. As before, we ignore the
case where the index is zero, since it refers to the newly-introduced variable. In
the other case, we again decrease the index being considered by patternmatching
through (suc x), and then apply the renaming to x. We then increment the final
result, so that it accounts for the fact that all indices appearing in a λ-abstraction
have to be incremented to preserve the intended meaning given by the renaming
ρ. Finally, we can express zero-indexed substitution as follows, alongwith amore
familiar syntactic notation that applies it to terms:

subst-zero : ∀ {n} → Term n → Subst (suc n) n
subst-zero M zero = M
subst-zero M (suc x) = # x

infix 8 _[_]

[] : ∀ {n} → Term (suc n) → Term n → Term n
M [N] = subst (subst-zero N) M

The concept of single-term substitution is simply that of a substitution replacing
the index 0with a provided term and decrementing the rest of the variables. This
latter mechanism is again implemented through pattern matching and mirrors

33

the fact that, by eliminating the λ-abstraction, all free variables greater than zero
get decremented by one in order to correctly maintain their references. This
explains the signature of subst-zero as Subst (suc n) n, since it effectively
eliminates the variable 0 that the abstraction had introduced. This removal of
the outermost λ-abstraction is precisely what justifies zero-indexed substitution
as the basis of β-reduction.

3.4 σ-calculus
In this section we briefly introduce the main results regarding parallel substitu-
tions formalized by Wadler et al. [WK19]. These properties find their theoretical
foundations in the σ-calculus defined by Abadi et al. [Aba+91], which acts as an
algebraic mechanism to explicitly reason on substitutions. Aside from being an
useful system on its own, it can also be used to elegantly prove the crucial sub-
stitution lemma presented by Barendregt [Bar85, Lemma 2.1.16]. We will later
employ the foundational theorems described here in Chapter 4 and Chapter 7.
The σ-calculus uses four constructs to define and operate on substitutions:

• The identity substitution, which simply takes a de Bruijn index and associates
it with a variable with the same index.

ids : ∀ {n} → Subst n n
ids x = # x

This gives the following substitution, where we associate the position of each
term with the index being considered (with index zero starting on the left, and
increasing on the right):

0, # 1, # 2, ...

• The shift operation ↑ increments all the given indices by one.

↑ : ∀ {n} → Subst n (suc n)
↑ x = # (suc x)

This gives the substitution sequence:

1, # 2, # 3, ...

34

• The cons operation • takes a term and a substitution and ”attaches” it as first
element of the substitution, shifting all the other terms.

infix 6 _•_

• : ∀ {n m} → Term m → Subst n m → Subst (suc n) m
(M • σ) zero = M
(M • σ) (suc x) = σ x

Therefore, given a term M and a substitution σ, the consing operation constructs
the following sequence:

M, σ 0, σ 1, σ 2, ...

• Finally, the composition operation # functionally composes two substitutions.
Even though the original paper by Abadi et al. [Aba+91] uses the classic math-
ematical order for composition, with τ applied before σ in σ ◦ τ , Wadler et al.
[WK19] chose to implement the clearer concept of forward composition, with
σ being the first function to be applied in σ # τ . This definition uses the func-
tional composition defined in the Agda standard library and denoted with ”◦”:

infixr 5 _#_
: ∀ {n k m} → Subst n k → Subst k m → Subst n m
σ # τ = ≪ τ ≫ ◦ σ

The following notation is also used to shorten the use of the subst function and
express it more conveniently:

≪_≫ : ∀ {n m} → Subst n m → Term n → Term m
≪ σ ≫ = subst σ

Wecan also see that any renaming can be equivalently expressed as a substitution
that simply ”lifts” the returned indices into variables:

ren : ∀ {n m} → Rename n m → Subst n m
ren ρ = ids ◦ ρ

Notice how our special subst-zero substitution can also be defined as M • ids,
given any term M.

35

3.4.1 σ-calculus equations

The σ-calculus is equipped with its defining equations which operate on substi-
tutions, listed as follows:

(sub-head) ≪ M • σ ≫ (# Z) ≡ M
(sub-tail) ↑ # (M • σ) ≡ σ
(sub-η) (≪ σ ≫ (# Z)) • (↑ # σ) ≡ σ
(Z-shift) (# Z) • ↑ ≡ ids

(sub-id) ≪ ids ≫ M ≡ M
(sub-app) ≪ σ ≫ (L · M) ≡ (≪ σ ≫ L) · (≪ σ ≫ M)
(sub-abs) ≪ σ ≫ (ň N) ≡ ň ≪ σ ≫ N
(sub-sub) ≪ τ ≫ ≪ σ ≫ M ≡ ≪ σ # τ ≫ M

(sub-idL) ids # σ ≡ σ
(sub-idR) σ # ids ≡ σ
(sub-assoc) (σ # τ) # θ ≡ σ # (τ # θ)
(sub-dist) (M • σ) # τ ≡ (≪ τ ≫ M) • (σ # τ)

Themeaning of these equations is self-explanatory and almost directly map one-
to-one into Agda. These properties form the basis on which the authors suc-
cessively develop the following theorems, by using the very same equational
reasoning we presented in Section 2.4.4 when introducing Agda:

ren-ext : ∀ {n m} {ρ : Rename n m}
→ ren (ext ρ) ≡ exts (ren ρ)

rename-subst-ren : ∀ {n m} {ρ : Rename n m} {M : Term n}
→ rename ρ M ≡ ≪ ren ρ ≫ M

exts-cons-shift : ∀ {n m} {σ : Subst n m}
→ exts σ ≡ (# zero • (σ # ↑))

subst-zero-cons-ids : ∀ {n} {M : Term n}
→ subst-zero M ≡ (M • ids)

compose-ext : ∀ {n m k} {ρ : Rename m k} {ρ ′ : Rename n m}
→ ((ext ρ) ◦ (ext ρ ′)) ≡ ext (ρ ◦ ρ ′)

36

compose-rename : ∀ {n m k} {M : Term n} {ρ : Rename m k} {ρ ′ : Rename n m}
→ rename ρ (rename ρ ′ M) ≡ rename (ρ ◦ ρ ′) M

commute-subst-rename : ∀ {n m}{ M : Term n} {σ : Subst n m}
{ρ : ∀ {n} → Rename n (suc n)}

→ (∀ {x : Fin n} → exts σ (ρ x) ≡ rename ρ (σ x))
→ subst (exts σ) (rename ρ M) ≡ rename ρ (subst σ M)

exts-seq : ∀ {n m m ′} {σ1 : Subst n m} {σ2 : Subst m m ′}
→ (exts σ1 # exts σ2) ≡ exts (σ1 # σ2)

rename-subst : ∀ {n m m ′} {M : Term n} {ρ : Rename n m} {σ : Subst m m ′}
→ ≪ σ ≫ (rename ρ M) ≡ ≪ σ ◦ ρ ≫ M

subst-zero-exts-cons : ∀ {n m} {σ : Subst n m} {M : Term m}
→ exts σ # subst-zero M ≡ (M • σ)

These theorems both elaborate on the σ-calculus foundations and connect them
to the definitions of subst, exts, rename, ext previously defined on λ-terms.

3.4.2 Fundamental theorems

However, the important results that we employ and require in our theorems re-
garding substitution are the following lemmas, for which σ-calculus is effectively
defined. We provide the entire proofs to show the equational reasoning behind
them, while omitting some technical definitions about conjugation that simply
allow us to apply the above mentioned properties:

37

subst-commute :
∀ {n m} {N : Term (suc n)} {M : Term n} {σ : Subst n m}

→ ≪ exts σ ≫ N [≪ σ ≫ M] ≡ ≪ σ ≫ (N [M])
subst-commute {n}{m}{N}{M}{σ} =
begin

≪ exts σ ≫ N [≪ σ ≫ M]
≡⟨⟩

≪ subst-zero (≪ σ ≫ M) ≫ (≪ exts σ ≫ N)
≡⟨ cong-sub {M = ≪ exts σ ≫ N} subst-zero-cons-ids refl ⟩

≪ ≪ σ ≫ M • ids ≫ (≪ exts σ ≫ N)
≡⟨ sub-sub {M = N} ⟩

≪ (exts σ) # ((≪ σ ≫ M) • ids) ≫ N
≡⟨ cong-sub {M = N} (cong-seq exts-cons-shift refl) refl ⟩
≪ (# zero • (σ # ↑)) # (≪ σ ≫ M • ids) ≫ N
≡⟨ cong-sub {M = N} (sub-dist {M = # zero}) refl ⟩

≪ ≪ ≪ σ ≫ M • ids ≫ (# zero) • ((σ # ↑) # (≪ σ ≫ M • ids)) ≫ N
≡⟨⟩

≪ ≪ σ ≫ M • ((σ # ↑) # (≪ σ ≫ M • ids)) ≫ N
≡⟨ cong-sub {M = N} (cong-cons refl (sub-assoc {σ = σ})) refl ⟩

≪ ≪ σ ≫ M • (σ # ↑ # ≪ σ ≫ M • ids) ≫ N
≡⟨ cong-sub {M = N} refl refl ⟩

≪ ≪ σ ≫ M • (σ # ids) ≫ N
≡⟨ cong-sub {M = N} (cong-cons refl (sub-idR {σ = σ})) refl ⟩

≪ ≪ σ ≫ M • σ ≫ N
≡⟨ cong-sub {M = N} (cong-cons refl (sub-idL {σ = σ})) refl ⟩

≪ ≪ σ ≫ M • (ids # σ) ≫ N
≡⟨ cong-sub {M = N} (sym sub-dist) refl ⟩

≪ M • ids # σ ≫ N
≡⟨ sym (sub-sub {M = N}) ⟩

≪ σ ≫ (≪ M • ids ≫ N)
≡⟨ cong ≪ σ ≫ (sym (cong-sub {M = N} subst-zero-cons-ids refl)) ⟩

≪ σ ≫ (N [M])
■

38

rename-subst-commute :
∀ {n m} {N : Term (suc n)}{ M : Term n} {ρ : Rename n m}

→ (rename (ext ρ) N) [rename ρ M] ≡ rename ρ (N [M])
rename-subst-commute {n}{m}{N}{M}{ρ} =
begin

(rename (ext ρ) N) [rename ρ M]
≡⟨ cong-sub (cong-sub-zero (rename-subst-ren {M = M}))

(rename-subst-ren {M = N}) ⟩
(≪ ren (ext ρ) ≫ N) [≪ ren ρ ≫ M]

≡⟨ cong-sub refl (cong-sub {M = N} ren-ext refl) ⟩
(≪ exts (ren ρ) ≫ N) [≪ ren ρ ≫ M]

≡⟨ subst-commute {N = N} ⟩
subst (ren ρ) (N [M])

≡⟨ sym (rename-subst-ren) ⟩
rename ρ (N [M])

■

The importance of these theorems comes from the fact that, when read right to
left, they allow us to effectively ”distribute” a substitution or a renaming inside
the 0-indexed substitution subst-zero. These two properties will turn out to
form the basis on which to develop further theorems about substitutions and
reductions in Chapter 4 and Chapter 7. These lemmas have also been employed
in the proofs by Wadler et al. [WK19] presented in Chapter 5.
By introducing a new syntactical construct to indicate the equivalent of 0-indexed
substitution for the index 1, we can also recognize within subst-commute a gen-
eralized form of the substitution lemma defined in [Bar85, Lemma 2.1.16]:

infix 8 _J_K
_J_K : ∀ {n} → Term (suc (suc n)) → Term n → Term (suc n)
_J_K N M = subst (exts (subst-zero M)) N

substitution-lemma :
∀ {n} {N : Term (suc (suc n))} {M : Term (suc n)} {L : Term n}

→ N [M] [L] ≡ (N J L K) [M [L]]
substitution-lemma {N = N}{M = M}{L = L} =

sym (subst-commute {N = N}{M = M}{σ = subst-zero L})

39

Chapter 4

The Church-Rosser Theorem

In this chapter we present the definitions required to state the confluence of
β-reduction for untyped λ-calculus, a result first presented in 1936 by Alonzo
Church and J. Barkley Rosser and famously known as the Church-Rosser theo-
rem. [CR36]We first prove a crucial property later used in proofs, the substitutiv-
ity of β∗-reduction, and then introduce the theoretical definition of confluence.

4.1 β-reduction
Themost important relation in λ-calculus is β-reduction, and it can be readily de-
fined in Agda as follows, using the previously introduced notion of zero-indexed
substitution in the crucial case:

infix 3 _→_

data _→_ : ∀ {n} → Term n → Term n → Set where

→-ξl : ∀ {n} {M M ′ N : Term n}
→ M → M ′

→ M · N → M ′ · N

→-ξr : ∀ {n} {M N N ′ : Term n}
→ N → N ′

→ M · N → M · N ′

40

→-ň : ∀ {n} {M M ′ : Term (suc n)}
→ M → M ′

→ ň M → ň M ′

→-β : ∀ {n} {M : Term (suc n)} {N : Term n}

→ (ň M) · N → M [N]

We now define the reflexive transitive closure of β-reduction, which can either
consist of zero reduction steps (the reflexive case) or ”adding” a new β-reduction
at the start of an existing reduction chain. We will indicate in Agda the transitive
closure of β-reduction with↠, as shown here:

infix 3 _↠_
infixr 3 _→⟨_⟩_
infix 4 _■

data _↠_ : ∀ {n} → Term n → Term n → Set where

_■ : ∀ {n} (M : Term n)

→ M ↠ M

→⟨⟩_ : ∀ {n} {L N : Term n} (M : Term n)
→ M → L
→ L ↠ N

→ M ↠ N

Notice how the term M is here provided as an explicit argument, and it is the
first syntactic argument of the constructor _→⟨_⟩_. This idiom follows the same
structure as the reasoning system for equality defined in the Agda standard li-
brary and introduced in Section 2.4.4. The term is here made explicit so that the
reduction rules applied can be shown step-by-step.
We can prove some similar straightforward properties that β∗-reduction inherits
from β-reduction, such as transitivity and the other congruences. The proofs are
by induction on the structure of the first reduction:

41

↠-trans : ∀ {n} {M L N : Term n}
→ M ↠ L

→ M ↠ N

↠-trans (M ■) M↠M = M↠M
↠-trans (M →⟨ M→L ′ ⟩ L ′↠L) L↠N =
M →⟨ M→L ′ ⟩ (↠-trans L ′↠L L↠N)

↠-congl : ∀ {n} {M M ′ R : Term n}
→ M ↠ M ′

→ M · R ↠ M ′ · R

↠-congl {M = M}{R = R} (M ■) = M · R ■

↠-congl {M = M}{R = R} (M →⟨ M→L ⟩ L↠M ′)
= M · R →⟨ →-ξl M→L ⟩ ↠-congl L↠M ′

↠-congr : ∀ {n} {M M ′ L : Term n}
→ M ↠ M ′

→ L · M ↠ L · M ′

↠-congr {M = M}{L = L} (M ■) = L · M ■

↠-congr {M = M}{L = L} (M →⟨ M→L ⟩ L↠M ′)
= L · M →⟨ →-ξr M→L ⟩ ↠-congr L↠M ′

↠-cong-ň : ∀ {n} {M M ′ : Term (suc n)}
→ M ↠ M ′

→ ň M ↠ ň M ′

↠-cong-ň (M ■) = ň M ■

↠-cong-ň (M →⟨ M→L ⟩ L↠N ′)
= ň M →⟨ →-ň M→L ⟩ ↠-cong-ň L↠N ′

↠-cong : ∀ {n} {M M ′ N N ′ : Term n}
→ M ↠ M ′

→ N ↠ N ′

→ M · N ↠ M ′ · N ′

↠-cong M↠M ′ N↠N ′ = ↠-trans (↠-congl M↠M ′) (↠-congr N↠N ′)

42

Note that in the case of simple β-reduction these properties are not theorems,
but definitions required in order to be able to contract existing redexes inside
λ-terms (i.e.: β-reduction is essentially the compatible closure of the β-reduction
rule ((λx.M)N,M [x := N]), as defined in [Bar85, Definition 3.1.4]). The same
congruence properties also hold for β∗-reduction precisely because β-reduction
is defined upon them. The definitions presented so far can also be found verbatim
in [WK19], up to renaming.

4.2 Substitutivity of β∗-reduction
One of the first non-trivial lemmas regarding β∗-reduction that we need in fur-
ther proofs is the fact that it respects substitution:

Theorem 4.2.1 (Substitutivity of β∗-reduction). For all λ-terms M , N and any
variable x, givenM →∗

β M ′ and N →∗
β N ′, then:

M [x := N] →∗
β M ′[x := N ′]

We will refer to this property as substitutivity of β∗-reduction, also called (in the
context of parallel reduction) ”strong substitutivity” in [STS15, Lemma 3] and
stated without name in [Bar85, Proposition 2.1.17 (iii)]. This theorem will be
required in those inductive cases where β-reduction is applied, since it is ef-
fectively defined upon the special case of 0-indexed substitution. We make the
reader aware of two conventions employed in the rest of this thesis: first, we will
denote theorems regarding the transitive closure of relations with an ”s” at the
end of the name in order to distinguish them with their single-step version, for
example using ”betas” in the case of β-reduction. This convention will also be
used in Chapter 5 for parallel reduction and its transitive closure. Secondly, we
shall omit variables when substitutions refer to the first 0-indexed variable, in
order to be consistent with the notation employed with de Bruijn indices.
The theorem can now be stated in Agda as follows:

sub-betas : ∀ {n} {M M ′ : Term (suc n)} {N N ′ : Term n}
→ M ↠ M ′

→ N ↠ N ′

→ M [N] ↠ M ′ [N ′]

43

This is one of the first examples where proofs based on the de Bruijn represen-
tation start becoming non-trivial, especially when compared to the classic pen-
and-paper ones. This is obvious from the fact that we are effectively entering the
domain of substitutions, along with their interaction with β-reduction.
Note how the maximum number of free variables forM ′ must be one more than
that of the termM being substituted, a fact both reflected here in the implicit type
parameters and, most importantly, in the type signature of the _[_] operator.
If we were to directly try proving this theorem by induction on the structure
of the term M , as one would do in a standard proof, we would immediately
encounter difficulties. In the case where M is a λ-abstraction we would have to
prove the following statement:

ň subst (exts (subst-zero N)) M ↠ ň subst (exts (subst-zero N ′)) M ′

Our inductive hypothesis is simply not strong enough, since we need to oper-
ate on the extension of a substitution, exts (subst-zero N), and then reach
exts (subst-zero N ′) given the fact that N →∗

β N ′. This guides us towards
a generalization of the theorem that uses a generic substitution σ so that we
can also account for the extension of any substitution. However, the reduction
N →∗

β N ′ also needs to be extended, since we are not treating the specific substi-
tution subst-zero Nwith the term N anymore. This can be done by introducing
the concept that substitutions themselves can β-reduce, through the notion of
pointwise reduction.

4.2.1 Pointwise β∗-reduction

Definition 4.2.1 (Pointwise reduction). A substitution σ pointwise β-reduces to
the substitution σ′ if, for all possible x, we have that σ x →∗

β σ′ x.

This same generalization technique is also used in [WK19, Confluence] and [STS15]
to prove an equivalent lemma in the case of parallel reduction. This important
proof approach constitutes a recurring themewhen operating with substitutions.
In terms of notation, we shall use a subscript s in the Agda code to denote that
the operation is defined for substitutions:

infix 3 _↠s_

↠s : ∀ {n m} → Subst n m → Subst n m → Set
σ ↠s σ ′ = ∀ {x} → σ x ↠ σ ′ x

44

Given this shortcut to express the pointwise reduction of two substitutions σ
and σ′, we can show the generalized form of our theorem by induction on the
structure of theM →∗

β M ′ reduction:

subst-betas : ∀ {n m} {σ σ ′ : Subst n m} {M M ′ : Term n}
→ σ ↠s σ ′

→ M ↠ M ′

→ subst σ M ↠ subst σ ′ M ′

subst-betas σ↠σ ′ (M ■) = subst-betas-sub {M = M} σ↠σ ′

subst-betas {σ = σ} σ↠σ ′ (M →⟨ M→L ⟩ L↠M ′) =
subst σ M →⟨ subst-beta-term M→L ⟩ subst-betas σ↠σ ′ L↠M ′

This leads to two cases: either the term does not reduce and the substitution
does (subst-betas-sub), or we naturally obtain the opposite situation for one-
step β-reduction (subst-beta-term) which we then connect with the inductive
hypothesis. This latter theorem turns out to be easier, and proceeds by induction
on the β-reduction:

subst-beta-term : ∀ {n m} {M M ′ : Term n} {σ : Subst n m}
→ M → M ′

→ subst σ M → subst σ M ′

subst-beta-term (→-ň M→M ′) = →-ň (subst-beta-term M→M ′)
subst-beta-term (→-ξl M→M ′) = →-ξl (subst-beta-term M→M ′)
subst-beta-term (→-ξr N→N ′) = →-ξr (subst-beta-term N→N ′)
subst-beta-term {σ = σ} (→-β {M = M}{N = N})
rewrite sym (subst-commute {N = M}{M = N}{σ = σ}) = →-β

The first three cases are trivial, and they are simply the congruence definitions
for β-reduction paired with the inductive hypothesis. In the last crucial case we
can finally rely on the theorem for substitutions subst-commute described in
Section 3.4.2, which allows us to decompose the single-term substitution.

45

We use the rewrite syntax to apply this equality,1 with the goal reducing from:

(ň subst (exts σ) M) · subst σ N → subst σ (M [N])

to:

(ň subst (exts σ) M) · subst σ N → (subst (exts σ) M) [subst σ N]

This last expression is just one specific case of the β-reduction rule→-β, which
we can use to conclude the proof.
The other case where the term remains fixed proceeds by induction on the struc-
ture of the term M , since we cannot meaningfully decompose the pointwise re-
duction:

subst-betas-sub : ∀ {n m} {M : Term n} {σ σ ′ : Subst n m}
→ σ ↠s σ ′

→ subst σ M ↠ subst σ ′ M

subst-betas-sub {M = # x} σ↠σ ′ = σ↠σ ′

subst-betas-sub {M = M · N} σ↠σ ′ =
↠-cong (subst-betas-sub {M = M} σ↠σ ′)

(subst-betas-sub {M = N} σ↠σ ′)
subst-betas-sub {M = ň M} σ↠σ ′ =
↠-cong-ň (subst-betas-sub {M = M}

(λ {x} → betas-subst-exts σ↠σ ′ {x = x}))

4.2.2 β∗-reduction and renamings

The case whereM is a λ-abstraction now requires the following lemma
betas-subst-exts, which simply lifts the reduction of two substitutions to the
reduction of their extensions:

betas-subst-exts : ∀ {n m} {σ σ ′ : Subst n m}
→ σ ↠s σ ′

→ exts σ ↠s exts σ ′

betas-subst-exts σ↠σ ′ {zero} = # zero ■

betas-subst-exts σ↠σ ′ {suc x} = betas-rename σ↠σ ′

1Theuse of the sym property for equality is necessary here because the simplification direction
of the equation is relevant, and sym allows us to obtain the symmetric version of any equality.

46

The proof is by induction on the (implicit) index provided to the substitution σ.
Since the extension of a substitution leaves the 0-index case untouched, we only
need to consider the case where the result of the substitution is renamed with
suc. We can, however, generalize this case to any renaming function ρ, and then
proceed by induction on the relation:

betas-rename : ∀ {n m} {ρ : Rename n m} {M M ′ : Term n}
→ M ↠ M ′

→ rename ρ M ↠ rename ρ M ′

betas-rename {ρ = ρ} (M ■) = rename ρ M ■

betas-rename {ρ = ρ} (M →⟨ M→L ⟩ L↠M ′) =
rename ρ M →⟨ beta-rename M→L ⟩ betas-rename L↠M ′

This lemma simply consists in a repeated application of its version for one-step
β-reduction, which we can state as follows:

beta-rename : ∀ {n m} {ρ : Rename n m} {M M ′ : Term n}
→ M → M ′

→ rename ρ M → rename ρ M ′

beta-rename (→-ň M→M ′) = →-ň (beta-rename M→M ′)
beta-rename (→-ξl M→M ′) = →-ξl (beta-rename M→M ′)
beta-rename (→-ξr N→N ′) = →-ξr (beta-rename N→N ′)
beta-rename {ρ = ρ} (→-β {M = M}{N = N})
rewrite sym (rename-subst-commute {N = M}{M = N}{ρ = ρ}) = →-β

The proof is straightforward, and in the substitution case we can again employ
one of the foundational theorems previously derived with σ-calculus, in this
case rename-subst-commute. This allows us to ”decompose” the substitution
and conclude the case with the β-reduction rule →-β. We can notice a striking
structural similarity with the lemma subst-beta-term; here renaming takes the
place of substitution and β∗-reduction that of β-reduction, with reduction being
solely applied to the term.

47

We can now prove the original substitutivity theorem as a special case of the
more general subst-betas. We first need to show the pointwise β-reduction of
subst-zero given the reduction on the applied term:

betas-subst-zero : ∀ {n} {M M ′ : Term n}
→ M ↠ M ′

→ subst-zero M ↠s subst-zero M ′

betas-subst-zero M↠M ′ {zero} = M↠M ′

betas-subst-zero M↠M ′ {suc x} = # x ■

Finally, we have our specific case of 0-indexed substitution:

sub-betas : ∀ {n} {M M ′ : Term (suc n)} {N N ′ : Term n}
→ M ↠ M ′

→ N ↠ N ′

→ M [N] ↠ M ′ [N ′]

sub-betas M↠M ′ N↠N ′ = subst-betas (betas-subst-zero N↠N ′) M↠M ′

This concludes the proof of the substitutivity theorem. These properties about
β∗-reduction will be concretely used in the main proof presented in Chapter 7.

4.3 Church-Rosser Theorem
Having formally defined β-reduction and β∗-reduction, we can now give the
theoretical definitions necessary to state the Church-Rosser theorem.

Definition 4.3.1 (Diamond property). A relation→ is said to have or satisfy the
diamond property if, given a termM such thatM → A andM → B, then there
exists a term N such that A → N and B → N .

Definition 4.3.2 (Confluence). A relation→ is said to be confluent, or having the
Church-Rosser property, if, given a term M such that M →∗ A and M →∗ B,
there exists a term N such that A →∗ N and B →∗ N . Alternatively, a relation
→ is confluent iff its reflexive transitive closure satisfies the diamond property.

48

Confluence can be visually expressed through a commutative diagram as follows:

M

A B

∃N

∗∗

∗ ∗

That is, given any two reductions stemming from the same term, there exists an-
other term and two other reductions converging to it that ”unify” the original
ones. Interpreting this theorem constructively means that, given any two re-
ductions starting from a common term M , we need to construct a function that
provides us three things: a concrete term N , and two reductions A →∗ N and
B →∗ N in an appropriate form which depends on the N provided.
One important theoretical consequence of confluence is for example the unique-
ness of normal forms, when they exist:

Definition 4.3.3 (Normal form). A term N is the normal form of a term M with
respect to → if M →∗ N and there exists no term N ′ for which N → N ′.

Theorem 4.3.1 (Uniqueness of a normal form). If a term M has a normal norm
N with respect to a confluent relation→, then it is unique.

Proof. Suppose thatM has two different normal forms N1 and N2 which do not
further reduce to any term. We have that M →∗ N1 and M →∗ N2, so by
confluence there exists a termN for whichN1 →∗ N andN2 →∗ N . Since both
N1 andN2 can perform no other reduction steps, both reductions must be in the
reflexive case, therefore N1 = N = N2.

Confluence is studied inmany other kinds of rewriting systems besides β-reduction
and the λ-calculus, and it is one of the most fundamental properties checked for
when considering any relation that can be interpreted as some sort of reduction.
The Church-Rosser theorem for untyped λ-calculus is precisely the statement
that β-reduction is confluent:

Theorem 4.3.2 (Church-Rosser theorem). β-reduction is confluent.

In the following chapters we present and gradually analyze the various proof
approaches for this fundamental property of λ-calculus.

49

Chapter 5

The Tait/Martin-Löf proof and
parallel reduction

In this chapter we present the proof of the Church-Rosser theorem by Tait and
Martin-Löf, along with its complete formalization in Agda developed by Wadler
et al. [WK19]. This proof approach is considered the most well-known conflu-
ence proof for β-reduction, and can be found in [HS86] and [Bar85]. We include
and briefly explain here the development byWadler et al. in order to highlight its
main concepts and then compare their formalization with our own. The central
passage of the proof will be further treated in Chapter 6 with the improvement
presented by Takahashi in [Tak95].

5.1 Main idea
The idea of the Tait-Martin Löf proof is to define a notion of parallel reduction⇒
that can contract multiple redexes at the same time, and for which confluence is
easier to prove. It is then shown that the confluence of ⇒ implies that of ⇒∗,
a result also known as the strip lemma. Finally, we can prove that ⇒∗ and →∗

β

actually denote the same relation, thus concluding the proof.

5.2 Proof overview
We present here an overview of the main theorems formalized by Wadler et al.
[WK19], showing the theorem dependencies in the form of a directed acyclic
graph:

50

σ-calculus

Parallel reduction

Tait-Martin Löf proof

Church-Rosser Theorem

rename-subst-commute subst-commute

par-betas

beta-par

par-refl

subst-par par-subst-zero

par-subst-exts

par-rename

pars-betas

betas-pars

sub-par

par-diamond

strip

par-confluence

confluence

51

5.3 Parallel reduction
The central definition employed in the proof is that of the so-called parallel re-
duction. As it can be directly seen in its formal statement, the crucial difference
with β∗-reduction is that it can contract multiple redexes ”simultaneously”, by
combining the results of previous parallel reductions with the substitution step
of β-reduction. The definition in Agda of this relation is straightforward:

infix 3 _⇒_

data _⇒_ : ∀ {n} → Term n → Term n → Set where

⇒-c : ∀ {n} {x : Fin n}

→ # x ⇒ # x

⇒-ň : ∀ {n} {M M ′ : Term (suc n)}
→ M ⇒ M ′

→ ň M ⇒ ň M ′

⇒-ξ : ∀ {n} {M M ′ N N ′ : Term n}
→ M ⇒ M ′

→ N ⇒ N ′

→ M · N ⇒ M ′ · N ′

⇒-β : ∀ {n} {M M ′ : Term (suc n)} {N N ′ : Term n}
→ M ⇒ M ′

→ N ⇒ N ′

→ (ň M) · N ⇒ M ′ [N ′]

By using the same development and technique with pointwise reduction that we
have followed for the substitutivity of β∗-reduction subst-betas, the authors
prove the equivalent theorem for parallel reduction. We include the required
properties as follows, without going into the specific proof details:

52

par-subst : ∀{n m} → Subst n m → Subst n m → Set
par-subst σ σ ′ = ∀ {x} → σ x ⇒ σ ′ x

par-rename : ∀ {n m} {ρ : Rename n m} {M M ′ : Term n}
→ M ⇒ M ′

→ rename ρ M ⇒ rename ρ M ′

par-rename ⇒-c = ⇒-c
par-rename (⇒-ň p) = ⇒-ň (par-rename p)
par-rename (⇒-ξ p1 p2) = ⇒-ξ (par-rename p1) (par-rename p2)
par-rename {n}{m}{ρ} (⇒-β {n}{N}{N ′}{M}{M ′} p1 p2)

with ⇒-β (par-rename {ρ = ext ρ} p1) (par-rename {ρ = ρ} p2)
... | G rewrite rename-subst-commute {n}{m}{N ′}{M ′}{ρ} = G

par-subst-exts : ∀ {n m} {σ σ ′ : Subst n m}
→ par-subst σ σ ′

→ par-subst (exts σ) (exts σ ′)

par-subst-exts s {x = zero} = ⇒-c
par-subst-exts s {x = suc x} = par-rename s

subst-par : ∀ {n m} {σ σ ′ : Subst n m} {M M ′ : Term n}
→ par-subst σ σ ′

→ M ⇒ M ′

→ subst σ M ⇒ subst σ ′ M ′

subst-par {M = # x} s ⇒-c = s
subst-par {n}{m}{σ}{σ ′} {ň N} s (⇒-ň p) =

⇒-ň (subst-par {σ = exts σ}{σ ′ = exts σ ′}
(λ {x} → par-subst-exts s {x = x}) p)

subst-par {M = L · M} s (⇒-ξ p1 p2) =
⇒-ξ (subst-par s p1) (subst-par s p2)

subst-par {n}{m}{σ}{σ ′} {(ň N) · M} s (⇒-β {M ′ = M ′}{N ′ = N ′} p1 p2)
with ⇒-β (subst-par {σ = exts σ}{σ ′ = exts σ ′}{M = N}

(λ {x} → par-subst-exts s {x = x}) p1)
(subst-par {σ = σ} s p2)

... | G rewrite subst-commute {N = M ′}{M = N ′}{σ = σ ′} = G

53

The case of parallel reduction for substitutivity turns out to require fewer lem-
mas than that of β∗-reduction, since it does not rely on an underlying reduction
in the same way that β∗-reduction does with its single-step version. For this rea-
son, subst-par can proceed by induction on both the relation and the structure
of the term, while subst-betas has a linear proof by simply inducting on the
β∗-reduction. After establishing the theorem in its general form for pointwise
reduction, the case for zero-indexed substitutions comes as a corollary:

par-subst-zero : ∀ {n} {M M ′ : Term n}
→ M ⇒ M ′

--
→ par-subst (subst-zero M) (subst-zero M ′)

par-subst-zero M⇒M ′ {zero} = M⇒M ′

par-subst-zero M⇒M ′ {suc x} = ⇒-c

sub-par : ∀ {n} {M M ′ : Term (suc n)} {N N ′ : Term n}
→ M ⇒ M ′

→ N ⇒ N ′

→ M [N] ⇒ M ′ [N ′]

sub-par M⇒M ′ N⇒N ′ = subst-par (par-subst-zero N⇒N ′) M⇒M ′

An intermediate lemma par-subst-zero to show the pointwise-reduction of
subst-zero is necessary to conclude the proof, in a similar way as with the case
of β∗-reduction. As we will see in Section 5.5, the substitutivity of parallel reduc-
tion is precisely the fundamental component necessary to prove its confluence.

54

5.4 Relations between parallel reduction and β-reduction
We now have to formally establish the connections between parallel reduction
and β-reduction. Firstly, we have that β-reduction trivially implies parallel re-
duction. The opposite is clearly not true, since parallel reduction can do more
than one single reduction step. Moreover, parallel reduction implies β∗-reduction,
which simply takes more steps to do what the parallel one does more compactly.
The proofs developed by [WK19] of thementioned theorems are straightforward,
and do not require any new property except reflexivity of parallel reduction and
transitivity of β-reduction. We omit here the complete proofs for brevity.
First, we have that parallel reduction is reflexive:

par-refl : ∀ {n} {M : Term n}

→ M ⇒ M

β-reduction implies parallel reduction:

beta-par : ∀ {n} {M N : Term n}
→ M → N

→ M ⇒ N

Parallel reduction implies β∗-reduction:

par-betas : ∀ {n} {M N : Term n}
→ M ⇒ N

→ M ↠ N

The converse of par-betas is unfortunately not true: β∗-reduction can perform
many reductions even in already reduced terms, while parallel reduction can only
perform ”shallow” reductions on the initially available redexes.
β∗-reduction and parallel reduction are directly related through the reflexive
transitive closure of the latter. Their equivalence is shown by simply applying
the previous theorems:

55

infix 3 _⇒∗_
infixr 3 _⇒⟨_⟩_
infix 4 _■

data _⇒∗_ : ∀ {n} → Term n → Term n → Set where

_■ : ∀ {n} (M : Term n)

→ M ⇒∗ M

⇒⟨⟩_ : ∀ {n} {L N : Term n} (M : Term n)
→ M ⇒ L
→ L ⇒∗ N

→ M ⇒∗ N

β∗-reduction implies parallel reduction:

betas-pars : ∀ {n} {M N : Term n}
→ M ↠ N

→ M ⇒∗ N

betas-pars (M ■) = M ■

betas-pars (M →⟨ b ⟩ bs) = M ⇒⟨ beta-par b ⟩ betas-pars bs

And in the other direction:

pars-betas : ∀ {n} {M N : Term n}
→ M ⇒∗ N

→ M ↠ N

pars-betas (M ■) = M ■

pars-betas (M ⇒⟨ p ⟩ ps) = ↠-trans (par-betas p) (pars-betas ps)

This shows that, as stated in the proof outline, the transitive reflexive closure of
parallel reduction is indeed equivalent to β∗-reduction. The crucial property is
now showing that parallel reduction is confluent, and that its confluence there-
fore implies that of β-reduction.

56

5.5 Diamond lemma for parallel reduction
Continuing the proof, it is shown in [WK19] that it is possible to directly prove
the diamond lemma for parallel reduction by induction on both reductions:

par-diamond : ∀ {n} {M N N ′ : Term n}
→ M ⇒ N → M ⇒ N ′

→ ∃[L] (N ⇒ L × N ′ ⇒ L)

par-diamond (⇒-c {x = x}) ⇒-c = # x , ⇒-c , ⇒-c
par-diamond (⇒-ň p1) (⇒-ň p2)

with par-diamond p1 p2
... | L ′ , p3 , p4 =

ň L ′ , ⇒-ň p3 , ⇒-ň p4
par-diamond (⇒-ξ p1 p3) (⇒-ξ p2 p4)

with par-diamond p1 p2
... | L3 , p5 , p6

with par-diamond p3 p4
... | M3 , p7 , p8 =

L3 · M3 , ⇒-ξ p5 p7 , ⇒-ξ p6 p8
par-diamond (⇒-ξ (⇒-ň p1) p3) (⇒-β p2 p4)

with par-diamond p1 p2
... | N3 , p5 , p6

with par-diamond p3 p4
... | M3 , p7 , p8 =

N3 [M3] , ⇒-β p5 p7 , sub-par p6 p8
par-diamond (⇒-β p1 p3) (⇒-ξ (⇒-ň p2) p4)

with par-diamond p1 p2
... | N3 , p5 , p6

with par-diamond p3 p4
... | M3 , p7 , p8 =

N3 [M3] , sub-par p5 p7 , ⇒-β p6 p8
par-diamond (⇒-β p1 p3) (⇒-β p2 p4)

with par-diamond p1 p2
... | N3 , p5 , p6

with par-diamond p3 p4
... | M3 , p7 , p8 =

N3 [M3] , sub-par p5 p7 , sub-par p6 p8

57

Note that in each of the cases the only theorem required is precisely the property
that parallel reduction respects substitution, formalized in sub-par. This proof
is quite articulated, and we present a small improvement for this lemma by intro-
ducing the Takahashi translation method in Chapter 6. The original authors also
refer to this technique in [WK19, Confluence, Notes], but state that they chose
not to adopt it because they felt that the proof was simple enough based solely
on parallel reduction.

5.6 Strip lemma
Having presented the diamond lemma for parallel reduction, we now need to for-
mally show that the same property holds for its transitive reflexive closure. This
theorem, however, requires an intermediate result known as the strip lemma,
which we can state as follows:

Lemma 5.6.1 (Strip lemma). Given a term M and two reductions M ⇒ A and
M ⇒∗ B, then there exists a term N such that A ⇒∗ Nand B ⇒ N .

Intuitively, the strip lemma firstly converts parallel reduction into its transitive
reflexive closure on one axis. We can denote this property as follows, indicating
parallel reductions with double arrows:

M

A B

∃N

∗

∗

58

Theproof is by induction on the structure of themultiple-steps parallel reduction:

strip : ∀ {n} {M A B : Term n}
→ M ⇒ A → M ⇒∗ B

→ ∃[N] (A ⇒∗ N × B ⇒ N)

strip {A = A} M⇒A (M ■) = A , (A ■) , M⇒A
strip {A = A} M⇒A (M ⇒⟨ M⇒M ′ ⟩ M ′⇒∗B)

with par-diamond M⇒A M⇒M ′

... | N , A⇒N , M ′⇒N
with strip M ′⇒N M ′⇒∗B

... | N ′ , N⇒∗N ′ , B⇒N ′ =
N ′ , (A ⇒⟨ A⇒N ⟩ N⇒∗N ′) , B⇒N ′

We can also show how the proof works through the use of commuting diagrams.
The base case is shown on the left, where the multiple-steps parallel reduction
simply does no reductions; the inductive case is shown on the right, where we
suppose that the reductionM ⇒∗ B has the form M ⇒ M ′ ⇒∗ B:

M M

A M A (a) M ′

∃A N (b) B

∃N ′

∗

∗
∗

∗

In the base case, M parallel reduces to itself so A is the unifying term. The
inductive step is also easily proved by having (a) commute due to the diamond
lemma for parallel reduction, and (b) by inductive hypothesis.

59

5.7 Confluence of parallel reduction
The confluence of parallel reduction follows a very similar proof:

par-confluence : ∀ {n} {M A B : Term n}
→ M ⇒∗ A → M ⇒∗ B

→ ∃[N] (A ⇒∗ N × B ⇒∗ N)

par-confluence {B = B} (M ■) M⇒∗B = B , M⇒∗B , (B ■)
par-confluence {B = B} (M ⇒⟨ M⇒A ⟩ A⇒∗A ′) M⇒∗B

with strip M⇒A M⇒∗B
... | N , A⇒∗N , B⇒N

with par-confluence A⇒∗A ′ A⇒∗N
... | N ′ , A ′⇒∗N ′ , N⇒∗N ′ =

N ′ , A ′⇒∗N ′ , (B ⇒⟨ B⇒N ⟩ N⇒∗N ′)

We can again graphically visualize it as follows:

M M

M B A (a) B

∃B A′ (b) N

∃N ′

∗∗ ∗

∗ ∗
∗ ∗

∗ ∗

Similarly as with the strip lemma, in the base caseM parallel reduces to itself, so
B is the unifying term. The inductive step is shown by having (a) commute with
the strip lemma, and (b) by inductive hypothesis. Note how the orientation of
the rectangle (i.e.: the reduction that we use induction on) must be the opposite
of that used by the strip lemma so that we can apply it in the inductive case.

60

5.8 Confluence of β-reduction
Finally, we can prove that β-reduction is confluent through the confluence of
parallel reduction, using the following sequence of steps: as input we have two
β∗-reductions, and we can immediately convert them to ⇒∗ reductions; then,
we apply the confluence of parallel reduction to obtain a term N and two more
reductions A ⇒∗ N and B ⇒∗ N ; finally, we convert these two reductions back
to β∗-reductions. The conversions between the reductions are handled by the
previous theorems betas-pars and pars-betas stated in Section 5.4.
The proof is as follows:

confluence : ∀ {n} {M A B : Term n}
→ M ↠ A → M ↠ B

→ ∃[N] (A ↠ N × B ↠ N)

confluence M↠A M↠B
with par-confluence (betas-pars M↠A) (betas-pars M↠B)

... | N , A⇒∗N , B⇒∗N =
N , pars-betas A⇒∗N , pars-betas B⇒∗N

This concludes the Tait/Martin Löf proof as formalized by Wadler et al. [WK19].

61

Chapter 6

Takahashi translation

In this chapter we introduce the concept of Takahashi translation, first defined
by Masako Takahashi in [Tak95]. We then show its use in simplifying the pre-
viously presented Tait and Martin-Löf confluence proof for β-reduction, briefly
developing on the formalization by Wadler et al. [WK19].

6.1 Definition
Definition 6.1.1 (Takahashi translation). The Takahashi translation or
full-superdevelopment of a λ-term M is written as M∗, and in the context of β-
reduction it is defined as follows by always using the first applicable rule:

infix 8 _∗

_∗ : ∀ {n} → Term n → Term n
(# x) ∗ = # x
(ň M) ∗ = ň M ∗

((ň M) · N) ∗ = M ∗ [N ∗]
(L · N) ∗ = L ∗ · N ∗

Intuitively, the Takahashi translation of a term M ”marks” all the existing re-
dexes of a term and β-reduces them, without further reducing the result of sub-
stitutions except for the already marked ones. In a way, the reductions that this
operator applies are simultaneous. As it is however noted in [KMY14], the re-
duction strictly speaking considers contractions in an innermost-first order.

62

This mechanism is what gives it the name of full-superdevelopment function,
since it mirrors the concept of developments as presented in [Bar85], along with
the related finiteness of developments theorem.
Note that the Takahashi translation of a term does not necessarily correspond to
its normal form, since the reduction is ”shallow” in the same sense that parallel
reduction is (i.e.: the new redexes that have not been ”marked” will still not
be reduced by the translation). For this reason, Takahashi translation can be
also interpreted as a parallel reduction which always chooses to contract redexes
whenever possible.

6.1.1 Pattern overloading in Agda

This definition of Takahashi translation, as it is formalized in Agda, presents
a peculiar characteristic. When the term is a β-redex, the third case matches
and β-reduction is performed. Otherwise, the last case is applied and Takahashi
translation is recursively applied on the subterms. Here, the pattern L can either
represent a variable or an application, and is thus overloaded with two different
cases that nevertheless follow the same definition. The case where the term on
the left is a λ-abstraction must come before this last one, because it would oth-
erwise be captured1 by the more general pattern L. And this important remark
about the application order of rules has also been stated in [KMY14], and Agda al-
ways tries to use the first applicable definition. As it will be clear in proofs using
Takahashi translation, this unfortunately leads to unnecessary case expansion
and the duplication of proof cases which could be handled by a single case. This
is because Agda cannot understand that it can apply the last definition if the β-
redex case has already been treated; this in turn requires a full case expansion
of all three possible cases, so that the appropriate definition can be applied. This
recurring difficulty appears in all those instances where Takahashi translation is
inductively applied on terms, and leads to some proofs having identical cases.
A similar definition for Takahashi translation can be found in the Church-Rosser
proof of [CST17], where they chose to show all the cases explicitly. Unfortu-
nately, this still does not solve the technical problems deriving from this pattern
overloading, and parts of the proof still need to be be repeated for the two cases.

1These instances of pattern shadowing and overloading are shown in Agda by highlighting
the affected case with a light or dark gray background, respectively.

63

6.2 Revisiting the confluence of parallel reduction
The fundamental theorem about parallel reduction that Takahashi translation
enables us to prove is the following property, which corresponds to Theorem 5
in the original paper by [Tak95]. The proof is by induction on the structure of
the reduction:

par-triangle : ∀ {n} {M N : Term n}
→ M ⇒ N

→ N ⇒ M ∗

par-triangle {M = # x} ⇒-c = ⇒-c
par-triangle {M = ň M} (⇒-ň M⇒N) = ⇒-ň (par-triangle M⇒N)
par-triangle {M = (ň M) · N} (⇒-β M⇒M ′ N⇒N ′) =
sub-par (par-triangle M⇒M ′) (par-triangle N⇒N ′)

par-triangle {M = # _ · N} (⇒-ξ M⇒M ′ N⇒N ′) =
⇒-ξ (par-triangle M⇒M ′) (par-triangle N⇒N ′)

par-triangle {M = _ · _ · N} (⇒-ξ M⇒M ′ N⇒N ′) =
⇒-ξ (par-triangle M⇒M ′) (par-triangle N⇒N ′)

par-triangle {M = (ň _) · N} (⇒-ξ (⇒-ň M⇒M ′) N⇒N ′) =
⇒-β (par-triangle M⇒M ′) (par-triangle N⇒N ′)

The idea behind this lemma is that Takahashi translation enables us to complete
the redexes that any given parallel reduction does not consider. This allows to
provide a final term that directly relates to the starting one, in a way ”reversing”
the direction of the arrow. This property has also been called the triangle property
in [Ter03], due to the fact that it can be expressed as follows:

M

N

M∗

This also gives Takahashi translation the name of maximal parallel reduction
function, as stated in [STS15]. The term M∗ is maximal in the sense that it is
always possible to extend an arbitrary parallel reductionM⇒N intoN⇒M∗ by
contracting the remaining redexes.

64

6.2.1 Diamond lemma for parallel reduction

The triangle property is what allows us to even more directly prove the diamond
property for parallel reduction:

par-diamond : ∀ {n} {M A B : Term n}
→ M ⇒ A → M ⇒ B

→ ∃[N] (A ⇒ N × B ⇒ N)

par-diamond {M = M} M⇒A M⇒B =
M ∗ , par-triangle M⇒A , par-triangle M⇒B

In this proof, we explicitly provide the single term that the two reductions con-
verge to, namely M∗, without having to consider any case in terms of reduc-
tions. This method effectively constitutes a sharpening of the result presented
by Tait/Martin-Löf, since not onlywe can prove the existence of a confluent term,
but we can also explicitly construct the term itself in a way that does not depend
on the specific reduction steps applied. The proof can then proceed as usual using
the previously shown theorems to obtain the confluence of β-reduction.

6.3 Comparison with the previous proof
The use of Takahashi translation greatly simplifies the proof of the diamond
lemma for parallel reduction, and constitutes an useful concept that will be fur-
ther expanded upon in Chapter 7 and Chapter 8.
In the same way as with the direct case-splitting version par-diamond provided
by [WK19], the only fundamental property about substitutions and β-reduction
required here is sub-par, the notion that parallel reduction respects substitution.
The main conceptual improvement of this proof is the fact that the concretely
provided term unifying the two reductions does not depend on the terms A and
B nor on the reductions, and remains the same in all cases. This also avoids
the need for induction in the actual confluence proof, which simply provides the
confluent term and the two reductions using the triangle lemma.

65

Chapter 7

The Komori-Matsuda-Yamakawa
proof

In this chapter we present the novel approach exposed by Yuichi Komori, Nao-
suke Matsuda, and Fumika Yamakawa in [KMY14], along with our complete for-
malization for the confluence of β∗-reduction. Alongside the classic proof, we
explain in-depth the Agda implementation and how it compares to the original
development. The names of the theorems presented in our formalization directly
correspond with the names used in the paper.

7.1 Proof overview
We present here the general outline of the theorems formalized in this proof,
along with their dependencies:

66

σ-calculus

β∗-reduction

Komori-Matsuda-Yamakawa proof

High-level proof

Takahashi translation for substitutions

Church-Rosser Theorem

rename-subst-commute subst-commute

subst-betas betas-subst-zero

subst-betas-sub subst-beta-term

betas-subst-exts

betas-rename

beta-rename

sub-betas

complete-*theorem3-8 unnamed-named≤-total

lemma3-2

lift-*corollary3-7 lemma3-3

corollary3-6

lemma3-5

lemma3-4

theorem3-9

subst-zero-ts

subst-ts

exts-ts-commute app-*-join

rename-*

67

7.2 Main concepts
One important advantage of this method is the fact that it does not require the
definition of parallel reduction, and only employs Takahashi translation and its
iterated version. As stated by the authors, this approach can be useful to prove
confluence of those systems where parallel reduction is harder to treat.
Firstly, we inductively define the following straightforward concepts of iterated
Takahashi translation and iterated β-reduction:

infix 8 _∗(_)

∗() : ∀ {n} → Term n → N → Term n
M ∗(zero) = M
M ∗(suc k) = (M ∗) ∗(k)

data _↠(_)_ : ∀ {n} → Term n → N → Term n → Set where

_■ : ∀ {n} (M : Term n)

→ M ↠(zero) M

→()⟨⟩_ : ∀ {n} {N L : Term n} {k : N} (M : Term n)
→ M → L
→ L ↠(k) N

→ M ↠(suc k) N

In term of notation, we postpone as apex the number of times that the iteration
occurs. We have the following basic lemma to convert the iteration naturally
induced by β∗-reduction into an explicitly quantified one. This lemma has been
left implicit in the original paper, but the proof is trivial by induction on the
β∗-reduction and clearly does not require any previous property:

unnamed-named : ∀ {n} {M N : Term n}
→ M ↠ N

→ ∃[m] (M ↠(m) N)

unnamed-named (M ■) = zero , (M ■)
unnamed-named (M →⟨ M→L ⟩ L↠N) with unnamed-named L↠N
... | m ′ , L↠m ′N = suc m ′ , (M →()⟨ M→L ⟩ L↠m ′N)

68

7.3 Fundamental theorems for confluence
With these definitions, we can presented the following two central theorems of
the proof by Komori et al. [KMY14], Lemma 3.2 and Theorem 3.8:

Lemma 3.2. Every λ-term β∗-reduces to its Takahashi translation:

M →∗
β M∗

Intuitively, this property comes from the fact that β∗-reduction can manually
contract the redexes treated by Takahashi translation. This first theorem can
be proven fairly easily by induction1 on the structure of the term M , using in
the crucial case the substitutivity of β∗-reduction sub-betas that we previously
proved in Section 4.2:

lemma3-2 : ∀ {n} {M : Term n}
→ M ↠ M ∗

lemma3-2 {M = # x} = # x ■

lemma3-2 {M = ň _} = ↠-cong-ň lemma3-2
lemma3-2 {M = # _ · _} = ↠-congr lemma3-2
lemma3-2 {M = _ · _ · _} = ↠-cong lemma3-2 lemma3-2
lemma3-2 {M = (ň M) · N} =

(ň M) · N →⟨ →-β ⟩ sub-betas {M = M} lemma3-2 lemma3-2

Note that, in the case where M is an application and has a variable on the left
side, another valid proof could have been ↠-cong lemma3-2 lemma3-2, mir-
roring the same proof of the case below. This further case expansion on the left
is precisely the additional case splitting necessary because of Takahashi trans-
lation, as previously explained in Section 6.1.1. However, since # x is equal to
itself under Takahashi translation,2 only the right side requires the application
of the inductive hypothesis.

1Another possible proof could have reused the triangle property theorem5 shown in the pre-
vious chapter, by using transitivity of parallel reduction and then converting it into β∗-reduction.
However, the proof presented here is considerably simpler and more direct.

2We could have also used the reflexive case of β∗-reduction, equivalently.

69

Two important corollaries of Lemma 3.2 not explicitly proven in the original
proof but necessary for our formal development are the following properties:

lift-* : ∀ {n} (M : Term n) (m : N)
→ M ↠ M ∗(m)

lift-* M zero = M ■

lift-* M (suc m) = ↠-trans lemma3-2 (lift-* (M ∗) m)

complete-* : ∀ {k} (M : Term k) {n m : N}
→ n ≤ m

→ M ∗(n) ↠ M ∗(m)

complete-* M {m = m} z≤n = lift-* M m
complete-* M (s≤s k) = complete-* (M ∗) k

These last proofs follow by the repeated application of Lemma 3.2, and they allow
us to ”lift” as many times as necessary a term M∗n into a reduced one M∗m

provided that n ≤ m.
The next fundamental theorem presented by [KMY14] is Theorem 3.8, which
turns out to be the backbone of the proof:

Theorem 3.8. For all λ-terms M and N :

M →n
β N =⇒ N →∗

β M∗n

Proving it requires a series of intermediate lemmas, and we will present the
complete proof in Section 7.5. Note the similarity of this theorem, which ef-
fectively ”reverses” the direction of the reduction, with the triangle property
par-triangle used in the confluence proof for parallel reduction with Taka-
hashi translation. This theorem expands on this previously proven property by
directly considering the case of β∗-reduction and further quantifying the results.
The intuition behind this important theorem is that n steps of β∗-reduction al-
ways perform less (or equal) reductions than an equally iterated Takahashi trans-
lation. The remaining reductions necessary to unify the two terms are simply
performed by repeating the unquantified β∗-reduction on the right asmany times
as necessary for N to catch up with the Takahashi-translated term.

70

7.4 Confluence of β-reduction
We immediately present here the main theorem of the paper, the confluence of
β-reduction, in order to show how the previous lemmas together constitute the
core of the proof:

theorem3-9 : ∀ {n} {M A B : Term n}
→ M ↠ A → M ↠ B

→ ∃[N] (A ↠ N × B ↠ N)

theorem3-9 {M = M} M↠A M↠B =
let n , M↠nA = unnamed-named M↠A

m , M↠mB = unnamed-named M↠B
A↠M∗n = theorem3-8 M↠nA
B↠M∗m = theorem3-8 M↠mB

in [(λ n≤m →
let M∗n↠M∗m : M ∗(n) ↠ M ∗(m)

M∗n↠M∗m = complete-∗ n≤m
in M ∗(m) , ↠-trans A↠M∗n M∗n↠M∗m , B↠M∗m)

, (λ m≤n →
let M∗m↠M∗n : M ∗(m) ↠ M ∗(n)

M∗m↠M∗n = complete-∗ m≤n
in M ∗(n) , A↠M∗n , ↠-trans B↠M∗m M∗m↠M∗n)

] (≤-total n m)

The idea is as follows: firstly, we transform the implicit reductions into explicit
ones using unnamed-named. Then, we apply theorem3-8 to ”move” the number
of β-reductions into the same number of Takahashi translations and reverse the
term order in each reduction. We proceed by cases on whether n ≤ m orm ≤ n
by using the fact that ≤ is a total relation, and consider the two possibilities
using the disjunction decomposition [_,_]. Both of these definitions have been
outlined in Chapter 2 and can also be found in the Agda standard library. Let
us suppose that n ≤ m: then, by using complete-* we can extend the shorter
reduction A →∗

β M∗n with the remaining iterations of Takahashi translation in
order to reach the common termM∗m, thus completing the proof. The other case
is symmetric by completing the other reduction. The two cases jointly show that
the unifying term being provided is alwaysM∗max{n,m}.

71

The proof can be shown with the following diagram, where the last dashed re-
duction depends on which of the two final terms is the smallest one (i.e.: which
of the two reductions needs to be completed):

M

A

M∗n M∗m

B

n m

* *

*

*

This result even further improves on the advancements presented by Takahashi
translation in the case of parallel reduction. Not only is the definition of parallel
reduction here unneeded, but the unifying term is specified even more precisely
than the one previously given in the case of parallel reduction. The two final
reductions still do not rely on the specific form of reduction steps previously
applied, and jointly specify the confluent term.

72

7.5 Central theorems
In order to prove the Theorem 3.8 previously presented, we state the following
two crucial theorems:

7.5.1 Lemma 3.3

Lemma 3.3. For all λ-termsM and N :

M →β N =⇒ N →∗
β M∗

The proof is quite articulated, and proceeds by induction on the β-reduction.
However, since the proof uses nothingmore than the previously proven lemma3-2
and the substitutivity of β∗-reduction sub-betas, we can directly present it as
follows:

lemma3-3 : ∀ {n} {M N : Term n}
→ M → N

→ N ↠ M ∗

lemma3-3 {M = # _} ()
lemma3-3 {M = ň M} (→-ň M→M ′) = ↠-cong-ň (lemma3-3 M→M ′)
lemma3-3 {M = # _ · N} (→-ξr N→N ′) = ↠-congr (lemma3-3 N→N ′)
lemma3-3 {M = _ · _ · N} (→-ξr N→N ′) = ↠-cong lemma3-2 (lemma3-3 N→N ′)
lemma3-3 {M = M1 · M2 · _} (→-ξl M↠M ′) = ↠-cong (lemma3-3 M↠M ′) lemma3-2
lemma3-3 {M = (ň M) · N} →-β = sub-betas {M = M} lemma3-2 lemma3-2
lemma3-3 {M = (ň M) · N} (→-ξr {N ′ = N ′} N→N ′)
= (ň M) · N ′ →⟨ →-β ⟩ sub-betas {M = M} lemma3-2 (lemma3-3 N→N ′)

lemma3-3 {M = (ň M) · N} (→-ξl (→-ň {M ′ = M ′} M→M ′))
= (ň M ′) · N →⟨ →-β ⟩ sub-betas {N = N} (lemma3-3 M→M ′) lemma3-2

Intuitively, this lemma can be interpreted as the base case of Theorem 3.8 where
n = 1 and a single Takahashi translation is performed. Alternatively, it can be
seen as a one-step version of the triangle lemma. Note how the input reduction
can only be a single reduction step; a β∗-reduction might apply too many con-
tractions for a single Takahashi translation, which only operates shallowly as
we previously discussed in Chapter 6. The use of the absurd pattern () in the
case where M is a variable is justified by the fact that no β-reduction step can
be provided, so no constructor is available for the input reduction.

73

7.5.2 Lemma 3.5

The second central theorem is considerably harder to prove, and for nowwe only
provide the definition:

Lemma 3.5. For all λ-termsM and N :

M →β N =⇒ M∗ →∗
β N∗

These two properties are the core lemmas that enable us to show Theorem 3.8.
As we will show in Chapter 8, these same results will be later used to introduce
another confluence proof, which will be directly obtained through the use of the
so-called Z-property.
Having stated these two fundamental properties, we can now conclude the con-
fluence proof ofTheorem 3.8. We proceed through the following series of straight-
forward intermediate corollaries.

7.5.3 Proving Theorem 3.8

As a direct consequence of Lemma 3.5, we begin by stating that Takahashi trans-
lation is monotonic with respect to multi-step β∗-reduction:

corollary3-6 : ∀ {n} {M N : Term n}
→ M ↠ N

→ M ∗ ↠ N ∗

corollary3-6 (M ■) = M ∗ ■

corollary3-6 (M →⟨ M→L ⟩ L↠N) =
↠-trans (lemma3-5 M→L) (corollary3-6 L↠N)

The following result is obtained through the repeated application of the first:

corollary3-7 : ∀ {n} {M N : Term n} (m : N)
→ M ↠ N

→ M ∗(m) ↠ N ∗(m)

corollary3-7 zero M↠N = M↠N
corollary3-7 (suc m) M↠N = corollary3-7 m (corollary3-6 M↠N)

74

Finally, we use this theorem along with lemma3-3 previously shown in Section
7.5.1 to conclude the proof.

theorem3-8 : ∀ {n} {M N : Term n} {m : N}
→ M ↠(m) N

→ N ↠ M ∗(m)

theorem3-8 {m = zero} (M ■) = M ■

theorem3-8 {m = suc m} (M →()⟨ M→L ⟩ L↠mN) =
↠-trans (theorem3-8 L↠mN) (corollary3-7 m (lemma3-3 M→L))

7.5.4 Proving Lemma 3.5

The last theorem relating β-reduction and β∗-reduction is now Lemma 3.5, which
proceeds by a refined case analysis on the relation and the term structure in the
same way as with lemma3-3:

lemma3-5 : ∀ {n} {M N : Term n}
→ M → N

→ M ∗ ↠ N ∗

lemma3-5 {M = # x} ()
lemma3-5 {M = ň M} (→-ň M→M ′) = ↠-cong-ň (lemma3-5 M→M ′)
lemma3-5 {M = # _ · N} (→-ξr M2→M ′) = ↠-congr (lemma3-5 M2→M ′)
lemma3-5 {M = (ň M) · N} →-β = lemma3-4 M N
lemma3-5 {M = (ň M) · N} (→-ξl (→-ň M→M ′)) =

sub-betas (lemma3-5 M→M ′) (N ∗ ■)
lemma3-5 {M = (ň M) · N} (→-ξr N→N ′) =
sub-betas (M ∗ ■) (lemma3-5 N→N ′)

lemma3-5 {M = M1 · M2 · _} (→-ξr N→N ′) =
↠-congr (lemma3-5 N→N ′)

lemma3-5 {M = M1 · M2 · _} (→-ξl {M ′ = # x} M1M2→#x) =
↠-congl (lemma3-5 M1M2→#x)

lemma3-5 {M = M1 · M2 · _} (→-ξl {M ′ = M ′
1 · M ′

2} M1M2→M ′
1M

′
2) =

↠-congl (lemma3-5 M1M2→M ′
1M

′
2)

lemma3-5 {M = M1 · M2 · N} (→-ξl {M ′ = ň M ′} M1M2→ňM ′) =
↠-trans (↠-congl (lemma3-5 M1M2→ňM ′))

((ň M ′ ∗) · N →⟨ →-β ⟩ subst (subst-zero (N ∗)) (M ′ ∗) ■)

75

In the last three cases, the further splitting of M ′ into its components is necessary
because the goal would be in the following form (the required type is indicated
in the comment):

lemma3-5 {M = M1 · M2 · _} (→-ξl r) =
{! (M1 · M2)

∗ · N ∗ ↠ (M ′ · N) ∗ !}

Unfortunately, as we previously discussed, Agda cannot apply any case of Taka-
hashi translation since it cannot verify whether M ′ is a λ-abstraction or not. We
therefore need tomake the argument M ′ of the→-ξl constructor explicit and then
consider each possibility. The last case where M ′ is a λ-abstraction is the most
articulated one, since Takahashi translation applies the β-contraction. Here, we
have as goal:

lemma3-5 {M = M1 · M2 · N} (→-ξl {M ′ = ň M ′} M1M2→ňM ′) =
{! (M1 · M2)

∗ · N ∗ ↠ (M ′ ∗) [N ∗] !}

Having as inductive hypothesis (M1 · M2)
∗ ↠ ň M ′ ∗, we can append the term

N∗ on the right using ↠-congl, and then apply one β-reduction step to obtain
(M ′ ∗) [N ∗] as final term on the right side. This last passage is described
in the last line of the proof, and the rule application can be automatically com-
pleted by Agda since it only requires known type constructors. Even though this
makes this last passage slightly harder to read, we again chose to leave the auto-
mated form in order to highlight this possibility. The other subcases need to be
duplicated because of the Takahashi translation overloading.
The remaining cases of this theorem worth considering are the variable and the
β-reduction ones, since the rest can be solved by simply applying the inductive
hypothesis through congruence or sub-betas. The case where M is a variable
is again impossible in a similar way to lemma3-3, since no reduction can be pro-
vided. The case where β-reduction applies is the crucial one, and is directly
refactored into the separate Lemma 3.4 which we now introduce.

76

7.6 Lemma 3.4
This theorem is the last high-level property presented in the proof that we need
to show, and it relates Takahashi translation and β∗-reductionwith substitutions:

Lemma 3.4. For all λ-termsM and N :

M∗[N∗] →∗
β M [N]∗

Intuitively, this theorem is not trivial. In the original paper this statement is
expressed in the unexpanded (but easier to understand) form of ((λM)N)∗ →∗

β

(M [N])∗, and the proof simply states that the following sub-properties can be
verified by induction on the structure of the termM :

1. if N is not a λ-abstraction then M∗[N∗] →∗
β (M [N])∗

2. M∗[λN∗
1] →∗

β (M [λN1])
∗

However, proving these facts turns out to be extremely hard in our formal setting.
Constructing the proof of Lemma 3.4 constituted the major technical difficulty in
conceptualizing and then completing the proof structure described in this thesis.

Tentative proof by induction

A first naïve approach to prove this crucial theorem would be to directly proceed
by induction on the structure ofM , as it is also specified in the paper. This intu-
ition is justified by the fact thatM is precisely the term on which both Takahashi
translation and the substitution are applied:

lemma3-4-ind : ∀ {n} (M : Term (suc n)) (N : Term n)
→ M ∗ [N ∗] ↠ (M [N]) ∗

or, with expanded definitions:

→ subst (subst-zero (N ∗)) (M ∗) ↠ (subst (subst-zero N) M) ∗

Following the induction, the case whereM is a variable can be easily handled by
checking whether the index is zero, to see if the substitution is performed:

lemma3-4-ind (# zero) N = N ∗ ■

lemma3-4-ind (# suc x) N = # x ■

77

However, the case whereM is a λ-abstraction requires us to prove a different but
fundamentally related version of the theorem, namely, the case where the term
being substituted is in fact on the index 1. This case necessarily starts with an
application of ↠-cong-ň in order to elide the λ-abstractions:

lemma3-4-ind (ň M) N = ↠-cong-ň (lemma3-4-ind-exts M N)

The necessary theorem to solve this case indeed turns out to be the following:

→ subst (exts (subst-zero (N ∗))) (M ∗)
↠ (subst (exts (subst-zero N)) M) ∗

or, in a more readable form:

lemma3-4-ind-exts : ∀ {n} (M : Term (suc (suc n))) (N : Term n)
→ M ∗ J N ∗ K ↠ (M J N K) ∗

The fact that this lemma refers to 1-indexed substitution can be expressed with
the special parentheses introduced in Section 3.4.2. This immediately suggests
us that a generalization of our 0-indexed theorem is necessary, so that we can
consider the theorem for all extensions of subst-zero and possibly find an even
more general form of this property. This similarly mirrors the proofs of the sub-
stitutivity of β-reduction sub-betas and parallel reduction par-betas, where
without generalizations one would apparently need to recursively prove differ-
ent versions of the same theorem.
Notice that in the crucial case where Takahashi translation performs β-reduction
we could actually apply (along with the inductive hypothesis and our ”extended”
version of the theorem) another property that is similarly specialized for 0-indexed
substitutions, namely the substitution-lemma that we presented in Section
3.4.2 as a corollary of the more general subst-commute:

lemma3-4-ind ((ň M1) · M2) N
rewrite substitution-lemma {M = M1

∗}{N = M2
∗}{L = N ∗} =

sub-betas (lemma3-4-ind-exts M1 N) (lemma3-4-ind M2 N)

This also suggests us, in retrospect, that the crucial theorem resolving this case
in the generalized setting is precisely going to be subst-commute.

78

7.7 Takahashi translation for substitutions
The generalization that we need to find cannot however be related to a reduction,
as it happened when proving the substitutivity of β-reduction sub-betas and
parallel reduction par-betas; here we simply have no reduction to generalize
against in the arguments. Instead, the novel concept that we introduce is that of
Takahashi translation of an entire substitution σ:

Definition 7.7.1 (Takahashi translation for substitutions). Given a substitution
σ, the Takahashi translation of σ is defined as a substitution σ∗ such that for all
x we have:

σ∗ x = (σ x)∗

In other words, σ∗ is the pointwise Takahashi translation for σ. We will follow
the same notation of using a small s in the Agda code, as in our definition of
pointwise β∗-reduction, to denote that the operation is extended to substitutions.
This technical definition is the key element in completing the proof. The original
theorem can now be expressed in a general formwhere the Takahashi translation
of a generic substitution σ takes the place of the 0-indexed subst-zero (N ∗).

7.7.1 Generalized Lemma 3.4

We can now state the generalization of Lemma 3.4 as follows:

subst-ts : ∀ {n m} (σ : Subst n m) (M : Term n)
→ subst (σ ∗s) (M ∗) ↠ (subst σ M) ∗

subst-ts σ (# x) = σ x ∗ ■

subst-ts σ (ň M)
rewrite exts-ts-commute σ =

↠-cong-ň (subst-ts (exts σ) M)
subst-ts σ (# x · N) =
↠-trans (↠-congr (subst-ts σ N))

(app-*-join (σ x) (subst σ N))
subst-ts σ (M1 · M2 · N) =
↠-cong (subst-ts σ (M1 · M2)) (subst-ts σ N)

subst-ts σ ((ň M) · N)
rewrite sym (subst-commute {N = M ∗}{M = N ∗}{σ = σ ∗s})

| exts-ts-commute σ
= sub-betas (subst-ts (exts σ) M) (subst-ts σ N)

79

The proof of the theorem now does, indeed, proceed by induction on the termM
as stated in the original pen-and-paper development.
We analyze each case of the proof in detail.

(Case # x) By definition of Takahashi translation (where variables remain un-
changed) and application of subst on variables (where due to σ ∗s we
apply Takahashi translation on the result of σ x) we have σ x ∗ on the
left side. On the right side we also have σ x by application of subst on
variables and then σ x ∗ by the outer Takahashi translation. The case is
finally solved with the reflexive case of β∗-reduction.

(Case ň M) Through the application of Takahashi translation on the left and the
two cases of subst for λ-abstractions we have as goal:

ň subst (exts (σ ∗s)) (M ∗) ↠ ň subst (exts σ) M ∗

We can temporarily conjecture a theorem exts-ts-commute that allows us
to commute the extension exts with the Takahashi translation of a given
substitution, and then apply it (through rewrite) to get the following:

ň subst ((exts σ) ∗s)) (M ∗) ↠ ň subst (exts σ) M ∗

But this is exactly the inductive hypothesis applied to the term M and with
σ equal to the substitution (exts σ), up to the λ-abstraction congruence.

(Case (M1 · M2 · N)) We first treat the easier of the three cases where the left
term is expanded. In the case where M is an application (M1 · M2)we have
as simplified goal:

subst (σ ∗s) ((M1 · M2)
∗) · subst (σ ∗s) (N ∗)

↠ (subst σ M1 · subst σ M2)
∗ · subst σ N ∗

We can now apply the inductive hypothesis twice by using the double
congruence for applications ↠-cong. Compared with the original goal,
the simplification of the right-side term is possible due to the fact that
(M1 · M2) is structurally checked not to be a λ-abstraction. This in turn
allows Takahashi translation to split the outermost application in two sep-
arate subterms.

80

(Case (ň M · N)) In the crucial case of β-reduction, because of the two Taka-
hashi translations we have as goal:

subst (σ ∗s) ((M ∗) [N ∗])
↠ (subst (exts σ) M ∗) [subst σ N ∗]

We can now leverage the σ-calculus properties by using (the symmetric
version of) subst-commute in order to ”distribute” the substitution with
Takahashi translation over both (M ∗) and (N ∗) on the left side:

(subst (exts (σ ∗s)) (M ∗)) [subst (σ ∗s) (N ∗)]
↠ (subst (exts σ) M ∗) [subst σ N ∗]

We then now use another rewrite to apply on the left side the equality
exts-ts-commute we previously hypothesized:

(subst ((exts σ) ∗s) (M ∗)) [subst (σ ∗s) (N ∗)]
↠ (subst (exts σ) M ∗) [subst σ N ∗]

Finally, we can apply the substitutivity of β∗-reductionwith the two induc-
tive hypotheses (subst-ts (exts σ) M) and (subst-ts σ N) to close
the case.

(Case (# x · N)) Finally, we show the case whereM is a variable. By applying
subst on both sides we have as goal:

(σ ∗s) x · subst (σ ∗s) (N ∗) ↠ (σ x · subst σ N) ∗

On the left side, we can use the right congruence property↠-congr with
the inductive hypothesis, and simply apply the definition of Takahashi
translation for the substitution σ on the left:

σ x ∗ · subst σ N ∗ ↠ (σ x · subst σ N) ∗

However, unlike the previous case where the left side of M is another
application, we cannot automatically decompose the right side into two
subterms by applying Takahashi translation (and indeed Agda in this case
does not perform any simplification), because we cannot know beforehand
whether σ x is going to be a λ-abstraction or not.

81

Now we need to prove what seems to be a particularly hard lemma that
”joins” together the application of two Takahashi-translated terms with
the translation of the entire application. We will then be able to apply
this property by simply using the transitivity of β∗-reduction ↠-trans.
We temporarily hypothesize and name this theorem app-*-join, which
allows us to finally close the proof.

7.7.2 Lemma 3.4 for applications

The theorem app-*-join used in the last case of the previous proof bears a con-
siderable similarity (and presumably, difficulty) with the original Lemma 3.4 it-
self, where a term containing two separate Takahashi translations β∗-reduces to
a single translated term. As it has been shown in the previous case analysis, this
effectively constitutes the first interesting instance where Takahashi translation
non-trivially treats differently the two overloaded case patterns, which should in
theory behave in completely similar ways. Note that this theorem cannot even
be applied in the case of M having another application on the left side, but it is
strictly necessary in this case where the left side of the application is a variable.
The theorem actually turns out to have an interesting proof. Since there are no
substitutions involved, we can tentatively proceed by induction on the structure
of the term M :

app-*-join : ∀ {n} (M N : Term n)
→ M ∗ · N ∗ ↠ (M · N) ∗

app-*-join (# x) N = # x · N ∗ ■

app-*-join (ň M) N =
(ň M ∗) · N ∗ →⟨ →-β ⟩ subst (subst-zero (N ∗)) (M ∗) ■

app-*-join (M1 · M2) N = (M1 · M2)
∗ · N ∗ ■

What seemed to be a particularly tricky lemma can, in fact, be completely solved
by Agda automatically (except for the induction split, which always needs to
be manually performed), since it requires no specific theorem except the usual
constructors of β∗-reduction. Furthermore, notice how no case that further de-
composes M is required, since M already appears as a left-subterm in the ap-
plication on the right side. We chose to leave this proof in its automated form
(especially in the second case, where the definition of 0-indexed substitution gets
automatically expanded) in order to highlight this automation step.

82

7.7.3 Takahashi translation and renamings

Our next theorem is the commutativity between Takahashi translation and ex-
tension of substitutions that we hypothesized in order to solve the preceding
cases. Since we are considering an equality between substitutions, which are
just functions from de Bruijn indices to terms, we can use the extensionality
postulate defined in Section 2.4.5. By showing that the two substitutions give the
same result on every possible input, this principle allows us to conclude that the
two substitutions denote the same function and are therefore interchangeable.3

exts-ts-commute : ∀ {n m} (σ : Subst n m)
→ exts (σ ∗s) ≡ (exts σ) ∗s

exts-ts-commute {n} σ = extensionality exts-ts-commute ′

where
exts-ts-commute ′ : (x : Fin (suc n))

→ (exts (σ ∗s)) x ≡ ((exts σ) ∗s) x
exts-ts-commute ′ zero = refl
exts-ts-commute ′ (suc x) = rename-* suc (σ x)

In order apply extensionality, we define an auxiliary function that explicitly
inducts on the index x. As per the definition of exts, when the index is greater
than zero (that is, we effectively apply the substitution σ and then shift all the
indices of the result by one) we have as goal the following statement:

rename suc ((σ ∗s) x) ≡ (exts σ ∗s) (suc x)

Through a manual simplification of the goal, however, we can obtain the follow-
ing easier to conceptualize property, which simply states that shifting by one all
variables does not essentially alter the result of Takahashi translation and in fact
commutes with it:

rename suc ((σ x) ∗) ≡ rename suc (σ x) ∗

We can actually prove a more general version of this theorem, by generalizing
over the renaming applied (in this case suc) with a generic renaming function ρ,
and abstracting the term σ x with a generic M:

3This theorem could be expressed even more explicitly as a commutation between the two
functions exts and _∗s using the function application operator _◦_. The proof would then pro-
ceed through a double application of the extensionality principle, one time for σ (without
using any induction) and another time for the index x.

83

rename-* : ∀ {n m} (ρ : Rename n m) (M : Term n)
→ rename ρ (M ∗) ≡ rename ρ M ∗

rename-* ρ (# _) = refl
rename-* ρ (ň M) = cong ň_ (rename-* (ext ρ) M)
rename-* ρ (# _ · N) = cong2 _·_ refl (rename-* ρ N)
rename-* ρ (M1 · M2 · N) = cong2 _·_ (rename-* ρ (M1 · M2))

(rename-* ρ N)
rename-* ρ ((ň M) · N)
rewrite sym (rename-subst-commute {N = M ∗}{M = N ∗}{ρ = ρ})

| rename-* (ext ρ) M
| rename-* ρ N
= refl

This theorem is trivial in the usual cases. Note that, since we effectively entered
the domain of equalities, the cong and cong2 properties refer to equality congru-
ences, and are not to be confused with the congruences for β∗-reduction used
thus far. In the last case, we have the following goal:

rename ρ ((M ∗) [N ∗])
≡ (rename (ext ρ) M ∗) [rename ρ N ∗]

In a similarway aswith subst-ts, we apply on the left side rename-subst-commute
(which is just a version for renamings of the previously applied subst-commute)
in order to distribute the renaming and obtain:

rename (ext ρ) (M ∗) [rename ρ (N ∗))]
≡ (rename (ext ρ) M ∗) [rename ρ N ∗]

By applying the inductive hypothesis twice with ρ and its extension (ext ρ) in
the respective cases of N andM , we can finally conclude the proof.

7.7.4 Special case of 0-indexed substitution

Now that we have finally proven the general case, we need to relate it back to
our original Lemma 3.4. In order to be able to apply subst-ts we need to first
convert subst-zero (N ∗) into a Takahashi-translated substitution, as follows:

subst-zero-ts : ∀ {n} {N : Term n}
→ subst-zero (N ∗) ≡ (subst-zero N) ∗s

subst-zero-ts =
extensionality (λ { zero → refl ; (suc x) → refl })

84

Since we are again treating equality of substitutions, we need to apply the princi-
ple of extensionality and then case split on the index the substitutions operate
on. Since the proof is direct by applying the definition of subst-zero in each
case, we can use an anonymous case-splitting λ-expression to easily close the
proof. Lemma 3.4 can now be proved by applying this rewriting rule, and then
use its general version subst-ts:

lemma3-4 : ∀ {n} (M : Term (suc n)) (N : Term n)
→ M ∗ [N ∗] ↠ (M [N]) ∗

lemma3-4 M N
rewrite subst-zero-ts {N = N}

= subst-ts (subst-zero N) M

This concludes the entire confluence proof by Komori et al. [KMY14].

7.8 Proof remarks
The formalization we presented can be broadly divided in two general subar-
eas: a series of high-level theorems that constitute the core of the proof, and
another group of infrastructural theorems that relate Takahashi translation with
de Bruijn indices and parallel substitutions. This latter part is required in order to
prove the crucial Lemma 3.4, which directly interacts with substitutions and the
representation of λ-terms themselves. As we have seen throughout the develop-
ment, the necessary formalization steps do not always exactly mirror the tactics
and principles used to prove theorems in the same way that they are usually car-
ried out in the classic pen-and-paper setting. Indeed, it is sometimes necessary to
consider the fact that proofs rest on secondary yet crucial technical assumptions,
starting from substitutions and the concept of extension, up until the concept of
renamings and the properties related to these definitions. However, after settling
these fundamental theorems, the high level proofs proceed relatively with ease,
as it can be also witnessed by their length.

85

Chapter 8

The Z-property proof

In this chapter we present the confluence proof for β-reduction with the use
of the so-called Z-property, first introduced by Dehornoy et al. [DO08]. This
proof has also been formalized in Nagele et al. [NOS16] using the Isabelle/HOL
theorem prover. The main method consists in proving that for any given rela-
tion the Z-property implies semi-confluence and therefore confluence. As it will
be shown, the fundamental theorems necessary to establish the Z-property for
the case of β-reduction have already been incidentally proved in the previous
chapter, and they can be used to obtain an even more direct proof of confluence.
Similarly as with the proof by Komori et al. [KMY14], these results do not require
the definition of a parallel reduction relation.

8.1 Generic reflexive transitive closure
In order to formally define the Z-property, we first need to construct a general
setting to treat the reflexive transitive closure of any generic relation→.
We can use some definitions from the standard library (represented by Reflexive
and Trans) to more clearly expose the properties of reflexivity and transitivity:

data Star {t r} {T : Set t} (R : Rel T r) : Rel T (t ⊔ r) where
ε : Reflexive (Star R)
▷ : Trans (Star R) R (Star R)

86

Compared with the previous definitions of _↠_ and _⇒∗_, we follow a simi-
lar mechanism of defining reflexivity and the addition of one transitivity step.
However, instead of having transitivity as ”adding” one reduction step at the be-
ginning of the reduction, we consider here the additional step to be appended at
the end of the reduction. This convention is also implicitly followed in [NOS16].
It turns out that defining transitivity in this way, opposite to our earlier use of β∗-
relation and parallel reduction star, considerably simplifies the proof that the Z-
property implies semi-confluence. The proof that semi-confluence implies con-
fluence remains essentially the same. A similar definition for the generic tran-
sitive reflexive closure is already present in the Agda standard library under the
module Relation.Binary.Construct.Closure.ReflexiveTransitive, but it
does not follow the definition we have established here. We nevertheless adopt
from it similar names and notation. Having established our generic definition,
we can trivially derive the proper transitivity of any star relation:

▷▷ : ∀ {t r} {T : Set t} {R : Rel T r} {M L N : T}
→ Star R M L
→ Star R L N
→ Star R M N

ML ▷▷ ε = ML
ML ▷▷ (LL ′ ▷ L ′N) = (ML ▷▷ LL ′) ▷ L ′N

On a more technical note, because of our use of the Rel datatype (also defined
in the Agda standard library) to express the notion of relation, Agda requires
us to explicitly treat the concept of type universe levels in the signature of both
definitions presented so far. This is achieved through the use of the implicit level
variables t, r and the upper bound operator _⊔_. We will not further cover here
the specific details since they do not particularly affect the proof.

8.2 Semi-confluence
As we will see in Section 8.3, it is easier to prove that the Z-property implies
semi-confluence, rather than full confluence. Although seemingly weaker at
first, semi-confluence in turn implies and is indeed equivalent to full confluence.
We define this property as follows:
Definition 8.2.1 (Semi-confluence). A relation→ is said to be semi-confluent, if,
given a termM such thatM → A andM →∗ B, there exists a termN such that
A →∗ N and B →∗ N .

87

We can be visually express this notion as follows:

M

A B

∃N

∗

∗ ∗

Note that, contrary to full confluence, one of the two given reductions is not the
reflexive transitive closure but a single reduction step.
The notion of semi-confluence for any generic relation R can be directly formal-
ized with the following predicate:

Semi-Confluence : ∀ {t r} {T : Set t} (R : Rel T r) → Set (t ⊔ r)
Semi-Confluence R = ∀ {M A B}
→ R M A → Star R M B

→ ∃[N] (Star R A N × Star R B N)

It is useful to compare such definition with that of full confluence:

Confluence : ∀ {t r} {T : Set t} (R : Rel T r) → Set (t ⊔ r)
Confluence R = ∀ {M A B}
→ Star R M A → Star R M B

→ ∃[N] (Star R A N × Star R B N)

We chose not to use this last formalization in the previous chapters because it
makes the proofs slightly harder to read, and it is unnecessarily general for our
case that specifically treats β-reduction.

88

The proof that semi-confluence implies confluence now proceeds by induction
on the left reduction provided by the Confluence statement:

semi-to-confluence : ∀ {t r} {T : Set t} {R : Rel T r} →
Semi-Confluence R → Confluence R

semi-to-confluence sc {B = B} ε M∗B = B , M∗B , ε
semi-to-confluence sc (M∗M ′ ▷ M ′A) M∗B

with semi-to-confluence sc M∗M ′ M∗B
... | N , M ′∗N , B∗N

with sc M ′A M ′∗N
... | N ′ , A∗N ′ , N∗N ′

= N ′ , A∗N ′ , B∗N ▷▷ N∗N ′

We can follow the proof with diagrams, indicating the base case on the right and
the inductive one on the left:

M M

M B M ′ (a) B

B A (b) N

N ′

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

On the left we have the trivial case where M reduces to itself. On the right we
have M →∗ M ′ → A according to our definition of transitivity for Star, with
(a) commuting by inductive hypothesis and (b) commuting by semi-confluence.

8.3 Z-property
Having defined the general concept of reflexive transitive closure, we can now
state the Z-property:
Definition 8.3.1 (Z-property). A relation → on T is said to have the Z-property
if there exists a map ∗ : T → T such that A → B implies B →∗ A∗ and
A∗ →∗ B∗, for any A and B. We refer to the implication of the two reductions
as first Z-property and second Z-property, respectively.

89

Thename of this definition again comes from the fact that the diagrammatic form
for this statement resembles the letter Z:

A B

A∗ B∗

∗

∗

We can now present its formalization in Agda:

Z : ∀ {t r} {T : Set t} (R : Rel T r) → Set (t ⊔ r)
Z {t}{r}{T} R =
Σ[_∗ ∈ (T → T)]

(∀ {A B : T} → R A B → Star {t}{r} R B (A ∗)) ×
(∀ {A B : T} → R A B → Star {t}{r} R (A ∗) (B ∗))

First, we have an easy lemma stating that a relation with the Z-property is mono-
tonic with respect to the map ∗, i.e.: A →∗ B implies A∗ →∗ B∗. The proof is
trivial by repeated application of the second Z-property:

z-monotonic : ∀ {t r} {T : Set t} {R : Rel T r}
→ (z : Z R)

--
→ (∀ {A B} → Star R A B

→ Star R (proj1 z A) (proj1 z B))
z-monotonic z ε = ε
z-monotonic z@(_∗ , Z1 , Z2) (A∗A ′ ▷ A ′B) =
z-monotonic z A∗A ′ ▷▷ Z2 A ′B

The projection function proj1 is used here to simply ”extract” the map * from
the evidence that the Z-property holds, and it is defined in the Agda standard
library module Data.Product. The @ syntax is used in the function body to give
a placeholder name to this evidence, which is first decomposed and then passed
as it is to the inductive hypothesis.

90

Now we finally have that Z-property is sufficient for semi-confluence. The proof
proceeds by cases on the structure of the left reduction of semi-confluence:

z-semi-confluence : ∀ {t r} {T : Set t} {R : Rel T r} →
Z R → Semi-Confluence R

z-semi-confluence (_∗ , Z1 , Z2) {A = A} MA ε = A , ε , (ε ▷ MA)
z-semi-confluence z@(_∗ , Z1 , Z2) MA (_▷_ {j = M ′} M∗M ′ M ′B) =

M ′ ∗ , Z1 MA ▷▷ z-monotonic z M∗M ′ , Z1 M ′B

Graphically, we can express the two cases with the following diagrams:

M M

A M A M ′

A M∗ B

M ′∗

∗ ∗

∗ ∗ ∗

∗ ∗

In the case where there are no reductions, we simply lift the left reduction into its
reflexive transitive closure to complete the case. In the other case, the reduction
has the structure M →∗ M ′ → B. We apply the first Z-property twice on the
two one-step reductions (with the results being the two dashed arrows), and then
apply monotonicity to the rest of the star reduction to getM∗ →∗ M ′∗. By a final
application of transitivity, we have provided the two unifying reductions, and
thus completed the proof. Note that the inductive hypothesis was not necessary,
and that the second Z-property is not directly applied here but it is embedded into
the monotonicity lemma. The advantage of considering Starwith the additional
one-step reduction at the end of the chain becomes clear here, since the termM ′

effectively becomes the joining term through the use of the Z-property map.
Finally, we simply combine the previous lemmas to have our result:

z-confluence : ∀ {t r} {T : Set t} {R : Rel T r} →
Z R → Confluence R

z-confluence z = semi-to-confluence (z-semi-confluence z)

91

8.4 Z-property for β-reduction
As it was implicit in the name we chose to the map described in the Z-property,
we actually have that Takahashi translation (quoted as the full-superdevelopment
function in [NOS16]) indeed is amap that provides the Z-property for β-reduction.
As a technical detail, we need to prove that our generic version of the reflexive
transitive closure (with its inverted transitivity) is indeed equivalent to our def-
inition of β∗-reduction _↠_ presented in Section 4.1. We also need a trivial
intermediate lemma stating we can append a reduction to the left of any star
reduction:

star-left : ∀ {n} {M L N : Term n}
→ M → L
→ Star _→_ L N

→ Star _→_ M N

star-left ML ε = ε ▷ ML
star-left ML (L∗N ′ ▷ N ′N) =
star-left ML L∗N ′ ▷ N ′N

betas-star : ∀ {n} {M N : Term n}
→ M ↠ N

→ Star _→_ M N

betas-star (M ■) = ε
betas-star (M →⟨ M→M ′ ⟩ M ′↠N) =

star-left M→M ′ (betas-star M ′↠N)

Finally, we can show that Lemma 3.3 and Lemma 3.5 introduced in the paper
by Komori et al. [KMY14] actually represent, respectively, the first and second
Z-properties for the case of β-reduction. We can reuse the proofs lemma3-3 and
lemma3-5 presented in Chapter 7 to manually construct the evidence that the
Z-property holds, and ultimately derive confluence:

z-confluence-beta : ∀ {n} → Confluence (_→_ {n})
z-confluence-beta = z-confluence (_∗

, betas-star ◦ lemma3-3
, betas-star ◦ lemma3-5)

This concludes our last proof of the Church-Rosser theorem.

92

8.5 Comparison with the Komori-Matsuda-Yamakawa
proof

This proof is considerably shorter in terms of lemmas and properties used, and
follows a more direct approach than the one presented by Komori et al. in
[KMY14]. Similarly as with the Tait/Martin-Löf proof, the proof nevertheless
comes at the cost of not providing the more precisely quantified results about
the joining term. The existence of the Z-property actually further sharpens an
observation remarked in [KMY14, Theorem 3.10], where the authors state that
their proof can be generalized to any reduction → that satisfies the following
properties:

• ⟨A⟩ A →∗ A∗

• ⟨B⟩ A → B =⇒ B →∗ A∗

• ⟨C⟩ A → B =⇒ A∗ →∗ B∗

However, as we have shown in Agda and [NOS16] have proven in Isabelle/HOL,
properties ⟨B⟩ and ⟨C⟩ are indeed sufficient to prove confluence. Property ⟨A⟩,
which we formalized in lemma3-2, is still required in order to prove lift-*
and complete-*; these two theorems are then used to ”complete” the remain-
ing Takahashi translations in the final step of theorem3-9. Therefore, it seems
that property ⟨A⟩ is indeed necessary in order to have the more precisely quan-
tified results shown in [KMY14], but it is not strictly needed to prove confluence
in general. In our specific case of β-reduction, property ⟨A⟩ is still an essential
lemma used to prove property ⟨B⟩, represented by lemma3-3.

8.6 Proof overview
We present here a structural overview of the proof, with the specific purpose of
highlighting and dividing the parts necessary to establish the two Z-properties
for β-reduction, and those specific for the proof by Komori et al. [KMY14]. For
brevity, we omit some intermediate lemmas of this latter section while still show-
ing the main theorems:

93

σ-calculus

β∗-reduction

Komori-Matsuda-Yamakawa proof

High-level proof

Takahashi translation for substitutions

Z-property proof

Church-Rosser Theorem

rename-subst-commute subst-commute

subst-betas betas-subst-zero

subst-betas-sub subst-beta-term

betas-subst-exts

betas-rename

beta-rename

sub-betas

theorem3-8 complete-*

lemma3-2

corollary3-7 lemma3-3

corollary3-6

lemma3-5

lemma3-4

theorem3-9

subst-zero-ts

subst-ts

exts-ts-commute app-*-join

rename-*

z-monotonic

semi-to-confluencez-semi-confluence

z-confluence

z-confluence-beta

94

Chapter 9

Conclusion

9.1 Theoretic perspective
To our knowledge, no formal proof of the results presented by Komori et al.
[KMY14] can be found in the extensive literature concerning the formalization of
the Church-Rosser theorem. The developments we presented in Chapter 7 of this
thesis further certify the validity of these important advancements in the context
of rewriting systems and confluence. Presenting a formalization of their results
also provides future readers a complete perspective on the proof, clarifying and
thoroughly proving correct those details that might have remained unspecified
or left to the reader. Indeed, Lemma 3.4 relating substitutions and Takahashi
translation, whose proof in the original paper had only been sketched, effectively
constituted the hardest property to adequately formalize in our setting.
As we have shown in Chapter 8, the theorems proven in this last proof unknow-
ingly coincided with the fundamental lemmas also used by Nagele et al. [NOS16]
in their formalization. This coincidence has been completely accidental, and we
discovered this latter paper only at a later time. Our developments also provide
a perspective on how the properties presented by the authors in Isabelle/HOL,
using the Nominal approach, can be shown in Agda with the different context
of de Bruijn indices. The more explicit proof detail that Agda naturally induces,
comparedwith the profound automation provided by Isabelle/HOL, also provides
insight in those crucial steps that might be lost in a completely automatic devel-
opment. This gives us a comparative sense on how difficult a complete manual
formalization can bewhen considering proofs regardingλ-calculus, substitutions
and binders.

95

9.2 Implementation
Aswe have experimented in this thesis, the infrastructure implemented byWadler
et al. in [WK19] provides an elegant foundation on which to develop more gen-
eral proofs about λ-calculus. Unfortunately, the lack of tactics and powerful
automation mechanisms in Agda comes at the cost of having to concretely in-
teract with the representation method used for λ-terms, in this case de Bruijn
indices. This interaction in turn requires a complete understanding of the func-
tions and theorems used in the lower-level layers, especially when the properties
considered directly interact with substitutions and therefore renamings.
This is a general characteristic of Agda proofs, where each detail has to be ex-
plicitly indicated and even automation provides results in the form of explicit
proofs. This perspective stands in sharp contrast with the black-box and higher-
level approaches available in Isabelle, for example with Nominal Isabelle [Urb08],
or in Coq with the automation tactics provided by the Autosubst library [STS15],
where the low-level details are automatically handled by the tools. Many other
libraries handling binders and variables can be found mentioned in these papers,
showing how important and ubiquitous these representation issues can be.
The approach taken by Agda is simply that of library reuse, where the user only
interfaces themselves with the high-level theorems of the library. The hardest
part of the formalization, however, still remains the conceptual shift in having to
reconsider everything in terms of de Bruijn indices and inevitably being aware
of the functions that operate on them; the need for pointwise reduction and
pointwise Takahashi translation is certainly not obvious at first glance, and it
required a detailed understanding of the underlying concepts of renamings, par-
allel substitutions, and extensions. Fortunately, the use of the subst-commute
and rename-subst-commute theorems, developed through the framework of σ-
calculus, still allowed us to maintain a fairly high abstraction level in handling
de Bruijn indices by solving for us the crucial substitution cases.
After overcoming these technical and conceptual difficulties, the proofs never-
theless proceed with relative ease. Having to understand the implementation
details can also provide the user with a clearer vision of the overall proof, and
even interfacing with the underlying library can occasionally constitute an en-
gaging proof activity that leads to lower-level yet elegant theorems.
Interactivity also plays an important role in the use of a proof assistant; for ex-
ample, Agda can aid the user in keeping track of the goal to prove, automatically
splitting the inductive cases, and sometimes even providing a limited form of
proof automation with the automatic proof searcher Agsy.

96

This gives rise to an explorative dynamic between the prover and the interface,
where the tool interactively assists the user in constructing proofs. These facili-
ties have been extensively used during the development of this thesis, and have
provided a useful guidance in proving the results here presented.

9.3 Future work
The most immediate further improvement for this thesis is the additional treat-
ment of η-reduction. At the end of their paper, Komori et al. [KMY14] also
outline some crucial definitions and proof remarks treating the specific case of
βη-reduction, where a term λx.Mx can be reduced toM if x does not occur free
in M . In our formal setting with de Bruijn indices this would be represented
as λM0, with a similarly defined constraint that requires the variable referring
to the outermost binder not to appear inside M . In the case of βη-reduction,
the authors also propose alternative and more precise definitions for Takahashi
translation than those originally established by Takahashi [Tak95], by introduc-
ing the additional requirement forMx not to be a redex. Further exploration on
this topic is therefore required, first by adequately formalizing these constraints
with de Bruijn indices, and successively in extending and constructing the con-
fluence proof in order to account for this additional reduction.
Another possible extension of this development is dealing with different repre-
sentation techniques for λ-terms. This would help in verifying the logical inde-
pendence of the theorems so far presented from the implementation used, and
give further insights on how easily the same results can be obtained with al-
ternative methods. This would especially concern those properties connecting
Takahashi translation and substitutions, as exemplified by lemma3-4.
The results proven by Komori et al. could also be shown using different proof
assistants, such as Coq or Isabelle/HOL. By reusing the lemmas already provided
by Nagele et al. [NOS16], it would not be too difficult to complete the remaining
theorems required to obtain the quantified confluence formalized in this thesis.
In conclusion, this formalization experience gave us the possibility to explore
how different proof approaches can target the same fundamental results.
Analyzing theorems with the detail level offered by Agda also allowed us to get
a more refined comprehension on how the proofs proceed on a small scale, while
also gaining insight on the connections between these two different approaches.
We hope that the results presented here will further enrich the well-documented
literature and the formalizations available for this fundamental theorem.

97

Ringraziamenti
Vorrei innanzitutto ringraziare il professor Ugo de’ Liguoro e il dottor Riccardo
Treglia per la loro costante disponibilità e per il loro fondamentale aiuto
nell’organizzare il lavoro presentato in questa tesi. Ringrazio la mia famiglia, la
mia ragazza Amalia e tutti gli amici che da sempre sono stati al mio fianco in
questo percorso. 頑張ります！

98

Bibliography

[CR36] Alonzo Church and J. B. Rosser. “Some Properties of Conversion”.
In: Transactions of the American Mathematical Society 39.3 (1936),
pp. 472–482. issn: 00029947. url: http://www.jstor.org/stable/
1989762.

[Bru72] Nicolaas G. de Bruijn. “Lambda calculus notationwith nameless dum-
mies, a tool for automatic formula manipulation, with application
to the Church-Rosser theorem”. In: Indagationes Mathematicae (Pro-
ceedings) 75.5 (1972), pp. 381–392. issn: 1385-7258. url: https://
doi.org/10.1016/1385-7258(72)90034-0.

[Mar84] Per Martin-Löf. Intuitionistic type theory. Vol. 1. Studies in proof the-
ory. Bibliopolis, 1984. isbn: 978-88-7088-228-5.

[Bar85] Hendrik Pieter Barendregt. The lambda calculus - its syntax and se-
mantics. Vol. 103. Studies in logic and the foundations of mathemat-
ics. North-Holland, 1985. isbn: 978-0-444-86748-3.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators
and Lambda-Calculus. Cambridge University Press, 1986.

[Sha88] Natarajan Shankar. “A mechanical proof of the Church-Rosser the-
orem”. In: J. ACM 35.3 (1988), pp. 475–522. doi: 10.1145/44483.
44484.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types.
Vol. 7. Cambridge Tracts inTheoretical Computer Science. Cambridge,
1989.

[Aba+91] Martıń Abadi et al. “Explicit Substitutions”. In: J. Funct. Program. 1.4
(1991), pp. 375–416. doi: 10.1017/S0956796800000186.

[Pfe92] Frank Pfenning. A Proof of the Church-Rosser Theorem and its Repre-
sentation in a Logical Framework. 1992.

99

http://www.jstor.org/stable/1989762
http://www.jstor.org/stable/1989762
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1145/44483.44484
https://doi.org/10.1145/44483.44484
https://doi.org/10.1017/S0956796800000186

[Hue94] Gérard P. Huet. “Residual Theory in lambda-Calculus: A Formal De-
velopment”. In: J. Funct. Program. 4.3 (1994), pp. 371–394. doi: 10.
1017/S0956796800001106.

[Luo94] Zhaohui Luo. Computation and reasoning - a type theory for computer
science. Vol. 11. International series of monographs on computer sci-
ence. Oxford University Press, 1994. isbn: 978-0-19-853835-6.

[Pau94] Lawrence C. Paulson. Isabelle - A Generic Theorem Prover (with a con-
tribution by T. Nipkow). Vol. 828. Lecture Notes in Computer Science.
Springer, 1994. isbn: 3-540-58244-4. doi: 10.1007/BFb0030541.

[Ras95] Ole Rasmussen. The Church-Rosser Theorem in Isabelle: A Proof Port-
ing Experiment. Tech. rep. 364. Computer Laboratory, University of
Cambridge, May 1995. url: %5Curl%7Bhttp://www.cl.cam.ac.
uk:80/ftp/papers/reports/TR364- or200- church- rosser-
isabelle.ps.gz%7D.

[Tak95] Masako Takahashi. “Parallel Reductions in λ-Calculus”. In: Inf. Com-
put. 118.1 (1995), pp. 120–127. doi: 10.1006/inco.1995.1057.

[Nip96] Tobias Nipkow. “More Church-Rosser Proofs (in Isabelle/HOL)”. In:
Automated Deduction - CADE-13, 13th International Conference on
Automated Deduction, New Brunswick, NJ, USA, July 30 - August 3,
1996, Proceedings. Ed. by Michael A. McRobbie and John K. Slaney.
Vol. 1104. LectureNotes in Computer Science. Springer, 1996, pp. 733–
747. doi: 10.1007/3-540-61511-3_125.

[MP99] JamesMcKinna and Robert Pollack. “Some LambdaCalculus and Type
Theory Formalized”. In: J. Autom. Reasoning 23.3-4 (1999), pp. 373–
409. doi: 10.1023/A:1006294005493.

[Hom01] Peter V. Homeier.AProof of the Church-RosserTheorem for the Lambda
Calculus in Higher Order Logic. US Department of Defense, 2001.

[VB01] René Vestergaard and James Brotherston. “A Formalised First-Order
Confluence Proof for the lambda-Calculus Using One-Sorted Vari-
able Names”. In: Rewriting Techniques and Applications, 12th Inter-
national Conference, RTA 2001, Utrecht, The Netherlands, May 22-24,
2001, Proceedings. Ed. by Aart Middeldorp. Vol. 2051. Lecture Notes
in Computer Science. Springer, 2001, pp. 306–321. doi: 10.1007/3-
540-45127-7_23.

100

https://doi.org/10.1017/S0956796800001106
https://doi.org/10.1017/S0956796800001106
https://doi.org/10.1007/BFb0030541
%5Curl%7Bhttp://www.cl.cam.ac.uk:80/ftp/papers/reports/TR364-or200-church-rosser-isabelle.ps.gz%7D
%5Curl%7Bhttp://www.cl.cam.ac.uk:80/ftp/papers/reports/TR364-or200-church-rosser-isabelle.ps.gz%7D
%5Curl%7Bhttp://www.cl.cam.ac.uk:80/ftp/papers/reports/TR364-or200-church-rosser-isabelle.ps.gz%7D
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1007/3-540-61511-3_125
https://doi.org/10.1023/A:1006294005493
https://doi.org/10.1007/3-540-45127-7_23
https://doi.org/10.1007/3-540-45127-7_23

[Ter03] Terese. Term Rewriting Systems. Vol. 55. Cambridge tracts in theoret-
ical computer science. Cambridge University Press, 2003. isbn: 978-
0-521-39115-3.

[Ayd+05] Brian E. Aydemir et al. “Mechanized Metatheory for the Masses: The
PoplMark Challenge”. In: Theorem Proving in Higher Order Logics,
18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25,
2005, Proceedings. Ed. by Joe Hurd andThomas F. Melham. Vol. 3603.
Lecture Notes in Computer Science. Springer, 2005, pp. 50–65. doi:
10.1007/11541868_4.

[Nor07] Ulf Norell. “Towards a practical programming language based on de-
pendent type theory”. PhD thesis. 2007.

[Ayd+08] Brian E. Aydemir et al. “Engineering Formal Metatheory”. In: Pro-
ceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008. Ed. by George C. Necula and Philip Wadler.
ACM, 2008, pp. 3–15. doi: 10.1145/1328438.1328443.

[DO08] Patrick Dehornoy and Vincent van Oostrom. “Z: Proving confluence
by monotonic single-step upperbound functions”. In: Logical Models
of Reasoning and Computation (LMRC-08). 2008.

[Urb08] Christian Urban. “Nominal Techniques in Isabelle/HOL”. In: J. Au-
tom. Reasoning 40.4 (2008), pp. 327–356. doi: 10.1007/s10817-008-
9097-2.

[BDN09] Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda -
A Functional Language with Dependent Types”. In: Theorem Prov-
ing in Higher Order Logics, 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings. Ed. by Ste-
fan Berghofer et al. Vol. 5674. Lecture Notes in Computer Science.
Springer, 2009, pp. 73–78. doi: 10.1007/978-3-642-03359-9_6.

[CH09] Felice Cardone and J. Roger Hindley. “Lambda-Calculus and Com-
binators in the 20th Century”. In: Logic from Russell to Church. Ed.
by Dov M. Gabbay and John Woods. Vol. 5. Handbook of the His-
tory of Logic. Elsevier, 2009, pp. 723–817. doi: 10.1016/S1874-
5857(09)70018-4.

101

https://doi.org/10.1007/11541868_4
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1016/S1874-5857(09)70018-4
https://doi.org/10.1016/S1874-5857(09)70018-4

[How10] Douglas J. Howe. “Higher-Order Abstract Syntax in Isabelle/HOL”.
In: InteractiveTheorem Proving, First International Conference, ITP 2010,
Edinburgh, UK, July 11-14, 2010. Proceedings. Ed. by Matt Kaufmann
and Lawrence C. Paulson. Vol. 6172. Lecture Notes in Computer Sci-
ence. Springer, 2010, pp. 481–484. doi: 10.1007/978-3-642-14052-
5_33.

[Acc12] BeniaminoAccattoli. “Proof Pearl: Abella Formalization ofλ-Calculus
Cube Property”. In: Certified Programs and Proofs - Second Interna-
tional Conference, CPP 2012, Kyoto, Japan, December 13-15, 2012. Pro-
ceedings. Ed. by Chris Hawblitzel and Dale Miller. Vol. 7679. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 173–187. doi:
10.1007/978-3-642-35308-6_15.

[Cha12] Arthur Charguéraud. “The Locally Nameless Representation”. In: J.
Autom. Reasoning 49.3 (2012), pp. 363–408. doi: 10.1007/s10817-
011-9225-2.

[KMY14] Yuichi Komori, Naosuke Matsuda, and Fumika Yamakawa. “A Sim-
plified Proof of the Church-Rosser Theorem”. In: Studia Logica 102.1
(2014), pp. 175–183. doi: 10.1007/s11225-013-9470-y.

[KS15] Pepijn Kokke and Wouter Swierstra. “Auto in Agda - Programming
Proof Search Using Reflection”. In:Mathematics of Program Construc-
tion - 12th International Conference, MPC 2015, Königswinter, Ger-
many, June 29 - July 1, 2015. Proceedings. Ed. by Ralf Hinze and Janis
Voigtländer. Vol. 9129. Lecture Notes in Computer Science. Springer,
2015, pp. 276–301. doi: 10.1007/978-3-319-19797-5_14.

[STS15] Steven Schäfer, Tobias Tebbi, and Gert Smolka. “Autosubst: Reason-
ing with de Bruijn Terms and Parallel Substitutions”. In: Interactive
Theorem Proving - 6th International Conference, ITP 2015, Nanjing,
China, August 24-27, 2015, Proceedings. Ed. by Christian Urban and
XingyuanZhang. Vol. 9236. LectureNotes in Computer Science. Springer,
2015, pp. 359–374. doi: 10.1007/978-3-319-22102-1_24.

[NOS16] JulianNagele, Vincent vanOostrom, andChristian Sternagel. “A Short
Mechanized Proof of the Church-Rosser Theorem by the Z-property
for the λβ-calculus in Nominal Isabelle”. In: CoRR abs/1609.03139
(2016). arXiv: 1609.03139.

102

https://doi.org/10.1007/978-3-642-14052-5_33
https://doi.org/10.1007/978-3-642-14052-5_33
https://doi.org/10.1007/978-3-642-35308-6_15
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1007/s11225-013-9470-y
https://doi.org/10.1007/978-3-319-19797-5_14
https://doi.org/10.1007/978-3-319-22102-1_24
https://arxiv.org/abs/1609.03139

[CST17] Ernesto Copello, Nora Szasz, and Álvaro Tasistro. “Machine-checked
Proof of the Church-Rosser Theorem for the Lambda Calculus Using
the Barendregt Variable Convention in Constructive Type Theory”.
In: 12th Workshop on Logical and Semantic Frameworks, with Applica-
tions, LSFA 2017, Brasıĺia, Brazil, September 23-24, 2017 . Ed. by Sandra
Alves and Renata Wasserman. Vol. 338. Electronic Notes in Theoret-
ical Computer Science. Elsevier, 2017, pp. 79–95. doi: 10.1016/j.
entcs.2018.10.006.

[WK19] Philip Wadler and Wen Kokke. Programming Language Foundations
in Agda. Available at http://plfa.inf.ed.ac.uk/. 2019.

[Coq] The Coq Development Team.The Coq Proof Assistant Reference Man-
ual –Version V8.4, 2012. url: http://coq.inria.fr.

103

https://doi.org/10.1016/j.entcs.2018.10.006
https://doi.org/10.1016/j.entcs.2018.10.006
http://plfa.inf.ed.ac.uk/
http://coq.inria.fr

	Introduction
	Formalization
	Related work
	Chapter overview
	File structure

	Introduction to Agda
	Comparison with other proof assistants
	Interactivity
	Constructive type theory
	Agda
	Datatypes
	Syntactic constructs
	Functions
	Equality
	Postulates
	Existence
	Modules

	De Bruijn indices and the -calculus
	Perspective
	De Bruijn indices
	Comparison with the original development

	Substitution
	Substitutions as functions

	-calculus
	-calculus equations
	Fundamental theorems

	The Church-Rosser Theorem
	-reduction
	Substitutivity of *-reduction
	Pointwise *-reduction
	*-reduction and renamings

	Church-Rosser Theorem

	The Tait/Martin-Löf proof and parallel reduction
	Main idea
	Proof overview
	Parallel reduction
	Relations between parallel reduction and -reduction
	Diamond lemma for parallel reduction
	Strip lemma
	Confluence of parallel reduction
	Confluence of -reduction

	Takahashi translation
	Definition
	Pattern overloading in Agda

	Revisiting the confluence of parallel reduction
	Diamond lemma for parallel reduction

	Comparison with the previous proof

	The Komori-Matsuda-Yamakawa proof
	Proof overview
	Main concepts
	Fundamental theorems for confluence
	Confluence of -reduction
	Central theorems
	Lemma 3.3
	Lemma 3.5
	Proving Theorem 3.8
	Proving Lemma 3.5

	Lemma 3.4
	Takahashi translation for substitutions
	Generalized Lemma 3.4
	Lemma 3.4 for applications
	Takahashi translation and renamings
	Special case of 0-indexed substitution

	Proof remarks

	The Z-property proof
	Generic reflexive transitive closure
	Semi-confluence
	Z-property
	Z-property for -reduction
	Comparison with the Komori-Matsuda-Yamakawa proof
	Proof overview

	Conclusion
	Theoretic perspective
	Implementation
	Future work

